Schizorhodopsins: A family of rhodopsins from Asgard archaea that function as light-driven inward H+ pumps
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32300653
PubMed Central
PMC7148096
DOI
10.1126/sciadv.aaz2441
PII: aaz2441
Knihovny.cz E-resources
- MeSH
- Archaea genetics metabolism MeSH
- Cell Membrane metabolism MeSH
- Fluorescent Antibody Technique MeSH
- Ion Channel Gating radiation effects MeSH
- Protein Conformation MeSH
- Models, Molecular MeSH
- Multigene Family MeSH
- Mutation MeSH
- Proton Pumps chemistry genetics metabolism MeSH
- Rhodopsin chemistry genetics metabolism MeSH
- Spectroscopy, Fourier Transform Infrared MeSH
- Light MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Proton Pumps MeSH
- Rhodopsin MeSH
Schizorhodopsins (SzRs), a rhodopsin family first identified in Asgard archaea, the archaeal group closest to eukaryotes, are present at a phylogenetically intermediate position between typical microbial rhodopsins and heliorhodopsins. However, the biological function and molecular properties of SzRs have not been reported. Here, SzRs from Asgardarchaeota and from a yet unknown microorganism are expressed in Escherichia coli and mammalian cells, and ion transport assays and patch clamp analyses are used to demonstrate SzR as a novel type of light-driven inward H+ pump. The mutation of a cytoplasmic glutamate inhibited inward H+ transport, suggesting that it functions as a cytoplasmic H+ acceptor. The function, trimeric structure, and H+ transport mechanism of SzR are similar to that of xenorhodopsin (XeR), a light-driven inward H+ pumping microbial rhodopsins, implying that they evolved convergently. The inward H+ pump function of SzR provides new insight into the photobiological life cycle of the Asgardarchaeota.
Department of Physics Nagoya University Nagoya 464 8602 Japan
Faculty of Biology Technion Israel Institute of Technology Haifa Israel
OptoBioTechnology Research Center Nagoya Institute of Technology Showa ku Nagoya 466 8555 Japan
PRESTO Japan Science and Technology Agency 4 1 8 Honcho Kawaguchi Saitama 332 0012 Japan
See more in PubMed
Ernst O. P., Lodowski D. T., Elstner M., Hegemann P., Brown L. S., Kandori H., Microbial and animal rhodopsins: Structures, functions, and molecular mechanisms. Chem. Rev. 114, 126–163 (2014). PubMed PMC
Philosof A., Béjà O., Bacterial, archaeal and viral-like rhodopsins from the Red Sea. Environ. Microbiol. Rep. 5, 475–482 (2013). PubMed
Mukherjee S., Hegemann P., Broser M., Enzymerhodopsins: Novel photoregulated catalysts for optogenetics. Curr. Opin. Struct. Biol. 57, 118–126 (2019). PubMed
Govorunova E. G., Sineshchekov O. A., Hemmati R., Janz R., Morelle O., Melkonian M., Wong G. K.-S., Spudich J. L., Extending the time domain of neuronal silencing with cryptophyte anion channelrhodopsins. eNeuro 5, ENEURO.0174-18.2018 (2018). PubMed PMC
Pushkarev A., Inoue K., Larom S., Flores-Uribe J., Singh M., Konno M., Tomida S., Ito S., Nakamura R., Tsunoda S. P., Philosof A., Sharon I., Yutin N., Koonin E. V., Kandori H., Béjà O., A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558, 595–599 (2018). PubMed PMC
Spang A., Saw J. H., Jørgensen S. L., Zaremba-Niedzwiedzka K., Martijn J., Lind A. E., van Eijk R., Schleper C., Guy L., Ettema T. J. G., Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015). PubMed PMC
Spang A., Eme L., Saw J. H., Caceres E. F., Zaremba-Niedzwiedzka K., Lombard J., Guy L., Ettema T. J. G., Asgard archaea are the closest prokaryotic relatives of eukaryotes. PLoS Genet. 14, e1007080 (2018). PubMed PMC
Bulzu P.-A., Andrei A.-Ş., Salcher M. M., Mehrshad M., Inoue K., Kandori H., Béjà O., Ghai R., Banciu H. L., Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nat. Microbiol. 4, 1129–1137 (2019). PubMed
Inoue K., Ito S., Kato Y., Nomura Y., Shibata M., Uchihashi T., Tsunoda S. P., Kandori H., A natural light-driven inward proton pump. Nat. Commun. 7, 13415 (2016). PubMed PMC
Shevchenko V., Mager T., Kovalev K., Polovinkin V., Alekseev A., Juettner J., Chizhov I., Bamann C., Vavourakis C., Ghai R., Gushchin I., Borshchevskiy V., Rogachev A., Melnikov I., Popov A., Balandin T., Rodriguez-Valera F., Manstein D. J., Bueldt G., Bamberg E., Gordeliy V., Inward H+ pump xenorhodopsin: Mechanism and alternative optogenetic approach. Sci. Adv. 3, e1603187 (2017). PubMed PMC
Inoue S., Yoshizawa S., Nakajima Y., Kojima K., Tsukamoto T., Kikukawa T., Sudo Y., Spectroscopic characteristics of Rubricoccus marinus xenorhodopsin (RmXeR) and a putative model for its inward H+ transport mechanism. Phys. Chem. Chem. Phys. 20, 3172–3183 (2018). PubMed
Sunagawa S., Coelho L. P., Chaffron S., Kultima J. R., Labadie K., Salazar G., Djahanschiri B., Zeller G., Mende D. R., Alberti A., Cornejo-Castillo F. M., Costea P. I., Cruaud C., d'Ovidio F., Engelen S., Ferrera I., Gasol J. M., Guidi L., Hildebrand F., Kokoszka F., Lepoivre C., Lima-Mendez G., Poulain J., Poulos B. T., Royo-Llonch M., Sarmento H., Vieira-Silva S., Dimier C., Picheral M., Searson S., Kandels-Lewis S.; Tara Oceans coordinators, Bowler C., de Vargas C., Gorsky G., Grimsley N., Hingamp P., Iudicone D., Jaillon O., Not F., Ogata H., Pesant S., Speich S., Stemmann L., Sullivan M. B., Weissenbach J., Wincker P., Karsenti E., Raes J., Acinas S. G., Bork P., Structure and function of the global ocean microbiome. Science 348, 1261359 (2015). PubMed
Brum J. R., Ignacio-Espinoza J. C., Roux S., Doulcier G., Acinas S. G., Alberti A., Chaffron S., Cruaud C., de Vargas C., Gasol J. M., Gorsky G., Gregory A. C., Guidi L., Hingamp P., Iudicone D., Not F., Ogata H., Pesant S., Poulos B. T., Schwenck S. M., Speich S., Dimier C., Kandels-Lewis S., Picheral M., Searson S.; Tara Oceans Coordinators, Bork P., Bowler C., Sunagawa S., Wincker P., Karsenti E., Sullivan M. B., Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015). PubMed
Hingamp P., Grimsley N., Acinas S. G., Clerissi C., Subirana L., Poulain J., Ferrera I., Sarmento H., Villar E., Lima-Mendez G., Faust K., Sunagawa S., Claverie J.-M., Moreau H., Desdevises Y., Bork P., Raes J., de Vargas C., Karsenti E., Kandels-Lewis S., Jaillon O., Not F., Pesant S., Wincker P., Ogata H., Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J. 7, 1678–1695 (2013). PubMed PMC
Philosof A., Yutin N., Flores-Uribe J., Sharon I., Koonin E. V., Béjà O., Novel abundant oceanic viruses of uncultured marine group II euryarchaeota. Curr. Biol. 27, 1362–1368 (2017). PubMed PMC
Nack M., Radu I., Gossing M., Bamann C., Bamberg E., von Mollard G. F., Heberle J., The DC gate in Channelrhodopsin-2: Crucial hydrogen bonding interaction between C128 and D156. Photochem. Photobiol. Sci. 9, 194–198 (2010). PubMed
Scheib U., Stehfest K., Gee C. E., Körschen H. G., Fudim R., Oertner T. G., Hegemann P., The rhodopsin–guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling. Sci. Signal. 8, rs8 (2015). PubMed
Watari M., Ikuta T., Yamada D., Shihoya W., Yoshida K., Tsunoda S. P., Nureki O., Kandori H., Spectroscopic study of the transmembrane domain of a rhodopsin–phosphodiesterase fusion protein from a unicellular eukaryote. J. Biol. Chem. 294, 3432–3443 (2019). PubMed PMC
Inoue K., Kato Y., Kandori H., Light-driven ion-translocating rhodopsins in marine bacteria. Trends Microbiol. 23, 91–98 (2014). PubMed
Inoue K., Tsukamoto T., Shimono K., Suzuki Y., Miyauchi S., Hayashi S., Kandori H., Sudo Y., Converting a light-driven proton pump into a light-gated proton channel. J. Am. Chem. Soc. 137, 3291–3299 (2015). PubMed
Fudim R., Szczepek M., Vierock J., Vogt A., Schmidt A., Kleinau G., Fischer P., Bartl F., Scheerer P., Hegemann P., Design of a light-gated proton channel based on the crystal structure of Coccomyxa rhodopsin. Sci. Signal. 12, eaav4203 (2019). PubMed
Shibata M., Inoue K., Ikeda K., Konno M., Singh M., Kataoka C., Abe-Yoshizumi R., Kandori H., Uchihashi T., Oligomeric states of microbial rhodopsins determined by high-speed atomic force microscopy and circular dichroic spectroscopy. Sci. Rep. 8, 8262 (2018). PubMed PMC
Druckmann S., Ottolenghi M., Pande A., Pande J., Callender R. H., Acid-base equilibrium of the Schiff base in bacteriorhodopsin. Biochemistry 21, 4953–4959 (1982). PubMed
Inoue K., Tahara S., Kato Y., Takeuchi S., Tahara T., Kandori H., Spectroscopic study of proton-transfer mechanism of inward proton-pump rhodopsin, Parvularcula oceani xenorhodopsin. J. Phys. Chem. B 122, 6453–6461 (2018). PubMed
Aton B., Doukas A. G., Callender R. H., Becher B., Ebrey T. G., Resonance Raman studies of the purple membrane. Biochemistry 16, 2995–2999 (1977). PubMed
Rothschild K. J., Marrero H., Braiman M., Mathies R., Primary photochemistry of bacteriorhodopsin: Comparison of Fourier transform infrared difference spectra with resonance Raman spectra. Photochem. Photobiol. 40, 675–679 (1984). PubMed
Lórenz-Fonfría V. A., Muders V., Schlesinger R., Heberle J., Changes in the hydrogen-bonding strength of internal water molecules and cysteine residues in the conductive state of channelrhodopsin-1. J. Chem. Phys. 141, 22D507 (2014). PubMed
Ito S., Kato H. E., Taniguchi R., Iwata T., Nureki O., Kandori H., Water-containing hydrogen-bonding network in the active center of channelrhodopsin. J. Am. Chem. Soc. 136, 3475–3482 (2014). PubMed
Muroda K., Nakashima K., Shibata M., Demura M., Kandori H., Protein-bound water as the determinant of asymmetric functional conversion between light-driven proton and chloride pumps. Biochemistry 51, 4677–4684 (2012). PubMed
Ito S., Sugita S., Inoue K., Kandori H., FTIR analysis of a light-driven inward proton-pumping rhodopsin at 77 K. Photochem. Photobiol. 93, 1381–1387 (2017). PubMed
Petrovskaya L. E., Lukashev E. P., Chupin V. V., Sychev S. V., Lyukmanova E. N., Kryukova E. A., Ziganshin R. H., Spirina E. V., Rivkina E. M., Khatypov R. A., Erokhina L. G., Gilichinsky D. A., Shuvalov V. A., Kirpichnikov M. P., Predicted bacteriorhodopsin from Exiguobacterium sibiricum is a functional proton pump. FEBS Lett. 584, 4193–4196 (2010). PubMed
Kawanabe A., Furutani Y., Jung K.-H., Kandori H., Engineering an inward proton transport from a bacterial sensor rhodopsin. J. Am. Chem. Soc. 131, 16439–16444 (2009). PubMed
Doig S. J., Reid P. J., Mathies R. A., Picosecond time-resolved resonance Raman spectroscopy of bacteriorhodopdn's J, K, and KL intermediates. J. Phys. Chem. 95, 6372–6379 (1991).
Garczarek F., Gerwert K., Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439, 109–112 (2006). PubMed
Gerwert K., Freier E., Wolf S., The role of protein-bound water molecules in microbial rhodopsins. Biochim. Biophys. Acta 1837, 606–613 (2014). PubMed
Lórenz-Fonfría V. A., Kandori H., Spectroscopic and kinetic evidence on how bacteriorhodopsin accomplishes vectorial proton transport under functional conditions. J. Am. Chem. Soc. 131, 5891–5901 (2009). PubMed
Nango E., Royant A., Kubo M., Nakane T., Wickstrand C., Kimura T., Tanaka T., Tono K., Song C., Tanaka R., Arima T., Yamashita A., Kobayashi J., Hosaka T., Mizohata E., Nogly P., Sugahara M., Nam D., Nomura T., Shimamura T., Im D., Fujiwara T., Yamanaka Y., Jeon B., Nishizawa T., Oda K., Fukuda M., Andersson R., Båth P., Dods R., Davidsson J., Matsuoka S., Kawatake S., Murata M., Nureki O., Owada S., Kameshima T., Hatsui T., Joti Y., Schertler G., Yabashi M., Bondar A.-N., Standfuss J., Neutze R., Iwata S., A three-dimensional movie of structural changes in bacteriorhodopsin. Science 354, 1552–1557 (2016). PubMed
Balashov S. P., Govindjee R., Kono M., Imasheva E., Lukashev E., Ebrey T. G., Crouch R. K., Menick D. R., Feng Y., Effect of the arginine-82 to alanine mutation in bacteriorhodopsin on dark adaptation, proton release, and the photochemical cycle. Biochemistry 32, 10331–10343 (1993). PubMed
Inoue K., Ono H., Abe-Yoshizumi R., Yoshizawa S., Ito H., Kogure K., Kandori H., A light-driven sodium ion pump in marine bacteria. Nat. Commun. 4, 1678 (2013). PubMed
Ikeura Y., Shimono K., Iwamoto M., Sudo Y., Kamo N., Arg-72 of pharaonis phoborhodopsin (sensory rhodopsin II) is important for the maintenance of the protein structure in the solubilized states. Photochem. Photobiol. 77, 96–100 (2003). PubMed
Tanimoto T., Shibata M., Belenky M., Herzfeld J., Kandori H., Altered hydrogen bonding of Arg82 during the proton pump cycle of bacteriorhodopsin: A low-temperature polarized FTIR spectroscopic study. Biochemistry 43, 9439–9447 (2004). PubMed
Wood J. N., Bevan S. J., Coote P. R., Dunn P. M., Harmar A., Hogan P., Latchman D. S., Morrison C., Rougon G., Theveniau M., Wheatley S., Novel cell lines display properties of nociceptive sensory neurons. Proc. Biol. Sci. 241, 187–194 (1990). PubMed
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.-Y., White D. J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A., Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). PubMed PMC
Bayburt T. H., Grinkova Y. V., Sligar S. G., Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett. 2, 853–856 (2002).
Uchihashi T., Kodera N., Ando T., Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nat. Protoc. 7, 1193–1206 (2012). PubMed
Structural insights into light harvesting by antenna-containing rhodopsins in marine Asgard archaea
The Evolutionary Kaleidoscope of Rhodopsins
Structure-based insights into evolution of rhodopsins