Influence of Mg Doping Levels on the Sensing Properties of SnO2 Films
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
TEC2016-79898-C6-1-R (AEI/FEDER, EU)
Ministerio de Economía, Industria y Competitividad, Gobierno de España
Ramón y Cajal Programme
Ministerio de Economía, Industria y Competitividad, Gobierno de España
CEITEC Nano Research Infrastructure
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32290346
PubMed Central
PMC7180774
DOI
10.3390/s20072158
PII: s20072158
Knihovny.cz E-resources
- Keywords
- Mg-doped SnO2, gas sensing, spray pyrolysis, thin films, volatile organic compounds,
- Publication type
- Journal Article MeSH
This work presents the effect of magnesium (Mg) doping on the sensing properties of tin dioxide (SnO2) thin films. Mg-doped SnO2 films were prepared via a spray pyrolysis method using three doping concentrations (0.8 at.%, 1.2 at.%, and 1.6 at.%) and the sensing responses were obtained at a comparatively low operating temperature (160 °C) compared to other gas sensitive materials in the literature. The morphological, structural and chemical composition analysis of the doped films show local lattice disorders and a proportional decrease in the average crystallite size as the Mg-doping level increases. These results also indicate an excess of Mg (in the samples prepared with 1.6 at.% of magnesium) which causes the formation of a secondary magnesium oxide phase. The films are tested towards three volatile organic compounds (VOCs), including ethanol, acetone, and toluene. The gas sensing tests show an enhancement of the sensing properties to these vapors as the Mg-doping level rises. This improvement is particularly observed for ethanol and, thus, the gas sensing analysis is focused on this analyte. Results to 80 ppm of ethanol, for instance, show that the response of the 1.6 at.% Mg-doped SnO2 film is four times higher and 90 s faster than that of the 0.8 at.% Mg-doped SnO2 film. This enhancement is attributed to the Mg-incorporation into the SnO2 cell and to the formation of MgO within the film. These two factors maximize the electrical resistance change in the gas adsorption stage, and thus, raise ethanol sensitivity.
See more in PubMed
Schütze A., Baur T., Leidinger M., Reimringer W., Jung R., Conrad T., Sauerwald T. Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How to? Environment. 2017;4:20. doi: 10.3390/environments4010020. DOI
Yoon J.-W., Lee J.-H. Toward breath analysis on a chip for disease diagnosis using semiconductor-based chemiresistors: Recent progress and future perspectives. LAB CHIP. 2017;17:3537–3557. doi: 10.1039/C7LC00810D. PubMed DOI
Kumar M., Gupta A.K., Kumar D. Mg-doped TiO2 thin films deposited by low cost technique for CO gas monitoring. Ceram. Int. 2016;42:405–410. doi: 10.1016/j.ceramint.2015.08.124. DOI
Vallejos S., Gràcia I., Lednický T., Vojkuvka L., Figueras E., Hubálek J., Cané C. Highly hydrogen sensitive micromachined sensors based on aerosol-assisted chemical vapor deposited ZnO rods. Sens. Actuators B Chem. 2018;268:15–21. doi: 10.1016/j.snb.2018.04.033. DOI
Vallejos S., Selina S., Annanouch F.E., Gràcia I., Llobet E., Blackman C. Aerosol assisted chemical vapour deposition of gas sensitive SnO2 and Au-functionalised SnO2 nanorods via a non-catalysed vapour solid (VS) mechanism. Sci. Rep. 2016;6:28464. doi: 10.1038/srep28464. PubMed DOI PMC
Vallejos S., Gràcia I., Figueras E., Cané C. Nanoscale heterostructures based on Fe2O3@ WO3-x nanoneedles and their direct integration into flexible transducing platforms for toluene sensing. ACS Appl. Mater. Interfaces. 2015;7:18638–18649. doi: 10.1021/acsami.5b05081. PubMed DOI
Lou Z., Deng J., Wang L., Wang L., Fei T., Zhang T. Toluene and ethanol sensing performances of pristine and PdO-decorated flower-like ZnO structures. Sens. Actuators B Chem. 2013;176:323–329. doi: 10.1016/j.snb.2012.09.027. DOI
Fu J., Zhao C., Zhang J., Peng Y., Xie E. Enhanced gas sensing performance of electrospun Pt-functionalized NiO nanotubes with chemical and electronic sensitization. ACS Appl. Mater. Interfaces. 2013;5:7410–7416. doi: 10.1021/am4017347. PubMed DOI
Tomić M., Šetka M., Chmela O., Gràcia I., Figueras E., Cané C., Vallejos S. Cerium Oxide-Tungsten Oxide Core-Shell Nanowire-Based Microsensors Sensitive to Acetone. Biosensors. 2018;8:116. doi: 10.3390/bios8040116. PubMed DOI PMC
Zhang Q., Zhou Q., Lu Z., Wei Z., Xu L., Gui Y. Recent advances of SnO2-based sensors for detecting fault characteristic gases extracted from power transformer oil. Front. Chem. 2018;6:364. doi: 10.3389/fchem.2018.00364. PubMed DOI PMC
Belmonte J.C., Manzano J., Arbiol J., Cirera A., Puigcorbe J., Vila A., Sabate N., Gracia I., Cane C., Morante J. Micromachined twin gas sensor for CO and O2 quantification based on catalytically modified nano-SnO2. Sens. Actuators B Chem. 2006;114:881–892. doi: 10.1016/j.snb.2005.08.007. DOI
Liu S., Sun Q., Wang J., Hou H. Charge imbalance induced oxygen-adsorption enhances the gas-sensing properties of Al-doped SnO2 powders. J. Phys. Chem. Solids. 2019;124:163–168. doi: 10.1016/j.jpcs.2018.09.017. DOI
Kang J.-g., Park J.-S., Lee H.-J. Pt-doped SnO2 thin film based micro gas sensors with high selectivity to toluene and HCHO. Sens. Actuators B Chem. 2017;248:1011–1016. doi: 10.1016/j.snb.2017.03.010. DOI
Liang Y.-C., Lee C.-M., Lo Y.-J. Reducing gas-sensing performance of Ce-doped SnO2 thin films through a cosputtering method. RSC Adv. 2017;7:4724–4734. doi: 10.1039/C6RA25853K. DOI
Li W., Ma S., Li Y., Li X., Wang C., Yang X., Cheng L., Mao Y., Luo J., Gengzang D. Preparation of Pr-doped SnO2 hollow nanofibers by electrospinning method and their gas sensing properties. J. Alloy. Compd. 2014;605:80–88. doi: 10.1016/j.jallcom.2014.03.182. DOI
Guan Y., Wang D., Zhou X., Sun P., Wang H., Ma J., Lu G. Hydrothermal preparation and gas sensing properties of Zn-doped SnO2 hierarchical architectures. Sens. Actuators B Chem. 2014;191:45–52. doi: 10.1016/j.snb.2013.09.002. DOI
Amin M., Shah N.A., Bhatti A.S., Malik M.A. Effects of Mg doping on optical and CO gas sensing properties of sensitive ZnO nanobelts. CrystEngComm. 2014;16:6080–6088. doi: 10.1039/C4CE00153B. DOI
Goudarzi S., Khojier K. Role of substrate temperature on the ammonia gas sensing performance of Mg-doped ZnO thin films deposited by spray pyrolysis technique: Application in breath analysis devices. Appl. Phys. A. 2018;124:601. doi: 10.1007/s00339-018-2020-8. DOI
Vinoth E., Gowrishankar S., Gopalakrishnan N. Effect of Mg doping in the gas-sensing performance of RF-sputtered ZnO thin films. Appl. Phys. A. 2018;124:433. doi: 10.1007/s00339-018-1852-6. DOI
Karthick K., Srinivasan D., Christopher J.B. Fabrication of highly c-axis Mg doped ZnO on c-cut sapphire substrate by rf sputtering for hydrogen sensing. J. Mater. Sci-Mater. Elec. 2017;28:11979–11986. doi: 10.1007/s10854-017-7007-2. DOI
Kwak C.-H., Woo H.-S., Abdel-Hady F., Wazzan A., Lee J.-H. Vapor-phase growth of urchin-like Mg-doped ZnO nanowire networks and their application to highly sensitive and selective detection of ethanol. Sens. Actuators B Chem. 2016;223:527–534. doi: 10.1016/j.snb.2015.09.120. DOI
Jo Y.-M., Lee C.-S., Wang R., Park J.-S., Lee J.-H. Highly sensitive and selective ethanol sensors using magnesium doped indium oxide hollow spheres. J. Korean Ceram. Soc. 2017;54:303–307. doi: 10.4191/kcers.2017.54.4.01. DOI
He H., Xie Z., Li Q., Niu H. On the possibility of p-type doping of SnO2 with Mg: A first-principles study. J. Comput. Mater. Sci. 2015;101:62–65. doi: 10.1016/j.commatsci.2015.01.022. DOI
Khatami S.M.N. Ph.D. Thesis. University of Central Florida; Orlando, FL, USA: 2014. [(accessed on 11 March 2020)]. Modeling and Spray Pyrolysis Processing of Mixed Metal Oxide Nano-Composite Gas Sensor Films. Available online: http://purl.fcla.edu/fcla/etd/CFE0005817.
Falcony C., Aguilar-Frutis M.A., García-Hipólito M. Spray pyrolysis technique; high-K dielectric films and luminescent materials: A review. Micromachines. 2018;9:414. doi: 10.3390/mi9080414. PubMed DOI PMC
Touidjen N.H., Bendahmane B., Lamri Zeggar M., Mansour F., Aida M. SnO2 thin film synthesis for organic vapors sensing at ambient temperature. Sens. Biosensing Res. 2016;11:52. doi: 10.1016/j.sbsr.2016.11.001. DOI
Bendahmane B., Touidjen N.H., Mansour F. Characterization of SnO2 Thin Films Fabricated by Chemical Spray Pyrolysis; Proceedings of the International Conference on Advanced Electrical Engineering (ICAEE); Algiers, Algeria. 19–21 November 2019; IEEE; 2020. pp. 1–6. DOI
Vallejos S., Grácia I., Chmela O., Figueras E., Hubálek J., Cané C. Chemoresistive micromachined gas sensors based on functionalized metal oxide nanowires: Performance and reliability. Sens. Actuators B Chem. 2016;235:525–534. doi: 10.1016/j.snb.2016.05.102. DOI
Shajira P., Bushiri M.J., Nair B.B., Prabhu V.G. Energy band structure investigation of blue and green light emitting Mg doped SnO2 nanostructures synthesized by combustion method. J. Lumin. 2014;145:425–429. doi: 10.1016/j.jlumin.2013.07.073. DOI
Mazumder N., Bharati A., Saha S., Sen D., Chattopadhyay K. Effect of Mg doping on the electrical properties of SnO2 nanoparticles. Curr. Appl. Phys. 2012;12:975–982. doi: 10.1016/j.cap.2011.12.022. DOI
Papadopoulos N., Tsakiridis P., Hristoforou E. Structural and electrical properties of undoped SnO2 films developed by a low cost CVD technique with two different methods: Comparative study. [(accessed on 11 March 2020)];J. Opt. Adv. Mat. 2005 7:2693–2706. Available online: https://dspace.lib.ntua.gr/xmlui/handle/123456789/16827.
Kwoka M., Ottaviano L., Passacantando M., Santucci S., Czempik G., Szuber J. XPS study of the surface chemistry of L-CVD SnO2 thin films after oxidation. Thin Solid Films. 2005;490:36–42. doi: 10.1016/j.tsf.2005.04.014. DOI
Aragón F.H., Gonzalez I., Coaquira J.A., Hidalgo P., Brito H.F., Ardisson J.D., Macedo W.A., Morais P.C. Structural and surface study of praseodymium-doped SnO2 nanoparticles prepared by the polymeric precursor method. J. Phys. Chem. C. 2015;119:8711–8717. doi: 10.1021/acs.jpcc.5b00761. DOI
Huang Q., Li X., Liu T., Wu H., Liu X., Feng Q., Liu Y. Enhanced SaOS-2 cell adhesion, proliferation and differentiation on Mg-incorporated micro/nano-topographical TiO2 coatings. Appl. Surf. Sci. 2018;447:767–776. doi: 10.1016/j.apsusc.2018.04.095. DOI
Zhou Y., Peng J., Wang M., Mo J., Deng C., Zhu M. Tribochemical Behavior of Pure Magnesium During Sliding Friction. Metals. 2019;9:311. doi: 10.3390/met9030311. DOI
Dubecký F., Kindl D., Hubík P., Mičušík M., Dubecký M., Boháček P., Vanko G., Gombia E., Nečas V., Mudroň J. A comparative study of Mg and Pt contacts on semi-insulating GaAs: Electrical and XPS characterization. Appl. Surf. Sci. 2017;395:131–135. doi: 10.1016/j.apsusc.2016.04.176. DOI
Kaur H., Bhatti H.S., Singh K. Europium doping effect on 3D flower-like SnO2 nanostructures: Morphological changes, photocatalytic performance and fluorescence detection of heavy metal ion contamination in drinking water. RSC Adv. 2019;9:37450–37466. doi: 10.1039/C9RA03405F. PubMed DOI PMC
Jayanthi K., Chawla S., Sood K., Chhibara M., Singh S. Dopant induced morphology changes in ZnO nanocrystals. Appl. Surf. Sci. 2009;255:5869–5875. doi: 10.1016/j.apsusc.2009.01.032. DOI
Nithyavathy N., Arunmetha S., Vinoth M., Sriram G., Rajendran V. Fabrication of Nanocomposites of SnO2 and MgAl2O4 for Gas Sensing Applications. J. Electron. Mater. 2016;45:2193–2205. doi: 10.1007/s11664-015-4261-z. DOI
Xu H., Ju D., Chen Z., Han R., Zhai T., Yu H., Liu C., Wu X., Wang J., Cao B. A novel hetero-structure sensor based on Au/Mg-doped TiO2/SnO2 nanosheets directly grown on Al2O3 ceramic tubes. Sens. Actuators B Chem. 2018;273:328–335. doi: 10.1016/j.snb.2018.06.055. DOI
Khoang N.D., Van Duy N., Hoa N.D., Van Hieu N. Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance. Sens. Actuators B Chem. 2012;174:594–601. doi: 10.1016/j.snb.2012.07.118. DOI
Tian J., Wang J., Hao Y., Du H., Li X. Toluene sensing properties of porous Pd-loaded flower-like SnO2 microspheres. Sens. Actuators B Chem. 2014;202:795–802. doi: 10.1016/j.snb.2014.05.048. DOI
Wang S., Wang Y., Zhang H., Gao X., Yang J., Wang Y. Fabrication of porous α-Fe2O3 nanoshuttles and their application for toluene sensors. RSC Adv. 2014;4:30840–30849. doi: 10.1039/C4RA03743J. DOI
Wang L., Deng J., Lou Z., Zhang T. Nanoparticles-assembled Co3O4 nanorods p-type nanomaterials: One-pot synthesis and toluene-sensing properties. Sens. Actuators B Chem. 2014;201:1–6. doi: 10.1016/j.snb.2014.04.074. DOI
Thomas B., Skariah B. Spray deposited Mg-doped SnO2 thin film LPG sensor: XPS and EDX analysis in relation to deposition temperature and doping. J. Alloy. Compd. 2015;625:231–240. doi: 10.1016/j.jallcom.2014.11.092. DOI
Barsan N., Weimar U. Conduction model of metal oxide gas sensors. J. Electroceram. 2001;7:143–167. doi: 10.1023/A:1014405811371. DOI
Lenaerts S., Roggen J., Maes G. FT-IR characterization of tin dioxide gas sensor materials under working conditions. Spectrochim. Acta A. 1995;51:883–894. doi: 10.1016/0584-8539(94)01216-4. DOI
Sinha M., Mahapatra R., Mondal B., Maruyama T., Ghosh R. Ultrafast and reversible gas-sensing properties of ZnO nanowire arrays grown by hydrothermal technique. J. Phys. Chem. C. 2016;120:3019–3025. doi: 10.1021/acs.jpcc.5b11012. DOI
Xu C., Tamaki J., Miura N., Yamazoe N. Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators B Chem. 1991;3:147–155. doi: 10.1016/0925-4005(91)80207-Z. DOI
Kohl D. The role of noble metals in the chemistry of solid-state gas sensors. Sens. Actuators B Chem. 1990;1:158–165. doi: 10.1016/0925-4005(90)80193-4. DOI
Miller D.R., Akbar S.A., Morris P.A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuators B Chem. 2014;204:250–272. doi: 10.1016/j.snb.2014.07.074. DOI
Ederth J., Smulko J., Kish L.B., Heszler P., Granqvist C.G. Comparison of classical and fluctuation-enhanced gas sensing with PdxWO3 nanoparticle films. Sens. Actuators B Chem. 2006;113:310–315. doi: 10.1016/j.snb.2005.03.009. DOI
VOCs Sensing by Metal Oxides, Conductive Polymers, and Carbon-Based Materials