DsRed Dotaz Zobrazit nápovědu
We aimed to establish an efficient RNA interference (RNAi) system in the industrially important filamentous fungus Trichoderma koningii using the DsRed protein as a reporter of the silencing process. To accomplish this, a DsRed expression cassette was transformed into T. koningii, and a recombinant strain that stably expressed DsRed was obtained. Next, a vector-directing expression of a DsRed hairpin RNA was constructed and transformed into the T. koningii recipient strain. Approximately 79 % of transformants displayed a decrease in DsRed fluorescence, and expression of DsRed in some transformants appeared to be fully suppressed. Characterization of randomly selected transformants by genomic DNA PCR analysis, real-time PCR quantification, and western blot confirmed downregulation of gene expression at different levels. The RNA silencing approach described here for T. koningii is effective, and the DsRed reporter gene provides a convenient tool for identification of silenced fungal transformants by their DsRed fluorescence compared to the control strain. The results of this study demonstrate the power of RNAi in T. koningii, which supports the use of this technology for strain development programs and functional genomics studies in industrial fungal strains.
- MeSH
- fluorescence MeSH
- genový knockdown metody MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- luminescentní proteiny analýza genetika MeSH
- malá interferující RNA genetika MeSH
- mikrobiální genetika metody MeSH
- rekombinace genetická MeSH
- reportérové geny MeSH
- RNA interference * MeSH
- stanovení celkové genové exprese MeSH
- transformace genetická MeSH
- Trichoderma genetika MeSH
- western blotting MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: In Central Asian foci of zoonotic cutaneous leishmaniases, mixed infections of Leishmania turanica and L. major have been found in a reservoir host (the great gerbil, Rhombomys opimus) as well as in the sand fly vector Phlebotomus papatasi, but hybrids between these two Leishmania species have never been reported. In addition, the role of sand fly species other than P. papatasi in L. turanica circulation is not clear. METHODS: In this work we compared the development of L. turanica in three sand fly species belonging to different subgenera. In addition, we studied experimental co-infections of sand flies by both Leishmania species using GFP transfected L. turanica (MRHO/MN/08/BZ18(GFP+)) and RFP transfected L. major (WHOM/IR/-/173-DsRED(RFP+)). The possibility of Leishmania genetic exchange during the vectorial part of the life cycle was studied using flow cytometry combined with immunofluorescent microscopy. RESULTS: Late-stage infections of L. turanica with frequent colonization of the stomodeal valve were observed in the specific vector P. (Phlebotomus) papatasi and in the permissive vector P. (Adlerius) arabicus. On the other hand, in P. sergenti (the specific vector of L. tropica), L. turanica promatigotes were present only until the defecation of bloodmeal remnants. In their natural vector P. papatasi, L. turanica and L. major developed similarly, and the spatiotemporal dynamics of localization in the sand fly gut was the same for both leishmania species. Fluorescence microscopy in combination with FACS analyses did not detect any L. major / L. turanica hybrids in the experimental co-infection of P. papatasi and P. duboscqi. CONCLUSION: Our data provide new insight into the development of different leishmania parasite species during a mixed infection in the sand fly gut. Despite the fact that both Leishmania species developed well in P. papatasi and P. duboscqi and did not outcompete each other, no genetic exchange was found. However, the ability of L. turanica to establish late-stage infections in these specific vectors of L. major suggests that the lipophosphoglycan of this species must be identical or similar to that of L. major.
- MeSH
- barvení a značení metody MeSH
- fluorescenční mikroskopie MeSH
- gastrointestinální trakt parazitologie MeSH
- Leishmania růst a vývoj fyziologie MeSH
- luminescentní proteiny analýza genetika MeSH
- mikrobiální interakce * MeSH
- Phlebotomus parazitologie MeSH
- zelené fluorescenční proteiny analýza genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH