A GoldenBraid-Compatible Virus-Based Vector System for Transient Expression of Heterologous Proteins in Plants
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35632840
PubMed Central
PMC9146717
DOI
10.3390/v14051099
PII: v14051099
Knihovny.cz E-zdroje
- Klíčová slova
- GoldenBraid, Nicotiana benthamiana, PVX vector, Potato virus X, transient expression,
- MeSH
- genetické vektory genetika MeSH
- Potexvirus * genetika MeSH
- rostliny MeSH
- tabák MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- zelené fluorescenční proteiny MeSH
We have developed a Potato virus X (PVX)-based vector system compatible with the GoldenBraid 2.0 (GB) cloning strategy to transiently express heterologous proteins or peptides in plants for biotechnological purposes. This vector system consists of three domestication vectors carrying three GB parts-the cauliflower mosaic virus (CaMV) 35S promoter with PVX upstream of the second subgenomic promoter of the PVX coat protein (PVX CP SGP), nopaline synthase (NOS) terminator with PVX downstream of the first PVX CP SGP and the gene of interest (GOI). The full-length PVX clone carrying the sequence encoding a green fluorescent protein (GFP) as GOI was incorporated into the binary GB vector in a one-step reaction of three GB parts using the four-nucleotide GB standard syntax. We investigated whether the obtained vector named GFP/pGBX enables systemic PVX infection and expression of GFP in Nicotiana benthamiana plants. We show that this GB-compatible vector system can be used for simple and efficient assembly of PVX-based expression constructs and that it meets the current need for interchange of standard biological parts used in different expression systems.
Zobrazit více v PubMed
Fischer R., Stoger E., Schillberg S., Christou P., Twyman R.M. Plant-based production of biopharmaceuticals. Curr. Opin. Plant Biol. 2004;7:152–158. doi: 10.1016/j.pbi.2004.01.007. PubMed DOI
Ma J.K.C., Drake P.M.W., Christou P. The production of recombinant pharmaceutical proteins in plants. Nat. Rev. Genet. 2003;4:794–805. doi: 10.1038/nrg1177. PubMed DOI
Twyman R.M., Stoger E., Schillberg S., Christou P., Fischer R. Molecular farming in plants: Host systems and expression technology. Trends Biotechnol. 2003;21:570–578. doi: 10.1016/j.tibtech.2003.10.002. PubMed DOI
Jokerst J.V., Gambhir S.S. Molecular imaging with theranostic nanoparticles. Acc. Chem. Res. 2011;44:1050–1060. doi: 10.1021/ar200106e. PubMed DOI PMC
Lico C., Schoubben A., Baschieri S., Blasi P., Santi L. Nanoparticles in biomedicine: New insights from plant viruses. Curr. Med. Chem. 2013;20:3471–3487. doi: 10.2174/09298673113209990035. PubMed DOI
Skryabin K.G., Morozov S.Y., Kraev A.S., Rozanov M.N., Chernov B.K., Lukasheva L.I., Atabekov J.G. Conserved and variable elements in RNA genomes of potexviruses. FEBS Lett. 1988;240:33–40. doi: 10.1016/0014-5793(88)80335-1. PubMed DOI
Avesani L., Marconi G., Morandini F., Albertini E., Bruschetta M., Bortesi L., Pezzotti M., Porceddu A. Stability of Potato virus X expression vectors is related to insert size: Implications for replication models and risk assessment. Transgenic Res. 2007;16:587–597. doi: 10.1007/s11248-006-9051-1. PubMed DOI
Baulcombe D.C., Chapman S., Cruz S.S. Jellyfish green fluorescent protein as a reporter for virus infections. Plant J. 1995;7:1045–1053. doi: 10.1046/j.1365-313X.1995.07061045.x. PubMed DOI
Cruz S.S., Chapman S., Roberts A.G., Roberts I.M., Prior D.A., Oparka K.J. Assembly and movement of a plant virus carrying a green fluorescent protein overcoat. Proc. Natl. Acad. Sci. USA. 1996;93:6286–6290. doi: 10.1073/pnas.93.13.6286. PubMed DOI PMC
Betti C., Lico C., Maffi D., D’Angeli S., Altamura M.M., Benvenuto E., Faoro F., Baschieri S. Potato virus X movement in Nicotiana benthamiana: New details revealed by chimeric coat protein variants. Mol. Plant Pathol. 2012;13:198–203. doi: 10.1111/j.1364-3703.2011.00739.x. PubMed DOI PMC
Uhde-Holzem K., Fischer R., Commandeur U. Genetic stability of recombinant potato virus X virus vectors presenting foreign epitopes. Arch. Virol. 2007;152:805–811. doi: 10.1007/s00705-006-0892-y. PubMed DOI
Uhde K., Fischer R., Commandeur U. Expression of multiple foreign epitopes presented as synthetic antigens on the surface of Potato virus X particles. Arch. Virol. 2005;150:327–340. doi: 10.1007/s00705-004-0402-z. PubMed DOI
Vaculik P., Plchova H., Moravec T., Hoffmeisterova H., Cerovska N., Smahel M. Potato virus X displaying the E7 peptide derived from human papillomavirus type 16: A novel position for epitope presentation. Plant Cell Tiss. Organ Cult. 2015;120:671–680. doi: 10.1007/s11240-014-0634-x. DOI
Cerovska N., Hoffmeisterova H., Moravec T., Plchova H., Folwarczna J., Synkova H., Ryslava H., Ludvikova V., Smahel M. Transient expression of Human papillomavirus type 16 L2 epitope fused to N- and C-terminus of coat protein of Potato virus X in plants. J. Biosci. 2012;37:125–133. doi: 10.1007/s12038-011-9177-z. PubMed DOI
Cerovska N., Moravec T., Hoffmeisterova H., Plchova H., Synkova H., Polakova I., Duskova M., Smahel M. Expression of a recombinant Human papillomavirus 16 E6GT oncoprotein fused to N- and C-termini of Potato virus X coat protein in Nicotiana benthamiana. Plant Cell Tiss. Organ Cult. 2013;113:81–90. doi: 10.1007/s11240-012-0253-3. DOI
Hoffmeisterova H., Moravec T., Plchova H., Folwarczna J., Cerovska N. The influence of the N- and C- terminal modifications of Potato virus X coat protein on virus properties. Biol. Plant. 2012;56:775–779. doi: 10.1007/s10535-012-0130-2. DOI
Plchova H., Moravec T., Hoffmeisterova H., Folwarczna J., Cerovska N. Expression of Human papillomavirus 16 E7ggg oncoprotein on N- and C-terminus of Potato virus X coat protein in bacterial and plant cells. Protein Expr. Purif. 2011;77:146–152. doi: 10.1016/j.pep.2011.01.008. PubMed DOI
Salazar-González J.A., Rosales-Mendoza S., Bañuelos-Hernández B. Viral Vector-Based Expression Strategies. In: Rosales-Mendoza S., editor. Genetically Engineered Plants as a Source of Vaccines Against Wide Spread Diseases: An Integrated View. Springer; New York, NY, USA: 2014. pp. 43–60.
Toth R.L., Chapman S., Carr F., Santa Cruz S. A novel strategy for the expression of foreign genes from plant virus vectors. FEBS Lett. 2001;489:215–219. doi: 10.1016/S0014-5793(01)02091-9. PubMed DOI
Komarova T.V., Skulachev M.V., Zvereva A.S., Schwartz A.M., Dorokhov Y.L., Atabekov J.G. New viral vector for efficient production of target proteins in plants. Biochemistry. 2006;71:846–850. doi: 10.1134/S0006297906080049. PubMed DOI
Tyulkina L.G., Skurat E.V., Frolova O.Y., Komarova T.V., Karger E.M., Atabekov I.G. New viral vector for superproduction of epitopes of vaccine proteins in plants. Acta Nat. 2011;3:73–82. doi: 10.32607/20758251-2011-3-4-73-82. PubMed DOI PMC
Dickmeis C., Fischer R., Commandeur U. Potato virus X-based expression vectors are stabilized for long-term production of proteins and larger inserts. Biotechnol. J. 2014;9:1369–1379. doi: 10.1002/biot.201400347. PubMed DOI
Wang Y., Cong Q.-Q., Lan Y.-F., Geng C., Li X.-D., Liang Y.-C., Yang Z.-Y., Zhu X.-P., Li X.-D. Development of new potato virus X-based vectors for gene over-expression and gene silencing assay. Virus Res. 2014;191:62–69. doi: 10.1016/j.virusres.2014.07.018. PubMed DOI
Mardanova E.S., Blokhina E.A., Tsybalova L.M., Peyret H., Lomonossoff G.P., Ravin N.V. Efficient transient expression of recombinant proteins in plants by the novel pEff vector based on the genome of Potato virus X. Front. Plant Sci. 2017;8:247. doi: 10.3389/fpls.2017.00247. PubMed DOI PMC
Mardanova E.S., Kotlyarov R.Y., Ravin N.V. High-yield production of receptor binding domain of SARS-CoV-2 linked to bacterial flagellin in plants using seld-replication viral vector pEff. Plants. 2021;10:2682. doi: 10.3390/plants10122682. PubMed DOI PMC
Thuenemann E.C., Byrne M.J., Peyret H., Saunders K., Castells-Graells R., Ferriol I., Santoni M., Steele J.F.C., Ranson N.A., Avesani L., et al. A replicationg viral vector greatly enhances accumulation of helical virus-like particles in plants. Viruses. 2021;13:885. doi: 10.3390/v13050885. PubMed DOI PMC
Sarrion-Perdigones A., Falconi E.E., Zandalinas S.I., Juárez P., Fernández-del-Carmen A., Granell A., Orzaez D. GoldenBraid: An iterative cloning system for standardized assembly of reusable genetic modules. PLoS ONE. 2011;6:e21622. doi: 10.1371/journal.pone.0021622. PubMed DOI PMC
Patron N.J., Orzaez D., Marillonnet S., Warzecha H., Matthewman C., Youles M., Raitskin O., Leveau A., Farré G., Rogers C., et al. Standards for plant synthetic biology: A common syntax for exchange of DNA parts. New Phytol. 2015;208:13–19. doi: 10.1111/nph.13532. PubMed DOI
Sarrion-Perdigones A., Vazquez-Vilar M., Palací J., Castelijns B., Forment J., Ziarsolo P., Blanca J., Granell A., Orzaez D. GoldenBraid 2.0: A comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol. 2013;162:1618–1631. doi: 10.1104/pp.113.217661. PubMed DOI PMC
Van Die I.M., Bergmans H.E.N., Hoekstra W.P.M. Transformation in Escherichia coli: Studies on the role of the heat shock in induction of competence. J. Gen. Microbiol. 1983;129:663–670. doi: 10.1099/00221287-129-3-663. PubMed DOI
Hoffmeisterová H., Čeřovská N., Moravec T., Plchová H., Folwarczna J., Velemínský J. Transient expression of fusion gene coding for the HPV-16 epitopes fused to the sequence of potyvirus coat protein using different means of inoculation of Nicotiana benthamiana and Brassica rapa, cv. Rapa plants. Plant Cell Tiss. Organ Cult. 2008;120:671–680. doi: 10.1007/s11240-008-9370-4. DOI
Čerovská N., Moravec T., Rosecká P., Dědič P., Filigarová M. Production of polyclonal antibodies to a recombinant coat protein of Potato mop-top virus. J. Phytopathol. 2003;151:195–200. doi: 10.1046/j.1439-0434.2003.00705.x. DOI
Holt C.A., Beachy R.N. In vivo complementation of infectious transcripts from mutant tobacco mosaic virus cDNAs in transgenic plants. Virology. 1991;181:109–117. doi: 10.1016/0042-6822(91)90475-Q. PubMed DOI
Ratcliff F., Martin-Hernandez A.M., Baulcombe D.C. Technical Advance. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J. 2001;25:237–245. doi: 10.1046/j.0960-7412.2000.00942.x. PubMed DOI
Igarashia A., Yamagata K., Sugai T., Takahashi Y., Sugawara E., Tamura A., Yaegashi H., Yamagishi N.M., Takahashi T., Isogai M., et al. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology. 2009;386:407–416. doi: 10.1016/j.virol.2009.01.039. PubMed DOI
Engler C., Gruetzner R., Kandzia R., Marillonnet S. Golden gate shuffling: A one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS ONE. 2009;4:e5553. doi: 10.1371/journal.pone.0005553. PubMed DOI PMC
Engler C., Kandzia R., Marillonnet S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE. 2008;3:e3647. doi: 10.1371/journal.pone.0003647. PubMed DOI PMC
Gibson D.G., Young L., Chuang R.-Y., Venter J.C., Hutchison C.A., Smith H.O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods. 2009;6:343–345. doi: 10.1038/nmeth.1318. PubMed DOI
Zhu B., Cai G., Hall E.O., Freeman G.J. In-Fusion™ assembly: Seamless engineering of multidomain fusion proteins, modular vectors, and mutations. BioTechniques. 2007;43:354–359. doi: 10.2144/000112536. PubMed DOI
Dusek J., Plchova H., Cerovska N., Poborilova Z., Navratil O., Kratochvilova K., Gunter C., Jacobs R., Hitzeroth I.I., Rybicki E.P., et al. Extended set of GoldenBraid compatible vectors for fast assembly of multigenic constructs and their use to create geminiviral expression vectors. Front. Plant Sci. 2020;11:1520. doi: 10.3389/fpls.2020.522059. PubMed DOI PMC
Poborilova Z., Plchova H., Cerovska N., Gunter C.J., Hitzeroth I.I., Rybicki E.P., Moravec T. Transient protein expression in tobacco BY-2 plant cell packs using single and multi-cassette replicating vectors. Plant Cell Rep. 2020;39:1115–1127. doi: 10.1007/s00299-020-02544-w. PubMed DOI PMC
Samuels T.D., Ju H.-J., Ye C.-M., Motes C.M., Blancaflor E.B., Verchot-Lubicz J. Subcellular targeting and interactions among the Potato virus X TGB proteins. Virology. 2007;367:375–389. doi: 10.1016/j.virol.2007.05.022. PubMed DOI
Maia I.G., Séron K., Haenni A.-L., Bernardi F. Gene expression from viral RNA genomes. In: Filipowicz W., Hohn T., editors. Post-Transcriptional Control of Gene Expression in Plants. Springer; Dordrecht, The Netherlands: 1996. pp. 367–391. PubMed
Sztuba-Solińska J., Stollar V., Bujarski J.J. Subgenomic messenger RNAs: Mastering regulation of (+)-strand RNA virus life cycle. Virology. 2011;412:245–255. doi: 10.1016/j.virol.2011.02.007. PubMed DOI PMC
Batten J.S., Yoshinari S., Hemenway C. Potato virus X: A model system for virus replication, movement and gene expression. Mol. Plant Pathol. 2003;4:125–131. doi: 10.1046/j.1364-3703.2003.00156.x. PubMed DOI
Verchot J., Angell S.M., Baulcombe D.C. In vivo translation of the triple gene block of potato virus X requires two subgenomic mRNAs. J. Virol. 1998;72:8316–8320. doi: 10.1128/JVI.72.10.8316-8320.1998. PubMed DOI PMC
Kim K.-H., Hemenway C. Mutations that alter a conserved element upstream of the Potato virus X triple block and coat protein genes affect subgenomic RNA accumulation. Virology. 1997;232:187–197. doi: 10.1006/viro.1997.8565. PubMed DOI
Kim K.-H., Hemenway C.L. Long-distance RNA–RNA interactions and conserved sequence elements affect potato virus X plus-strand RNA accumulation. RNA. 1999;5:636–645. doi: 10.1017/S1355838299982006. PubMed DOI PMC
Chapman S., Kavanagh T., Baulcombe D. Potato virus X as a vector for gene expression in plants. Plant J. 1992;2:549–557. PubMed
Manske U., Schiemann J. Development and assessment of a Potato virus X-based expression system with improved biosafety. Environ. Biosafety Res. 2005;4:45–57. doi: 10.1051/ebr:2005011. PubMed DOI
Nagy P.D., Simon A.E. New insights into the mechanisms of RNA recombination. Virology. 1997;235:1–9. doi: 10.1006/viro.1997.8681. PubMed DOI
Donson J., Kearney C.M., Hilf M.E., Dawson W.O. Systemic expression of a bacterial gene by a tobacco mosaic virus-based vector. Proc. Natl. Acad. Sci. USA. 1991;88:7204–7208. doi: 10.1073/pnas.88.16.7204. PubMed DOI PMC
MacFarlane S.A., Popovich A.H. Efficient expression of foreign proteins in roots from Tobravirus vectors. Virology. 2000;267:29–35. doi: 10.1006/viro.1999.0098. PubMed DOI
Shivprasad S., Pogue G.P., Lewandowski D.J., Hidalgo J., Donson J., Grill L.K., Dawson W.O. Heterologous sequences greatly affect foreign gene expression in Tobacco mosaic virus-based vectors. Virology. 1999;255:312–323. doi: 10.1006/viro.1998.9579. PubMed DOI