Pre-analytical factors affecting the establishment of a single tube assay for multiparameter liquid biopsy detection in melanoma patients
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32246814
PubMed Central
PMC7191195
DOI
10.1002/1878-0261.12669
Knihovny.cz E-zdroje
- Klíčová slova
- CTC, EV, ctDNA, liquid biopsy, melanoma, miRNA,
- MeSH
- cirkulující nádorová DNA krev MeSH
- extracelulární vezikuly genetika metabolismus ultrastruktura MeSH
- lidé MeSH
- melanom krev patologie MeSH
- mikro RNA krev genetika MeSH
- mutace MeSH
- nádorové biomarkery krev genetika MeSH
- nádorové buněčné linie MeSH
- nádorové cirkulující buňky metabolismus MeSH
- senioři MeSH
- staging nádorů MeSH
- tekutá biopsie přístrojové vybavení metody MeSH
- transmisní elektronová mikroskopie MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cirkulující nádorová DNA MeSH
- mikro RNA MeSH
- nádorové biomarkery MeSH
The combination of liquid biomarkers from a single blood tube can provide more comprehensive information on tumor development and progression in cancer patients compared to single analysis. Here, we evaluated whether a combined analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and circulating cell-free microRNA (miRNA) in total plasma and extracellular vesicles (EV) from the same blood sample is feasible and how the results are influenced by the choice of different blood tubes. Peripheral blood from 20 stage IV melanoma patients and five healthy donors (HD) was collected in EDTA, Streck, and Transfix tubes. Peripheral blood mononuclear cell fraction was used for CTC analysis, whereas plasma and EV fractions were used for ctDNA mutation and miRNA analysis. Mutations in cell-free circulating DNA were detected in 67% of patients, with no significant difference between the tubes. CTC was detected in only EDTA blood and only in 15% of patients. miRNA NGS (next-generation sequencing) results were highly influenced by the collection tubes and could only be performed from EDTA and Streck tubes due to hemolysis in Transfix tubes. No overlap of significantly differentially expressed miRNA (patients versus HD) could be found between the tubes in total plasma, whereas eight miRNA were commonly differentially regulated in the EV fraction. In summary, high-quality CTCs, ctDNA, and miRNA data from a single blood tube can be obtained. However, the choice of blood collection tubes is a critical pre-analytical variable.
Agena Bioscience GmbH Hamburg Germany
Centre of Dermatology Elbe Clinics Buxtehude Germany
Department of Dermatology and Venereology University Medical Center Hamburg Eppendorf Germany
Department of Tumor Biology University Medical Center Hamburg Eppendorf Germany
Orion Pharma Orion Corporation Espoo Finland
QIAGEN Inc GmbH Frederick MD USA
Zobrazit více v PubMed
Alidousty C, Brandes D, Heydt C, Wagener S, Wittersheim M, Schafer SC, Holz B, Merkelbach‐Bruse S, Buttner R, Fassunke J et al (2017) Comparison of blood collection tubes from three different manufacturers for the collection of cell‐free DNA for liquid biopsy mutation testing. J Mol Diagn 19, 801–804. PubMed
Alix‐Panabieres C and Pantel K (2016) Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov 6, 479–491. PubMed
Andersen CL, Jensen JL and Ørntoft TF (2004) Normalization of real‐time quantitative reverse transcription‐PCR data: a model‐based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64, 5245–5250. PubMed
Anfossi S, Babayan A, Pantel K and Calin GA (2018) Clinical utility of circulating non‐coding RNAs—an update. Nat Rev Clin Oncol 15, 541–563. PubMed
Aya‐Bonilla C, Gray ES, Manikandan J, Freeman JB, Zaenker P, Reid AL, Khattak MA, Frank MH, Millward M and Ziman M (2019) Immunomagnetic‐enriched subpopulations of melanoma circulating tumour cells (CTCs) exhibit distinct transcriptome profiles. Cancers 11, 157. PubMed PMC
Aya‐Bonilla CA, Marsavela G, Freeman JB, Lomma C, Frank MH, Khattak MA, Meniawy TM, Millward M, Warkiani ME, Gray ES et al (2017) Isolation and detection of circulating tumour cells from metastatic melanoma patients using a slanted spiral microfluidic device. Oncotarget 8, 67355–67368. PubMed PMC
Bardelli A and Pantel K (2017) Liquid biopsies, what we do not know (Yet). Cancer Cell 31, 172–179. PubMed
Bartak BK, Kalmar A, Galamb O, Wichmann B, Nagy ZB, Tulassay Z, Dank M, Igaz P and Molnar B (2018) Blood collection and cell‐free DNA isolation methods influence the sensitivity of liquid biopsy analysis for colorectal cancer detection. Pathol Oncol Res 25, 915–923. PubMed
Cheng L, Sharples RA, Scicluna BJ and Hill AF (2014) Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell‐free blood. J Extracell Vesicles 3, 23743. PubMed PMC
Diaz IM, Nocon A, Mehnert DH, Fredebohm J, Diehl F and Holtrup F (2016) Performance of Streck cfDNA blood collection tubes for liquid biopsy testing. PLoS ONE 11, e0166354. PubMed PMC
Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, Thornton K, Agrawal N, Sokoll L, Szabo SA et al (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14, 985–990. PubMed PMC
Dillies M‐A, Rau A, Aubert J, Hennequet‐Antier C, Jeanmougin M, Servant N, Keime C, Marot G, Castel D, Estelle J et al. (2013) A comprehensive evaluation of normalization methods for Illumina high‐throughput RNA sequencing data analysis. Brief Bioinform 14, 671–683. PubMed
Elazezy M and Joosse SA (2018) Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management. Comput Struct Biotechnol J 16, 370–378. PubMed PMC
Erdmann F, Lortet‐Tieulent J, Schuz J, Zeeb H, Greinert R, Breitbart EW and Bray F (2013) International trends in the incidence of malignant melanoma 1953–2008–are recent generations at higher or lower risk? Int J Cancer 132, 385–400. PubMed
Feng X, Wang Z, Fillmore R and Xi Y (2014) MiR‐200, a new star miRNA in human cancer. Cancer Lett 344, 166–173. PubMed PMC
Freeman JB, Gray ES, Millward M, Pearce R and Ziman M (2012) Evaluation of a multi‐marker immunomagnetic enrichment assay for the quantification of circulating melanoma cells. J Transl Med 10, 192. PubMed PMC
Girotti MR, Gremel G, Lee R, Galvani E, Rothwell D, Viros A, Mandal AK, Lim KHJ, Saturno G, Furney SJ et al. (2015) Application of sequencing, liquid biopsies and patient‐derived xenografts for personalized medicine in melanoma. Cancer Discov 6, 286–299. PubMed
Gorges K, Wiltfang L, Gorges TM, Sartori A, Hildebrandt L, Keller L, Volkmer B, Peine S, Babayan A, Moll I et al. (2019) Intra‐patient heterogeneity of circulating tumor cells and circulating tumor DNA in blood of melanoma patients. Cancers 11, 1685. PubMed PMC
Gray ES, Reid AL, Bowyer S, Calapre L, Siew K, Pearce R, Cowell L, Frank MH, Millward M and Ziman M (2015) Circulating melanoma cell subpopulations: their heterogeneity and differential responses to treatment. J Invest Dermatol 135, 2040–2048. PubMed PMC
Hoshino A, Costa‐Silva B, Shen T‐L, Rodrigues G, Hashimoto A, Mark MT, Molina H, Kohsaka S, Di Giannatale A, Ceder S et al. (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527, 329. PubMed PMC
Huang SK and Hoon DS (2016) Liquid biopsy utility for the surveillance of cutaneous malignant melanoma patients. Mol Oncol 10, 450–463. PubMed PMC
Koch C, Joosse S, Schneegans S, Wilken O, Janning M, Loreth D, Müller V, Prieske K, Banys‐Paluchowski M, Horst L et al (2020) Pre‐analytical and analytical variables of label‐independent enrichment and automated detection of circulating tumor Cells in cancer patients. Cancers 12, 442. PubMed PMC
Koyanagi K, O'Day SJ, Boasberg P, Atkins MB, Wang HJ, Gonzalez R, Lewis K, Thompson JA, Anderson CM, Lutzky J et al (2010) Serial monitoring of circulating tumor cells predicts outcome of induction biochemotherapy plus maintenance biotherapy for metastatic melanoma. Clin Cancer Res 16, 2402–2408. PubMed PMC
Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA et al (2013) Mutational heterogeneity in cancer and the search for new cancer‐associated genes. Nature 499, 214–218. PubMed PMC
Luo X, Mitra D, Sullivan RJ, Wittner BS, Kimura AM, Pan S, Hoang MP, Brannigan BW, Lawrence DP and Flaherty KT (2014) Isolation and molecular characterization of circulating melanoma cells. Cell Rep 7, 645–653. PubMed PMC
Madadi S, Schwarzenbach H, Lorenzen J and Soleimani M (2019) MicroRNA expression studies: challenge of selecting reliable reference controls for data normalization. Cell Mol Life Sci 76, 3497–3514. PubMed PMC
Marsavela G, Aya‐Bonilla CA, Warkiani M, Gray E and Ziman M (2018) Melanoma circulating tumor cells: benefits and challenges required for clinical application. Cancer Lett 424, 1–8. PubMed
Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, Beitsch PD, Leitch M, Hoover S, Euhus D et al (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10, 8152–8162. PubMed
Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova‐Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A et al. (2008) Circulating microRNAs as stable blood‐based markers for cancer detection. Proc Natl Acad Sci USA 105, 10513–10518. PubMed PMC
Mocellin S, Del Fiore P, Guarnieri L, Scalerta R, Foletto M, Chiarion V, Pilati P, Nitti D, Lise M and Rossi CR (2004) Molecular detection of circulating tumor cells is an independent prognostic factor in patients with high‐risk cutaneous melanoma. Int J Cancer 111, 741–745. PubMed
Mosko MJ, Nakorchevsky AA, Flores E, Metzler H, Ehrich M, van den Boom DJ, Sherwood JL and Nygren AO (2016) Ultrasensitive detection of multiplexed somatic mutations using MALDI‐TOF mass spectrometry. J Mol Diagn 18, 23–31. PubMed
Nikolaev S, Lemmens L, Koessler T, Blouin JL and Nouspikel T (2018) Circulating tumoral DNA: preanalytical validation and quality control in a diagnostic laboratory. Anal Biochem 542, 34–39. PubMed
Po JW, Ma Y, Balakrishna B, Brungs D, Azimi F, de Souza P and Becker TM (2019) Immunomagnetic isolation of circulating melanoma cells and detection of PD‐L1 status. PLoS ONE 14, e0211866. PubMed PMC
Puhka M, Nordberg M, Valkonen S, Rannikko A, Kallioniemi O, Siljander P and Af Hällström T (2017) KeepEX, a simple dilution protocol for improving extracellular vesicle yields from urine. Eur J Pharm Sci 98, 30–39. PubMed
Qin J, Alt JR, Hunsley BA, Williams TL and Fernando MR (2014) Stabilization of circulating tumor cells in blood using a collection device with a preservative reagent. Cancer Cell Int 14, 23. PubMed PMC
Schwarzenbach H, da Silva AM, Calin G and Pantel K (2015) Data Normalization Strategies for MicroRNA Quantification. Clin Chem 61, 1333–1342. PubMed PMC
Tan CL, Lim TH, Lim T, Tan DS, Chua YW, Ang MK, Pang B, Lim CT, Takano A, Lim AS et al (2016) Concordance of anaplastic lymphoma kinase (ALK) gene rearrangements between circulating tumor cells and tumor in non‐small cell lung cancer. Oncotarget 7, 23251–23262. PubMed PMC
van Kempen LC, van den Hurk K, Lazar V, Michiels S, Winnepenninckx V, Stas M, Spatz A and van den Oord JJ (2012) Loss of microRNA‐200a and c, and microRNA‐203 expression at the invasive front of primary cutaneous melanoma is associated with increased thickness and disease progression. Virchows Arch 461, 441–448. PubMed
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A and Speleman F (2002) Accurate normalization of real‐time quantitative RT‐PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, RESEARCH0034. PubMed PMC
Verrando P, Capovilla M and Rahmani R (2016) Trans‐nonachlor decreases miR‐141‐3p levels in human melanocytes s promoting melanoma cell characteristics and shows a multigenerational impact on miR‐8 levels in Drosophila. Toxicology 368–369, 129–141. PubMed
Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD and Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high‐density lipoproteins. Nat Cell Biol 13, 423. PubMed PMC
Ward Gahlawat A, Lenhardt J, Witte T, Keitel D, Kaufhold A, Maass KK, Pajtler KW, Sohn C and Schott S (2019) Evaluation of storage tubes for combined analysis of circulating nucleic acids in liquid biopsies. Int J Mol Sci 20, 704. PubMed PMC
Xu Y, Brenn T, Brown ER, Doherty V and Melton DW (2012) Differential expression of microRNAs during melanoma progression: miR‐200c, miR‐205 and miR‐211 are downregulated in melanoma and act as tumour suppressors. Br J Cancer 106, 553–561. PubMed PMC
Zavridou M, Mastoraki S, Strati A, Tzanikou E, Chimonidou M and Lianidou E (2018) Evaluation of preanalytical conditions and implementation of quality control steps for reliable gene expression and DNA methylation analyses in liquid biopsies. Clin Chem 2018, 292318. PubMed