Neonicotinoid insecticides hinder the pupation and metamorphosis into adults in a crabronid wasp

. 2020 Apr 27 ; 10 (1) : 7077. [epub] 20200427

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32341495
Odkazy

PubMed 32341495
PubMed Central PMC7184726
DOI 10.1038/s41598-020-63958-w
PII: 10.1038/s41598-020-63958-w
Knihovny.cz E-zdroje

Neonicotinoid insecticides are associated with a decline in the diversity and distribution of bees and wasps (Hymenoptera: Aculeata). The effects of neonicotinoids on the metamorphosis of aculeates have never been addressed in detail; however, recent evidence suggests that neonicotinoids induce wing abnormalities. We hypothesized that the metamorphosis success of bees and wasps differs in response to contact exposure to field-realistic concentrations of neonicotinoid insecticides or in response to combined exposure to neonicotinoid insecticides and benzimidazole fungicides. We treated prepupae of the model crabronid wasp Pemphredon fabricii with field-realistic concentrations of four neonicotinoids, acetamiprid, imidacloprid, thiacloprid and thiamethoxam, and/or with the benzimidazole fungicide thiabendazole. Treatment with acetamiprid or imidacloprid decreased the pupation rates to only 39% and 32%, respectively. Treatment with thiacloprid or thiamethoxam did not affect the pupation rate when applied alone, but the subsequent treatment of thiacloprid- or thiamethoxam-treated prepupae with thiabendazole led to significant decreases in pupation rates. A high concentration of acetamiprid, which severely affected the pupation rates, had moderate effects on metamorphosis into adults, resulting in 53% metamorphosis success (as opposed to 95% metamorphosis success in the water-treated group). However, imidacloprid or thiamethoxam treatment resulted in only 5%-10% metamorphosis success into adults. Overall survival decreased in response to treatment with any of the neonicotinoids or benzimidazoles or their combinations, with extremely low survival (<2%) following combined treatment with imidacloprid and thiabendazole or thiamethoxam and thiabendazole. In conclusion, neonicotinoids alter insect metamorphosis success, which can be further potentiated by their combination with other agrochemicals, such as benzimidazoles.

Zobrazit více v PubMed

Whitehorn PR, O’Connor S, Wackers FL, Goulson D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science. 2012;336:351–352. doi: 10.1126/science.1215025. PubMed DOI

Dicks L. Bees, lies and evidence-based policy. Nature. 2013;494:283. doi: 10.1038/494283a. PubMed DOI

Rundlöf M, et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature. 2015;521:77–80. doi: 10.1038/nature14420. PubMed DOI

Tsvetkov N, et al. Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science. 2017;356:1395–1397. doi: 10.1126/science.aam7470. PubMed DOI

Woodcock BA, et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science. 2017;356:1393–1395. doi: 10.1126/science.aaa1190. PubMed DOI

Casida JE. Neonicotinoid metabolism: compounds, substituents, pathways, enzymes, organisms, and relevance. J. Agric. Food Chem. 2011;59:2923–2931. doi: 10.1021/jf102438c. PubMed DOI

Rand EED, et al. Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Sci. Rep. 2015;5:11779. doi: 10.1038/srep11779. PubMed DOI PMC

Ihara M, Matsuda K. Neonicotinoids: molecular mechanisms of action, insights into resistance and impact on pollinators. Curr. Opin. Insect Sci. 2018;30:86–92. doi: 10.1016/j.cois.2018.09.009. PubMed DOI

Wang X, et al. Mechanism of neonicotinoid toxicity: impact on oxidative stress and metabolism. Annu. Rev. Pharmacol. Toxicol. 2018;58:471–507. doi: 10.1146/annurev-pharmtox-010617-052429. PubMed DOI

Friedli A, Williams GR, Bruckner S, Neumann P, Straub L. The weakest link: Haploid honey bees are more susceptible to neonicotinoid insecticides. Chemosphere. 2020;242:125145. doi: 10.1016/j.chemosphere.2019.125145. PubMed DOI

Tavares DA, et al. Exposure of larvae to thiamethoxam affects the survival and physiology of the honey bee at post-embryonic stages. Environ. Pollut. 2017;229:386–393. doi: 10.1016/j.envpol.2017.05.092. PubMed DOI

Bao H, et al. Sublethal effects of four insecticides on the reproduction and wing formation of brown planthopper, Nilaparvata lugens. Pest Manag. Sci. 2009;65:170–174. doi: 10.1002/ps.1664. PubMed DOI

Zhang J, Yuan F, Liu J, Chen H, Zhang R. Sublethal effects of nitenpyram on life-table parameters and wing formation of Nipalarvata lugens (Stål) (Homoptera: Delphacidae) Appl. Entomol. Zool. 2010;45:569–574. doi: 10.1303/aez.2010.569. DOI

Gilbert, L. & Frieden, E. Metamorphosis: a problem in developmental biology. Plenum Press, New York and London (2013).

Tennessen JM, Baker KD, Lam G, Evans J, Thummel CS. The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth. Cell Metab. 2011;13:139–148. doi: 10.1016/j.cmet.2011.01.005. PubMed DOI PMC

Chikaraishi Y, Ogawa NO, Doi H, Ohkouchi N. 15N/14N ratios of amino acids as a tool for studying terrestrial food webs: a case study of terrestrial insects (bees, wasps, and hornets) Ecol. Res. 2011;26:835–844. doi: 10.1007/s11284-011-0844-1. DOI

Judd TM, Fasnacht MP. A nutritional profile of the trap-nesting wasp Trypoxylon lactitarse (Hymenoptera: Crabronidae): comparison of sexes and overwintering and non-overwintering generations. Insects. 2017;8:3. doi: 10.3390/insects8010003. PubMed DOI PMC

Beira JV, Paro R. The legacy of Drosophila imaginal discs. Chromosoma. 2016;125:573–592. doi: 10.1007/s00412-016-0595-4. PubMed DOI PMC

Büyükgüzel K, Yazgan Ş. Effects of antimicrobial agents on the survival and development of larvae of Pimpla turionellae L. (Hymenoptera: Ichneumonidae) reared on an artificial diet. Turk. J. Zool. 2002;26:111–119.

Bots J, De Bruyn L, Snijkers T, Van den Branden B, Van Gossum H. Exposure to perfluorooctane sulfonic acid (PFOS) adversely affects the life-cycle of the damsefly Enallagma cyathigerum. Environ. Pollut. 2010;158:901–905. doi: 10.1016/j.envpol.2009.09.016. PubMed DOI

Wesner JS, Kraus JM, Schmidt TS, Walters DM, Clements WH. Metamorphosis enhances the effects of metal exposure on the mayfly, Centroptilum triangulifer. Environ. Sci. Technol. 2014;48:10415–10422. doi: 10.1021/es501914y. PubMed DOI

Dinh KV, et al. Delayed effects of chlorpyrifos across metamorphosis on dispersal-related traits in a poleward moving damselfly. Environ. Pollut. 2016;218:634–643. doi: 10.1016/j.envpol.2016.07.047. PubMed DOI

Debecker S, Dinh KV, Stoks R. Strong delayed interactive effects of metal exposure and warming: latitude-dependent synergisms persist across metamorphosis. Environ. Sci. Technol. 2017;51:2409–2417. doi: 10.1021/acs.est.6b04989. PubMed DOI

Singh S, et al. Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ. Chem. Lett. 2016;14:317–320. doi: 10.1007/s10311-016-0566-2. DOI

David A, et al. Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops. Environ. Int. 2016;88:169–178. doi: 10.1016/j.envint.2015.12.011. PubMed DOI

Cabras P, Martini MG, Floris I, Spanedda L. Residues of cymiazole in honey and honey bees. J. Apicult. Res. 1994;33:83–86. doi: 10.1080/00218839.1994.11100854. DOI

Huntzinger CI, James RR, Bosch J, Kemp WP. Laboratory bioassays to evaluate fungicides for chalkbrood control in larvae of the alfalfa leafcutting bee (Hymenoptera: Megachilidae) J. Econ. Entomol. 2008;101:660–667. doi: 10.1093/jee/101.3.660. PubMed DOI

Heneberg P, Bogusch P, Astapenková A. The effects of contact exposure to azole fungicides on insect metamorphosis. Crop Protect. 2019;121:66–72. doi: 10.1016/j.cropro.2019.03.012. DOI

Thompson HM, Fryday SL, Harkin S, Milner S. Potential impacts of synergism in honeybees (Apis mellifera) of exposure to neonicotinoids and sprayed fungicides in crops. Apidologie. 2014;45:545–553. doi: 10.1007/s13592-014-0273-6. DOI

Zhu YC, Yao J, Adamczyk J, Luttrell R. Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera) PLoS ONE. 2017;12:e0176837. doi: 10.1371/journal.pone.0176837. PubMed DOI PMC

Sgolastra F, et al. Synergistic mortality between a neonicotinoid insecticide and an ergosterol-biosynthesis-inhibiting fungicide in three bee species. Pest Manag. Sci. 2017;73:1236–1243. doi: 10.1002/ps.4449. PubMed DOI

Raimets R, et al. Synergistic interactions between a variety of insecticides and an ergosterol biosynthesis inhibitor fungicide in dietary exposures of bumble bees (Bombus terrestris L.) Pest Manag. Sci. 2018;74:541–546. doi: 10.1002/ps.4756. PubMed DOI

Sgolastra F, et al. Combined exposure to sublethal concentrations of an insecticide and a fungicide affect feeding, ovary development and longevity in a solitary bee. Proc. Biol. Sci. 2018;285:20180887. doi: 10.1098/rspb.2018.0887. PubMed DOI PMC

Willow J, Silva A, Veromann E, Smagghe G. Acute effect of low-dose thiacloprid exposure synergized by tebuconazole in a parasitoid wasp. PLoS ONE. 2019;14:e0212456. doi: 10.1371/journal.pone.0212456. PubMed DOI PMC

Schmuck R, Stadler T, Schmidt HW. Field relevance of a synergistic effect observed in the laboratory between an EBI fungicide and a chloronicotinyl insecticide in the honeybee (Apis mellifera L, Hymenoptera) Pest Manag. Sci. 2003;59:279–286. doi: 10.1002/ps.626. PubMed DOI

Mussen EC, Lopez JE, Peng CYS. Effects of selected fungicides on growth and development of larval honey bees, Apis mellifera L. (Hymenoptera: Apidae) Environ. Entomol. 2004;33:1151–1154. doi: 10.1603/0046-225X-33.5.1151. DOI

Heneberg P, Bogusch P, Astapenková A. Reed galls serve as an underestimated but critically important resource for an assemblage of aculeate hymenopterans. Biol. Conserv. 2014;172:146–154. doi: 10.1016/j.biocon.2014.02.037. DOI

Bogusch P, Havelka J, Astapenková A, Heneberg P. New type of progressive provisioning as a characteristic parental behaviour of the crabronid wasp Pemphredon fabricii (Hymenoptera Crabronidae) Ethol. Ecol. Evol. 2018;30:114–127. doi: 10.1080/03949370.2017.1323801. DOI

Fernandes M, Franklin MR, Veiga LHS, Freitas P, Gomiero LA. Management of uranium mill tailing: Geochemical processes and radiological risk assessment. J. Environ. Radioact. 1996;30:69–95. doi: 10.1016/0265-931X(95)00032-6. DOI

Řezáč M, Řezáčová V, Heneberg P. Contact application of neonicotinoids suppresses the predation rate in different densities of prey and induced paralysis of common farmland spiders. Sci. Rep. 2019;9:5724. doi: 10.1038/s41598-019-42258-y. PubMed DOI PMC

FAO. THIABENDAZOLE (65). Available from,http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation97/Thiaben.PDF. Cited as November 24, 2019 (1997).

Rosa AS, et al. Consumption of the neonicotinoid thiamethoxam during the larval stage affects the survival and development of the stingless bee, Scaptotrigona aff. depilis. Apidologie. 2016;47:729–738. doi: 10.1007/s13592-015-0424-4. DOI

Lopuch S, Tofilski A. The relationship between asymmetry, size and unusual venation in honey bees (Apis mellifera) Bull. Entomol. Res. 2016;106:304–313. doi: 10.1017/S0007485315000784. PubMed DOI

Chang X, Zhai B, Wang M, Wang B. Relationship between exposure to an insecticide and fluctuating asymmetry in a damselfly (Odonata, Coenagriidae) Hydrobiologia. 2007;586:213–220. doi: 10.1007/s10750-007-0620-y. DOI

Gerard M, et al. Stressful conditions reveal decrease in size, modification of shape but relatively stable asymmetry in bumblebee wings. Sci. Rep. 2018;8:15169. doi: 10.1038/s41598-018-33429-4. PubMed DOI PMC

Belles X. The innovation of the final moult and the origin of insect metamorphosis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019;374:20180415. doi: 10.1098/rstb.2018.0415. PubMed DOI PMC

Sclar DC, Gerace D, Cranshaw WS. Observation of population increases and injury by spider mites (Acari: Tetranychidae) on ornamental plants treated with imidacloprid. J. Econ. Entomol. 1998;91:250–255. doi: 10.1093/jee/91.1.250. DOI

James DG, Price TS. Fecundity in twospotted spider mite (Acari: Tetranychidae) is increased by direct and systemic exposure to imidacloprid. J. Econ. Entomol. 2002;85:729–732. doi: 10.1603/0022-0493-95.4.729. PubMed DOI

Wang AH, et al. Selective insecticide-induced stimulation on fecundity and biochemical changes in Tryporyza incertulas (Lepidoptera: Pyralidae) J. Econ. Entomol. 2005;4:1143–1149. PubMed

Yu YS, Xue S, Wu JC, Wang F, Yang GQ. Changes in levels of juvenile hormone and molting hormone in larvae and adult females of Chilo suppressalis (Lepidoptera: Pyralidae) after imidacloprid applications to rice. J. Econ. Entomol. 2007;4:1188–1193. doi: 10.1603/0022-0493(2007)100[1188:CILOJH]2.0.CO;2. PubMed DOI

Yu Y, Shen G, Zhu H, Lu Y. Imidacloprid-induced hormesis on the fecundity and juvenile hormone levels of the green peach aphid Myzus persicae (Sulzer) Pestic. Biochem. Physiol. 2010;98:238–242. doi: 10.1016/j.pestbp.2010.06.013. DOI

Christen V, Mittner F, Fent K. Molecular effects of neonicotinoids in honey bees (Apis mellifera) Environ. Sci. Technol. 2016;50:4071–4081. doi: 10.1021/acs.est.6b00678. PubMed DOI

Amdam GV, Omholt SW. The regulatory anatomy of honeybee lifespan. J. Theor. Biol. 2002;216:209–228. doi: 10.1006/jtbi.2002.2545. PubMed DOI

Amdam GV, Omholt SW. The hive bee to forager transition inhoneybee colonies: the double repressor hypothesis. J. Theor. Biol. 2003;223:451–464. doi: 10.1016/S0022-5193(03)00121-8. PubMed DOI

Wang K, et al. Transcriptome analysis of newly emerged honeybees exposure to sublethal cerbendazim during larval stage. Front. Genet. 2018;9:426. doi: 10.3389/fgene.2018.00426. PubMed DOI PMC

Ashburner M. Ecdysone induction of puffing in polytene chromosomes of Drosophila melanogaster: Effects of inhibitors of RNA synthesis. Exp. Cell Res. 1972;71:433–440. doi: 10.1016/0014-4827(72)90313-8. PubMed DOI

Rybczynski, R. The prothoracicotropic hormone. In: Gilbert, L. L., Iatrou, K. & Gill, S. (Eds.) Comprehensive molecular insect science. Elsevier, Oxford, pp. 61–123 (2005).

Hasskari E, Oberlander H, Stephens RE. Microtubules and tracheole migration in wing disks of Galleria mellonela. Dev. Biol. 1973;33:334–343. doi: 10.1016/0012-1606(73)90141-3. PubMed DOI

Quan G-X, Kanke E, Kawasaki H. Isolation and particular expression of a new β-tubulin gene in wing discs during metamorphosis of Bombyx mori. J. Seric. Sci. Jpn. 1998;67:43–50.

Rondeau, G. et al. Delayed and time-cumulative toxicity of imidacloprid in bees ants and termites. Sci. Rep.4, 5566 (2014). PubMed PMC

Dechaume-Moncharmont F-X, Decourtye A, Hennequet-Hantier C, Pons O, Minh-Hà P-D. Statistical analysis of honeybee survival after chronic exposure to insecticides. Environ. Toxicol. Chem. 2003;22:3088–3094. doi: 10.1897/02-578. PubMed DOI

EFSA. Towards an integrated environmental risk assessment of multiple stressors on bees: review of research projects in Europe, knowledge gaps and recommendations. EFSA J. 12, 3594 (2014).

Courjaret R, Lapied B. Complex intracellular messenger pathways regulate one type of neuronal alpha-bungarotoxin-resistant nicotinic acetylcholine receptors expressed in insect neurosecretory cells (dorsal unpaired median neurons) Mol. Pharmacol. 2001;60:80–91. doi: 10.1124/mol.60.1.80. PubMed DOI

Courjaret R, Grolleau F, Lapied B. Two distinct calcium-sensitive and -insensitive PKC up- and down-regulate an alpha-bungarotoxin-resistant nAChR1 in insect neurosecretory cells (DUM neurons) Eur. J. Neurosci. 2003;17:2023–2034. doi: 10.1046/j.1460-9568.2003.02644.x. PubMed DOI

Tan J, Galligan JJ, Hollingworth RM. Agonist actions of neonicotinoids on nicotinic acetylcholine receptors expressed by cockroach neurons. Neurotoxicology. 2007;28:829–842. doi: 10.1016/j.neuro.2007.04.002. PubMed DOI

Thany SH, Courjaret R, Lapied B. Effect of calcium on nicotine-induced current expressed by an atypical alpha-bungarotoxin-insensitive nAChR2. Neurosci. Lett. 2008;438:317–321. doi: 10.1016/j.neulet.2008.04.065. PubMed DOI

Bodereau-Dubois B, et al. Transmembrane potential polarization, calcium influx, and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nicotinic acetylcholine receptor to neonicotinoid insecticides. J. Pharmacol. Exp. Ther. 2012;341:326–339. doi: 10.1124/jpet.111.188060. PubMed DOI

Calas-List D, List O, Quinchard S, Thany SH. Calcium pathways such as cAMP modulate clothianidin action through activation of α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptors. Neurotoxicology. 2013;37:127–133. doi: 10.1016/j.neuro.2013.04.011. PubMed DOI

Brunet JL, Badiou A, Belzunces LP. In vivo metabolic fate of [14C]-acetamiprid in six biological compartments of the honeybee, Apis mellifera L. Pest Manag. Sci. 2005;61:742–748. doi: 10.1002/ps.1046. PubMed DOI

Casida JE. Neonicotinoid metabolism: compounds, substituents, pathways, enzymes, organisms, and relevance. J. Agric. Food Chem. 2011;59:2923–2931. doi: 10.1021/jf102438c. PubMed DOI

Ford KA, Casida JE. Comparative metabolism and pharmacokinetics of seven neonicotinoid insecticides in spinach. J. Agric. Food Chem. 2008;56:10168–10175. doi: 10.1021/jf8020909. PubMed DOI

Simon-Delso N, et al. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. Int. 2015;22:5–34. doi: 10.1007/s11356-014-3470-y. PubMed DOI PMC

Nauen R, Ebbinghaus-Kintscher U, Salgado VL, Kaussmann M. Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pest Biochem. Physiol. 2003;76:55–69. doi: 10.1016/S0048-3575(03)00065-8. DOI

Benzidane Y, et al. Effect of thiamethoxam on cockroach locomotor activity is associated with its metabolite clothianidin. Pest Manag. Sci. 2010;66:1351–1359. doi: 10.1002/ps.2022. PubMed DOI

Lapied B, Le Corronc H, Hue B. Sensitive nicotinic and mixed nicotinic-muscarinic receptors in insect neurosecretory cells. Brain Res. 1990;533:132–136. doi: 10.1016/0006-8993(90)91805-Q. PubMed DOI

Thany SH. Thiamethoxam, a poor agonist of nicotinic acetylcholine receptors expressed on isolated cell bodies, acts as a full agonist at cockroach cercal afferent/giant interneuron synapses. Neuropharmacology. 2011;60:587–592. doi: 10.1016/j.neuropharm.2010.12.008. PubMed DOI

Thany SH. Agonist actions of clothianidin on synaptic and extrasynaptic nicotinic acetylcholine receptors expressed on cockroach sixth abdominal ganglion. Neurotoxicology. 2009;30:1045–1052. doi: 10.1016/j.neuro.2009.06.013. PubMed DOI

Ford KA, Casida JE. Chloropyridinyl neonicotinoid insecticides: diverse molecular substituents contribute to facile metabolism in mice. Chem. Res. Toxicol. 2006;19:944–951. doi: 10.1021/tx0600696. PubMed DOI

Karmakar R, Bhattacharya R, Kulshrestha G. Comparative metabolite profiling of the insecticide thiamethoxam in plant and cell suspension culture of tomato. J. Agric. Food Chem. 2009;57:6369–6374. doi: 10.1021/jf9008394. PubMed DOI

Iwasa T, Motoyama N, Ambrose JT, Roe RM. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot. 2004;23:371–378. doi: 10.1016/j.cropro.2003.08.018. DOI

Sgolastra F, et al. Bees and pesticide regulation: Lessons from the neonicotinoid experience. Biol. Conserv. 2020;241:108356. doi: 10.1016/j.biocon.2019.108356. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...