Transient protein expression in tobacco BY-2 plant cell packs using single and multi-cassette replicating vectors

. 2020 Sep ; 39 (9) : 1115-1127. [epub] 20200424

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32333151

Grantová podpora
GA15-10768S Grantová Agentura České Republiky (CZ)
CZ.02.1.01/0.0/0.0/16_019/0000738 Ministerstvo Školství, Mládeže a Tělovýchovy (CZ)
TG03010009 Technologická Agentura České Republiky
111687 National Research Foundation in South Africa
92433 Bilateral Funding between South Africa/Czech Republic

Odkazy

PubMed 32333151
PubMed Central PMC7223956
DOI 10.1007/s00299-020-02544-w
PII: 10.1007/s00299-020-02544-w
Knihovny.cz E-zdroje

This is the first evidence that replicating vectors can be successfully used for transient protein expression in BY-2 plant cell packs. Transient recombinant protein expression in plants and recently also plant cell cultures are of increasing interest due to the speed, safety and scalability of the process. Currently, studies are focussing on the design of plant virus-derived vectors to achieve higher amounts of transiently expressed proteins in these systems. Here we designed and tested replicating single and multi-cassette vectors that combine elements for enhanced replication and hypertranslation, and assessed their ability to express and particularly co-express proteins by Agrobacterium-mediated transient expression in tobacco BY-2 plant cell packs. Substantial yields of green and red fluorescent proteins of up to ~ 700 ng/g fresh mass were detected in the plant cells along with position-dependent expression. This is the first evidence of the ability of replicating vectors to transiently express proteins in BY-2 plant cell packs.

Zobrazit více v PubMed

Amiri M, Jalali-Javaran M, Haddad R, Ehsani P. In silico and in vivo analyses of the mutated human tissue plasminogen activator (mtPA) and the antithetical effects of P19 silencing suppressor on its expression in two Nicotiana species. Sci Rep. 2018;8:14079. doi: 10.1038/s41598-018-32099-6. PubMed DOI PMC

An G. Binary ti vectors for plant transformation and promoter analysis. Methods in enzymology. Cambridge: Academic Press; 1987. pp. 292–305.

Angel CA, Hsieh Y-C, Schoelz JE. Comparative analysis of the capacity of tombusvirus P22 and P19 Proteins to function as avirulence determinants in nicotiana species. Mol Plant-Microbe Interactions. 2010;24:91–99. doi: 10.1094/MPMI-04-10-0089. PubMed DOI

Cerovska N, Hoffmeisterova H, Pecenkova T, Moravec T, Synkova H, Plchova H, Veleminsky J. Transient expression of HPV16 E7 peptide (aa 44–60) and HPV16 L2 peptide (aa 108–120) on chimeric potyvirus-like particles using potato virus X-based vector. Protein Expr Purif. 2008;58:154–161. doi: 10.1016/j.pep.2007.09.006. PubMed DOI

Cerovska N, Moravec T, Hoffmeisterova H, Plchova H, Synkova H, Polakova I, Duskova M, Smahel M. Expression of a recombinant Human papillomavirus 16 E6GT oncoprotein fused to N- and C-termini of Potato virus X coat protein in Nicotiana benthamiana. Plant Cell Tissue Organ Culture (PCTOC) 2013;113:81–90. doi: 10.1007/s11240-012-0253-3. DOI

Chen Q, He J, Phoolcharoen W, Mason HS. Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants. Hum Vaccines. 2011;7:331–338. doi: 10.4161/hv.7.3.14262. PubMed DOI PMC

Diamos AG, Mason HS. Modifying the replication of geminiviral vectors reduces cell death and enhances expression of biopharmaceutical proteins in Nicotiana benthamiana leaves. Front Plant Sci. 2019;9:1974–1974. doi: 10.3389/fpls.2018.01974. PubMed DOI PMC

Diamos AG, Rosenthal SH, Mason HS. 5' and 3' untranslated regions strongly enhance performance of geminiviral replicons in Nicotiana benthamiana leaves. Front Plant Sci. 2016;7:200–200. doi: 10.3389/fpls.2016.00200. PubMed DOI PMC

Donini M, Marusic C. Current state-of-the-art in plant-based antibody production systems. Biotech Lett. 2019;41:335–346. doi: 10.1007/s10529-019-02651-z. PubMed DOI

Doran PM. Foreign protein production in plant tissue cultures. Curr Opin Biotechnol. 2000;11:199–204. doi: 10.1016/S0958-1669(00)00086-0. PubMed DOI

Fischer R, Emans N, Schuster F, Hellwig S, Drossard J. Towards molecular farming in the future: using plant-cell-suspension cultures as bioreactors. Biotechnol Appl Biochem. 1999;30:109–112. doi: 10.1111/j.1470-8744.1999.tb00899.x. PubMed DOI

Fischer R, Twyman RM, Drossard J, Hellwig S, Schillberg S (2005) Plant cells. In: Gellissen G (eds) Production of recombinant proteins. Wiley-VCH, Weinheim, pp 253–272. 10.1002/3527603670.ch12

Garabagi F, Gilbert E, Loos A, McLean MD, Hall JC. Utility of the P19 suppressor of gene-silencing protein for production of therapeutic antibodies in Nicotiana expression hosts. Plant Biotechnol J. 2012;10:1118–1128. doi: 10.1111/j.1467-7652.2012.00742.x. PubMed DOI

Gengenbach BB, Müschen CR, Buyel JF. Expression and purification of human phosphatase and actin regulator 1 (PHACTR1) in plant-based systems. Protein Expr Purif. 2018;151:46–55. doi: 10.1016/j.pep.2018.06.003. PubMed DOI

Gengenbach BB, Kiel LL, Opdensteinen P, Müschen CR, Melmer G, Lentzen H, Bührmann J, Buyel JF. Comparison of microbial and transient expression (tobacco plants and plant-cell packs) for the production and purification of the anticancer mistletoe lectin viscumin. Biotechnol Bioeng. 2019;116:2236–2249. doi: 10.1002/bit.27076. PubMed DOI PMC

Häkkinen ST, Reuter L, Nuorti N, Joensuu JJ, Rischer H, Ritala A. Tobacco BY-2 media component optimization for a cost-efficient recombinant protein production. Front Plant Sci. 2018;9:45. doi: 10.3389/fpls.2018.00045. PubMed DOI PMC

Hefferon LK. DNA virus vectors for vaccine production in plants: spotlight on geminiviruses. Vaccines. 2014;2:642–653. doi: 10.3390/vaccines2030642. PubMed DOI PMC

Hefferon K. Plant virus expression vectors: a powerhouse for global health. Biomedicines. 2017;5:44. doi: 10.3390/biomedicines5030044. PubMed DOI PMC

Hefferon KL, Fan Y. Expression of a vaccine protein in a plant cell line using a geminivirus-based replicon system. Vaccine. 2004;23:404–410. doi: 10.1016/j.vaccine.2004.04.038. PubMed DOI

Hellwig S, Drossard J, Twyman RM, Fischer R. Plant cell cultures for the production of recombinant proteins. Nat Biotechnol. 2004;22:1415–1422. doi: 10.1038/nbt1027. PubMed DOI

Holland T, Sack M, Rademacher T, Schmale K, Altmann F, Stadlmann J, Fischer R, Hellwig S. Optimal nitrogen supply as a key to increased and sustained production of a monoclonal full-size antibody in BY-2 suspension culture. Biotechnol Bioeng. 2010;107:278–289. doi: 10.1002/bit.22800. PubMed DOI

Huang Z, Chen Q, Hjelm B, Arntzen C, Mason H. A DNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnol Bioeng. 2009;103:706–714. doi: 10.1002/bit.22299. PubMed DOI PMC

Huang Z, Phoolcharoen W, Lai H, Piensook K, Cardineau G, Zeitlin L, Whaley KJ, Arntzen CJ, Mason HS, Chen Q. High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system. Biotechnol Bioeng. 2010;106:9–17. doi: 10.1002/bit.22652. PubMed DOI PMC

James E, Lee JM (2001) The production of foreign proteins from genetically modified plant cells. In: Zhong JJ et al (eds) Plant cells. Springer, Berlin Heidelberg. 10.1007/3-540-45302-4_5 PubMed

James EA, Wang C, Wang Z, Reeves R, Shin JH, Magnuson NS, Lee JM. Production and characterization of biologically active human GM-CSF secreted by genetically modified plant cells. Protein Expr Purif. 2000;19:131–138. doi: 10.1006/prep.2000.1232. PubMed DOI

Jansing J, Buyel JF. The correlation between DsRed mRNA levels and transient dsred protein expression in plants depends on leaf age and the 5′ untranslated region. Biotechnol J. 2019;14:1800075. doi: 10.1002/biot.201800075. PubMed DOI

Lai H, He J, Engle M, Diamond MS, Chen Q. Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. Plant Biotechnol J. 2012;10:95–104. doi: 10.1111/j.1467-7652.2011.00649.x. PubMed DOI PMC

Lee SY, Kim DI. Stimulation of murine granulocyte macrophage-colony stimulating factor production by Pluronic F-68 and polyethylene glycol in transgenic Nicotiana tabacum cell culture. Biotech Lett. 2002;24:1779–1783. doi: 10.1023/A:1020609221148. DOI

Lee JH, Kim NS, Kwon TH, Jang YS, Yang MS. Increased production of human granulocyte-macrophage colony stimulating factor (hGM-CSF) by the addition of stabilizing polymer in plant suspension cultures. J Biotechnol. 2002;96:205–211. doi: 10.1016/S0168-1656(02)00044-5. PubMed DOI

Liu D, Shi L, Han C, Yu J, Li D, Zhang Y. Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR. PLoS ONE. 2012;7:e46451–e46451. doi: 10.1371/journal.pone.0046451. PubMed DOI PMC

Maclean J, Koekemoer M, Olivier AJ, Steward D, Hitzeroth II, Rademacher T, Fischer R, Williamson AL, Rybicki EP. Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. J Gen Virol. 2007;88:1460–1469. doi: 10.1099/vir.0.82718-0. PubMed DOI

Mardanova ES, Blokhina EA, Tsybalova LM, Peyret H, Lomonossoff GP, Ravin NV. Efficient transient expression of recombinant proteins in plants by the novel pEff vector based on the genome of potato virus X. Front Plant Sci. 2017;8:247. doi: 10.3389/fpls.2017.00247. PubMed DOI PMC

Montague NP, Thuenemann EC, Saxena P, Saunders K, Lenzi P, Lomonossoff GP. Recent advances of Cowpea mosaic virus-based particle technology. Hum Vaccines. 2011;7:383–390. doi: 10.4161/hv.7.3.14989. PubMed DOI

Mor TS, Moon Y-S, Palmer KE, Mason HS. Geminivirus vectors for high-level expression of foreign proteins in plant cells. Biotechnol Bioeng. 2003;81:430–437. doi: 10.1002/bit.10483. PubMed DOI

Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. In: Jeon KW, Friedlander M (eds) International review of cytology. Academic Press, Cambridge. 10.1016/S0074-7696(08)62452-3

Palmer KE, Rybicki EP (1998) The molecular biology of mastreviruses. In: Maramorosch K, Murphy FA, Shatkin AJ (eds) Advances in virus research, vol 50. Academic Press, Cambridge, pp 183–234. 10.1016/S0065-3527(08)60809-X PubMed

Peyret H, Lomonossoff GP. When plant virology met Agrobacterium: the rise of the deconstructed clones. Plant Biotechnol J. 2015;13:1121–1135. doi: 10.1111/pbi.12412. PubMed DOI PMC

Rademacher T, Sack M, Blessing D, Fischer R, Holland T, Buyel J. Plant cell packs: a scalable platform for recombinant protein production and metabolic engineering. Plant Biotechnol J. 2019;17:1560–1566. doi: 10.1111/pbi.13081. PubMed DOI PMC

Raven N, Schillberg S, Rasche S (2016) Plant Cell-based recombinant antibody manufacturing with a 200 L orbitally shaken disposable bioreactor. In: MacDonald J, Kolotilin I, Menassa R (eds) Recombinant proteins from plants: methods and protocols. Springer, New York, pp 161–172. 10.1007/978-1-4939-3289-4_12 PubMed

Regnard GL, Halley-Stott RP, Tanzer FL, Hitzeroth II, Rybicki EP. High level protein expression in plants through the use of a novel autonomously replicating geminivirus shuttle vector. Plant Biotechnol J. 2010;8:38–46. doi: 10.1111/j.1467-7652.2009.00462.x. PubMed DOI

Ruiz V, Baztarrica J, Rybicki EP, Meyers AE, Wigdorovitz A. Minimally processed crude leaf extracts of Nicotiana benthamiana containing recombinant foot and mouth disease virus-like particles are immunogenic in mice. Biotechnol Rep. 2018;20:e00283. doi: 10.1016/j.btre.2018.e00283. PubMed DOI PMC

Rybicki EP. Plant-made vaccines for humans and animals. Plant Biotechnol J. 2010;8:620–637. doi: 10.1111/j.1467-7652.2010.00507.x. PubMed DOI PMC

Rybicki EP. Plant-made vaccines and reagents for the One Health initiative. Hum Vaccines Immunotherapeutics. 2017;13:2912–2917. doi: 10.1080/21645515.2017.1356497. PubMed DOI PMC

Rybicki EP, Martin DP. Virus-derived ssDNA vectors for the expression of foreign proteins in plants. Curr Top Microbiol Immunol. 2014;375:19–45. doi: 10.1007/82_2011_185. PubMed DOI

Sainsbury F, Lomonossoff GP. Extremely high-level and rapid transient protein production in plants without the use of viral replication. Plant Physiol. 2008;148:1212. doi: 10.1104/pp.108.126284. PubMed DOI PMC

Sainsbury F, Thuenemann EC, Lomonossoff GP. pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J. 2009;7:682–693. doi: 10.1111/j.1467-7652.2009.00434.x. PubMed DOI

Sarrion-Perdigones A, Vazquez-Vilar M, Palací J, Castelijns B, Forment J, Ziarsolo P, Blanca J, Granell A, Orzaez D. GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol. 2013;162:1618–1631. doi: 10.1104/pp.113.217661. PubMed DOI PMC

Schillberg S, Raven N, Spiegel H, Rasche S, Buntru M. Critical analysis of the commercial potential of plants for the production of recombinant proteins. Front Plant Sci. 2019;10:720. doi: 10.3389/fpls.2019.00720. PubMed DOI PMC

Shah KH, Almaghrabi B, Bohlmann H. Comparison of expression vectors for transient expression of recombinant proteins in plants. Plant Mol Biol Report. 2013;31:1529–1538. doi: 10.1007/s11105-013-0614-z. PubMed DOI PMC

Sukenik SC, Karuppanan K, Li Q, Lebrilla CB, Nandi S, McDonald KA. Transient recombinant protein production in glycoengineered Nicotiana benthamiana cell suspension culture. Int J Mol Sci. 2018;19:1205. doi: 10.3390/ijms19041205. PubMed DOI PMC

Tekoah Y, Shulman A, Kizhner T, Ruderfer I, Fux L, Nataf Y, Bartfeld D, Ariel T, Gingis-Velitski S, Hanania U, Shaaltiel Y. Large-scale production of pharmaceutical proteins in plant cell culture—the protalix experience. Plant Biotechnol J. 2015;13:1199–1208. doi: 10.1111/pbi.12428. PubMed DOI

Tsoi BM, Doran PM. Effect of medium properties and additives on antibody stability and accumulation in suspended plant cell cultures. Biotechnol Appl Biochem. 2002;35:171–180. doi: 10.1111/j.1470-8744.2002.tb01186.x. PubMed DOI

Vaculik P, Plchova H, Moravec T, Hoffmeisterova H, Cerovska N, Smahel M. Potato virus X displaying the E7 peptide derived from human papillomavirus type 16: a novel position for epitope presentation. Plant Cell Tissue Organ Cult (PCTOC) 2015;120:671–680. doi: 10.1007/s11240-014-0634-x. DOI

Wahl MF, An G, Lee JM. Effects of dimethyl sulfoxide on heavy chain monoclonal antibody production from plant cell culture. Biotech Lett. 1995;17:463–468. doi: 10.1007/BF00132011. DOI

Wilson SA, Roberts SC. Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J. 2012;10:249–268. doi: 10.1111/j.1467-7652.2011.00664.x. PubMed DOI PMC

Xu J, Ge X, Dolan MC. Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures. Biotechnol Adv. 2011;29:278–299. doi: 10.1016/j.biotechadv.2011.01.002. PubMed DOI

Yamamoto T, Hoshikawa K, Ezura K, Okazawa R, Fujita S, Takaoka M, Mason HS, Ezura H, Miura K. Improvement of the transient expression system for production of recombinant proteins in plants. Sci Rep. 2018;8:4755. doi: 10.1038/s41598-018-23024-y. PubMed DOI PMC

Yao J, Weng Y, Dickey A, Wang KY. Plants as factories for human pharmaceuticals: applications and challenges. Int J Mol Sci. 2015;16:28549–28565. doi: 10.3390/ijms161226122. PubMed DOI PMC

Zhang X, Mason H. Bean Yellow dwarf virus replicons for high-level transgene expression in transgenic plants and cell cultures. Biotechnol Bioeng. 2006;93:271–279. doi: 10.1002/bit.20695. PubMed DOI

Zischewski J, Sack M, Fischer R. Overcoming low yields of plant-made antibodies by a protein engineering approach. Biotechnol J. 2016;11:107–116. doi: 10.1002/biot.201500255. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...