Impact of clinically acquired miltefosine resistance by Leishmania infantum on mouse and sand fly infection
Language English Country Netherlands Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32388220
PubMed Central
PMC7215113
DOI
10.1016/j.ijpddr.2020.04.004
PII: S2211-3207(20)30009-9
Knihovny.cz E-resources
- Keywords
- Bioluminescent imaging, Fitness, Leishmania infantum, Lutzomyia longipalpis, Miltefosine-resistance, Phlebotomus perniciosus, Visceral leishmaniasis,
- MeSH
- Antiprotozoal Agents pharmacology MeSH
- Phosphorylcholine analogs & derivatives pharmacology MeSH
- Insect Vectors parasitology MeSH
- Leishmania infantum * drug effects genetics pathogenicity MeSH
- Leishmaniasis, Visceral drug therapy pathology MeSH
- Drug Resistance genetics MeSH
- Membrane Transport Proteins genetics MeSH
- Mice, Inbred BALB C parasitology MeSH
- Mice MeSH
- Phlebotomus parasitology MeSH
- Genes, Protozoan MeSH
- Psychodidae parasitology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antiprotozoal Agents MeSH
- Phosphorylcholine MeSH
- Membrane Transport Proteins MeSH
- miltefosine MeSH Browser
OBJECTIVES: This study evaluated the implications of clinically acquired miltefosine resistance (MIL-R) by assessing virulence in mice and sand flies to reveal the potential of MIL-R strains to circulate. METHODS: Experimental infections with the MIL-R clinical Leishmania infantum isolate MHOM/FR/2005/LEM5159, having a defect in the LiROS3 subunit of the MIL-transporter, and its syngeneic experimentally reconstituted MIL-S counterpart (LEM5159LiROS3) were performed in BALB/c mice and Lutzomyia longipalpis and Phlebotomus perniciosus sand flies. In mice, the amastigote burdens in liver and spleen were compared microscopically using Giemsa smears and by bioluminescent imaging. During the sand fly infections, the percentage of infected flies, parasite load, colonization of the stomodeal valve and metacyclogenesis were evaluated. The stability of the MIL-R phenotype after sand fly and mouse passage was determined as well. RESULTS: The fitness of the MIL-R strain differed between the mouse and sand fly infection model. In mice, a clear fitness loss was observed compared to the LiROS3-reconstituted susceptible strain. This defect could be rescued by episomal reconstitution with a wildtype LiROS3 copy. However, this fitness loss was not apparent in the sand fly vector, resulting in metacyclogenesis and efficient colonization of the stomodeal valve. Resistance was stable after passage in both sand fly and mouse. CONCLUSION: The natural MIL-R strain is significantly hampered in its ability to multiply and cause a typical visceral infection pattern in BALB/c mice. However, this LiROS3-deficient strain efficiently produced mature infections and metacyclic promastigotes in the sand fly vector highlighting the transmission potential of this particular MIL-R clinical Leishmania strain.
See more in PubMed
Alvar J., Velez I.D., Bern C., Herrero M., Desjeux P., Cano J., Jannin J., den Boer M., Team W.H.O.L.C. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7 PubMed PMC
Barrett M.P., Kyle D.E., Sibley L.D., Radke J.B., Tarleton R.L. Protozoan persister-like cells and drug treatment failure. Nat. Rev. Microbiol. 2019;17:607–620. PubMed PMC
Bates P.A. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int. J. Parasitol. 2007;37:1097–1106. PubMed PMC
Brambilla Carnielli Trindade J., Monti-Rocha R., Costa D.L., Sesana A.M., Pansini L.N., Segatto M., Mottram J.C., Nery Costa C.H., Carvalho S.F., Dietze R. Natural resistance of Leishmania infantum to miltefosine contributes to the low efficacy in the treatment of visceral leishmaniasis in Brazil. Am. J. Trop. Med. Hyg. 2019 PubMed PMC
Castanys-Muñoz E., Pérez-Victoria J.M., Gamarro F., Castanys S. Characterization of an ABCG-like transporter from the protozoan parasite Leishmania with a role in drug resistance and transbilayer lipid movement. Antimicrob. Agents Chemother. 2008;52:3573–3579. PubMed PMC
Cojean S., Houze S., Haouchine D., Huteau F., Lariven S., Hubert V., Michard F., Bories C., Pratlong F., Le Bras J., Loiseau P.M., Matheron S. Leishmania resistance to miltefosine associated with genetic marker. Emerg. Infect. Dis. 2012;18:704–706. PubMed PMC
Dorlo T.P., Balasegaram M., Beijnen J.H., de Vries P.J. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother. 2012;67:2576–2597. PubMed
Eberhardt E., Bulte D., Van Bockstal L., Van den Kerkhof M., Cos P., Delputte P., Hendrickx S., Maes L., Caljon G. Miltefosine enhances the fitness of a non-virulent drug-resistant Leishmania infantum strain. J. Antimicrob. Chemother. 2019;74(2):395–406. PubMed
Goyal V., Burza S., Pandey K., Singh S.N., Singh R.S., Strub-Wourgaft N., Das V.N.R., Bern C., Hightower A., Rijal S. Field effectiveness of new visceral leishmaniasis regimens after 1 year following treatment within public health facilities in Bihar, India. PLoS Neglected Trop. Dis. 2019;13 PubMed PMC
Hendrickx S., Beyers J., Mondelaers A., Eberhardt E., Lachaud L., Delputte P., Cos P., Maes L. Evidence of a drug-specific impact of experimentally selected paromomycin and miltefosine resistance on parasite fitness in Leishmania infantum. J. Antimicrob. Chemother. 2016;71:1914–1921. PubMed
Hendrickx S., Boulet G., Mondelaers A., Dujardin J.C., Rijal S., Lachaud L., Cos P., Delputte P., Maes L. Experimental selection of paromomycin and miltefosine resistance in intracellular amastigotes of Leishmania donovani and L. infantum. Parasitol. Res. 2014;113:1875–1881. PubMed
Hendrickx S., Mondelaers A., Eberhardt E., Delputte P., Cos P., Maes L. In vivo selection of paromomycin and miltefosine resistance in Leishmania donovani and L. infantum in a Syrian hamster model. Antimicrob. Agents Chemother. 2015;59:4714–4718. PubMed PMC
Hendrickx S., Van Bockstal L., Aslan H., Sadlova J., Maes L., Volf P., Caljon G. Transmission potential of paromomycin-resistant Leishmania infantum and Leishmania donovani. J. Antimicrob. Chemother. 2020;75(4):951–957. PubMed
Hendrickx S., Van Bockstal L., Bulté D., Mondelaers A., Aslan H., Rivas L., Maes L., Caljon G. Phenotypic adaptations of Leishmania donovani to recurrent miltefosine exposure and impact on sand fly infection. Parasites Vectors. 2020;13:1–11. PubMed PMC
Hendrickx S., Van den Kerkhof M., Mabille D., Cos P., Delputte P., Maes L., Caljon G. Combined treatment of miltefosine and paromomycin delays the onset of experimental drug resistance in Leishmania infantum. PLoS Neglected Trop. Dis. 2017;11 PubMed PMC
Ibarra-Meneses A.V., Moreno J., Carrillo E. New strategies and biomarkers for the control of visceral leishmaniasis. Trends Parasitol. 2020;36(1):29–38. PubMed
Mondelaers A., Hendrickx S., Van Bockstal L., Maes L., Caljon G. Miltefosine-resistant Leishmania infantum strains with an impaired MT/ROS3 transporter complex retain amphotericin B susceptibility. J. Antimicrob. Chemother. 2018;73(2):392–394. PubMed
Mondelaers A., Sanchez-Canete M.P., Hendrickx S., Eberhardt E., Garcia-Hernandez R., Lachaud L., Cotton J., Sanders M., Cuypers B., Imamura H., Dujardin J.C., Delputte P., Cos P., Caljon G., Gamarro F., Castanys S., Maes L. Genomic and molecular characterization of miltefosine resistance in Leishmania infantum strains with either natural or acquired resistance through experimental selection of intracellular amastigotes. PLoS One. 2016;11 PubMed PMC
Palić S., Bhairosing P., Beijnen J.H., Dorlo T.P. Systematic review of host-mediated activity of miltefosine in leishmaniasis through immunomodulation. Antimicrob. Agents Chemother. 2019;63 e02507-02518. PubMed PMC
Perez-Victoria F.J., Sanchez-Canete M.P., Castanys S., Gamarro F. Phospholipid translocation and miltefosine potency require both L. donovani miltefosine transporter and the new protein LdRos3 in Leishmania parasites. J. Biol. Chem. 2006;281:23766–23775. PubMed
Perez-Victoria F.J., Sanchez-Canete M.P., Seifert K., Croft S.L., Sundar S., Castanys S., Gamarro F. Mechanisms of experimental resistance of Leishmania to miltefosine: implications for clinical use. Drug Resist. Updates. 2006;9:26–39. PubMed
Ponte-Sucre A., Gamarro F., Dujardin J.-C., Barrett M.P., Lopez-Velez R., Garcia-Hernandez R., Pountain A.W., Mwenechanya R., Papadopoulou B. Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Neglected Trop. Dis. 2017;11 PubMed PMC
Rai K., Cuypers B., Bhattarai N.R., Uranw S., Berg M., Ostyn B., Dujardin J.C., Rijal S., Vanaerschot M. Relapse after treatment with miltefosine for visceral leishmaniasis is associated with increased infectivity of the infecting Leishmania donovani strain. mBio. 2013;4 PubMed PMC
Rijal S., Ostyn B., Uranw S., Rai K., Bhattarai N.R., Dorlo T.P., Beijnen J.H., Vanaerschot M., Decuypere S., Dhakal S.S., Das M.L., Karki P., Singh R., Boelaert M., Dujardin J.C. Increasing failure of miltefosine in the treatment of Kala-azar in Nepal and the potential role of parasite drug resistance, reinfection, or noncompliance. Clin. Infect. Dis. 2013;56:1530–1538. PubMed
Seblova V., Oury B., Eddaikra N., Aït-Oudhia K., Pratlong F., Gazanion E., Maia C., Volf P., Sereno D. Transmission potential of antimony-resistant Leishmania field isolates. Antimicrob. Agents Chemother. 2014;58:6273–6276. PubMed PMC
Shaw C., Lonchamp J., Downing T., Imamura H., Freeman T., Cotton J., Sanders M., Blackburn G., Dujardin J., Rijal S. In vitro selection of miltefosine resistance in promastigotes of Leishmania donovani from Nepal: genomic and metabolomic characterization. Mol. Microbiol. 2016;99:1134–1148. PubMed PMC
Srivastava S., Mishra J., Gupta A.K., Singh A., Shankar P., Singh S. Laboratory confirmed miltefosine resistant cases of visceral leishmaniasis from India. Parasites Vectors. 2017;10:49. PubMed PMC
Stauber L.A. vol 45. Rice Institute Pamphlet-Rice University Studies; 1958. (Host Resistance to the Khartoum Strain of Leishmania Donovani).
Sundar S., Rai M., Chakravarty J., Agarwal D., Agrawal N., Vaillant M., Olliaro P., Murray H.W. New treatment approach in Indian visceral leishmaniasis: single-dose liposomal amphotericin B followed by short-course oral miltefosine. Clin. Infect. Dis. 2008;47:1000–1006. PubMed
Turner K.G., Vacchina P., Robles-Murguia M., Wadsworth M., McDowell M.A., Morales M.A. Fitness and phenotypic characterization of miltefosine-resistant Leishmania major. PLoS Neglected Trop. Dis. 2015;9 PubMed PMC
Van Bockstal L., Sádlová J., Suau H.A., Hendrickx S., Meneses C., Kamhawi S., Volf P., Maes L., Caljon G. Impaired development of a miltefosine-resistant Leishmania infantum strain in the sand fly vectors Phlebotomus perniciosus and Lutzomyia longipalpis. Int. J. Parasitol.: Drugs Drug Resist. 2019;11:1–7. PubMed PMC
Vanaerschot M., De Doncker S., Rijal S., Maes L., Dujardin J.-C., Decuypere S. Antimonial resistance in Leishmania donovani is associated with increased in vivo parasite burden. PLoS One. 2011;6 PubMed PMC
Vanaerschot M., Decuypere S., Berg M., Roy S., Dujardin J.-C. Drug-resistant microorganisms with a higher fitness–can medicines boost pathogens? Crit. Rev. Microbiol. 2013;39:384–394. PubMed
Vanaerschot M., Huijben S., Van den Broeck F., Dujardin J.C. Drug resistance in vector borne parasites: multiple actors and scenarios for an evolutionary arms race. FEMS Microbiol. Rev. 2014;38:41–55. PubMed
Vermeersch M., da Luz R.I., Tote K., Timmermans J.P., Cos P., Maes L. In vitro susceptibilities of Leishmania donovani promastigote and amastigote stages to antileishmanial reference drugs: practical relevance of stage-specific differences. Antimicrob. Agents Chemother. 2009;53:3855–3859. PubMed PMC
Volf P., Volfova V. Establishment and maintenance of sand fly colonies. J. Vector Ecol. 2011;36(Suppl. 1):S1–S9. PubMed