• This record comes from PubMed

Impact of clinically acquired miltefosine resistance by Leishmania infantum on mouse and sand fly infection

. 2020 Aug ; 13 () : 16-21. [epub] 20200501

Language English Country Netherlands Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 32388220
PubMed Central PMC7215113
DOI 10.1016/j.ijpddr.2020.04.004
PII: S2211-3207(20)30009-9
Knihovny.cz E-resources

OBJECTIVES: This study evaluated the implications of clinically acquired miltefosine resistance (MIL-R) by assessing virulence in mice and sand flies to reveal the potential of MIL-R strains to circulate. METHODS: Experimental infections with the MIL-R clinical Leishmania infantum isolate MHOM/FR/2005/LEM5159, having a defect in the LiROS3 subunit of the MIL-transporter, and its syngeneic experimentally reconstituted MIL-S counterpart (LEM5159LiROS3) were performed in BALB/c mice and Lutzomyia longipalpis and Phlebotomus perniciosus sand flies. In mice, the amastigote burdens in liver and spleen were compared microscopically using Giemsa smears and by bioluminescent imaging. During the sand fly infections, the percentage of infected flies, parasite load, colonization of the stomodeal valve and metacyclogenesis were evaluated. The stability of the MIL-R phenotype after sand fly and mouse passage was determined as well. RESULTS: The fitness of the MIL-R strain differed between the mouse and sand fly infection model. In mice, a clear fitness loss was observed compared to the LiROS3-reconstituted susceptible strain. This defect could be rescued by episomal reconstitution with a wildtype LiROS3 copy. However, this fitness loss was not apparent in the sand fly vector, resulting in metacyclogenesis and efficient colonization of the stomodeal valve. Resistance was stable after passage in both sand fly and mouse. CONCLUSION: The natural MIL-R strain is significantly hampered in its ability to multiply and cause a typical visceral infection pattern in BALB/c mice. However, this LiROS3-deficient strain efficiently produced mature infections and metacyclic promastigotes in the sand fly vector highlighting the transmission potential of this particular MIL-R clinical Leishmania strain.

See more in PubMed

Alvar J., Velez I.D., Bern C., Herrero M., Desjeux P., Cano J., Jannin J., den Boer M., Team W.H.O.L.C. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7 PubMed PMC

Barrett M.P., Kyle D.E., Sibley L.D., Radke J.B., Tarleton R.L. Protozoan persister-like cells and drug treatment failure. Nat. Rev. Microbiol. 2019;17:607–620. PubMed PMC

Bates P.A. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int. J. Parasitol. 2007;37:1097–1106. PubMed PMC

Brambilla Carnielli Trindade J., Monti-Rocha R., Costa D.L., Sesana A.M., Pansini L.N., Segatto M., Mottram J.C., Nery Costa C.H., Carvalho S.F., Dietze R. Natural resistance of Leishmania infantum to miltefosine contributes to the low efficacy in the treatment of visceral leishmaniasis in Brazil. Am. J. Trop. Med. Hyg. 2019 PubMed PMC

Castanys-Muñoz E., Pérez-Victoria J.M., Gamarro F., Castanys S. Characterization of an ABCG-like transporter from the protozoan parasite Leishmania with a role in drug resistance and transbilayer lipid movement. Antimicrob. Agents Chemother. 2008;52:3573–3579. PubMed PMC

Cojean S., Houze S., Haouchine D., Huteau F., Lariven S., Hubert V., Michard F., Bories C., Pratlong F., Le Bras J., Loiseau P.M., Matheron S. Leishmania resistance to miltefosine associated with genetic marker. Emerg. Infect. Dis. 2012;18:704–706. PubMed PMC

Dorlo T.P., Balasegaram M., Beijnen J.H., de Vries P.J. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother. 2012;67:2576–2597. PubMed

Eberhardt E., Bulte D., Van Bockstal L., Van den Kerkhof M., Cos P., Delputte P., Hendrickx S., Maes L., Caljon G. Miltefosine enhances the fitness of a non-virulent drug-resistant Leishmania infantum strain. J. Antimicrob. Chemother. 2019;74(2):395–406. PubMed

Goyal V., Burza S., Pandey K., Singh S.N., Singh R.S., Strub-Wourgaft N., Das V.N.R., Bern C., Hightower A., Rijal S. Field effectiveness of new visceral leishmaniasis regimens after 1 year following treatment within public health facilities in Bihar, India. PLoS Neglected Trop. Dis. 2019;13 PubMed PMC

Hendrickx S., Beyers J., Mondelaers A., Eberhardt E., Lachaud L., Delputte P., Cos P., Maes L. Evidence of a drug-specific impact of experimentally selected paromomycin and miltefosine resistance on parasite fitness in Leishmania infantum. J. Antimicrob. Chemother. 2016;71:1914–1921. PubMed

Hendrickx S., Boulet G., Mondelaers A., Dujardin J.C., Rijal S., Lachaud L., Cos P., Delputte P., Maes L. Experimental selection of paromomycin and miltefosine resistance in intracellular amastigotes of Leishmania donovani and L. infantum. Parasitol. Res. 2014;113:1875–1881. PubMed

Hendrickx S., Mondelaers A., Eberhardt E., Delputte P., Cos P., Maes L. In vivo selection of paromomycin and miltefosine resistance in Leishmania donovani and L. infantum in a Syrian hamster model. Antimicrob. Agents Chemother. 2015;59:4714–4718. PubMed PMC

Hendrickx S., Van Bockstal L., Aslan H., Sadlova J., Maes L., Volf P., Caljon G. Transmission potential of paromomycin-resistant Leishmania infantum and Leishmania donovani. J. Antimicrob. Chemother. 2020;75(4):951–957. PubMed

Hendrickx S., Van Bockstal L., Bulté D., Mondelaers A., Aslan H., Rivas L., Maes L., Caljon G. Phenotypic adaptations of Leishmania donovani to recurrent miltefosine exposure and impact on sand fly infection. Parasites Vectors. 2020;13:1–11. PubMed PMC

Hendrickx S., Van den Kerkhof M., Mabille D., Cos P., Delputte P., Maes L., Caljon G. Combined treatment of miltefosine and paromomycin delays the onset of experimental drug resistance in Leishmania infantum. PLoS Neglected Trop. Dis. 2017;11 PubMed PMC

Ibarra-Meneses A.V., Moreno J., Carrillo E. New strategies and biomarkers for the control of visceral leishmaniasis. Trends Parasitol. 2020;36(1):29–38. PubMed

Mondelaers A., Hendrickx S., Van Bockstal L., Maes L., Caljon G. Miltefosine-resistant Leishmania infantum strains with an impaired MT/ROS3 transporter complex retain amphotericin B susceptibility. J. Antimicrob. Chemother. 2018;73(2):392–394. PubMed

Mondelaers A., Sanchez-Canete M.P., Hendrickx S., Eberhardt E., Garcia-Hernandez R., Lachaud L., Cotton J., Sanders M., Cuypers B., Imamura H., Dujardin J.C., Delputte P., Cos P., Caljon G., Gamarro F., Castanys S., Maes L. Genomic and molecular characterization of miltefosine resistance in Leishmania infantum strains with either natural or acquired resistance through experimental selection of intracellular amastigotes. PLoS One. 2016;11 PubMed PMC

Palić S., Bhairosing P., Beijnen J.H., Dorlo T.P. Systematic review of host-mediated activity of miltefosine in leishmaniasis through immunomodulation. Antimicrob. Agents Chemother. 2019;63 e02507-02518. PubMed PMC

Perez-Victoria F.J., Sanchez-Canete M.P., Castanys S., Gamarro F. Phospholipid translocation and miltefosine potency require both L. donovani miltefosine transporter and the new protein LdRos3 in Leishmania parasites. J. Biol. Chem. 2006;281:23766–23775. PubMed

Perez-Victoria F.J., Sanchez-Canete M.P., Seifert K., Croft S.L., Sundar S., Castanys S., Gamarro F. Mechanisms of experimental resistance of Leishmania to miltefosine: implications for clinical use. Drug Resist. Updates. 2006;9:26–39. PubMed

Ponte-Sucre A., Gamarro F., Dujardin J.-C., Barrett M.P., Lopez-Velez R., Garcia-Hernandez R., Pountain A.W., Mwenechanya R., Papadopoulou B. Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Neglected Trop. Dis. 2017;11 PubMed PMC

Rai K., Cuypers B., Bhattarai N.R., Uranw S., Berg M., Ostyn B., Dujardin J.C., Rijal S., Vanaerschot M. Relapse after treatment with miltefosine for visceral leishmaniasis is associated with increased infectivity of the infecting Leishmania donovani strain. mBio. 2013;4 PubMed PMC

Rijal S., Ostyn B., Uranw S., Rai K., Bhattarai N.R., Dorlo T.P., Beijnen J.H., Vanaerschot M., Decuypere S., Dhakal S.S., Das M.L., Karki P., Singh R., Boelaert M., Dujardin J.C. Increasing failure of miltefosine in the treatment of Kala-azar in Nepal and the potential role of parasite drug resistance, reinfection, or noncompliance. Clin. Infect. Dis. 2013;56:1530–1538. PubMed

Seblova V., Oury B., Eddaikra N., Aït-Oudhia K., Pratlong F., Gazanion E., Maia C., Volf P., Sereno D. Transmission potential of antimony-resistant Leishmania field isolates. Antimicrob. Agents Chemother. 2014;58:6273–6276. PubMed PMC

Shaw C., Lonchamp J., Downing T., Imamura H., Freeman T., Cotton J., Sanders M., Blackburn G., Dujardin J., Rijal S. In vitro selection of miltefosine resistance in promastigotes of Leishmania donovani from Nepal: genomic and metabolomic characterization. Mol. Microbiol. 2016;99:1134–1148. PubMed PMC

Srivastava S., Mishra J., Gupta A.K., Singh A., Shankar P., Singh S. Laboratory confirmed miltefosine resistant cases of visceral leishmaniasis from India. Parasites Vectors. 2017;10:49. PubMed PMC

Stauber L.A. vol 45. Rice Institute Pamphlet-Rice University Studies; 1958. (Host Resistance to the Khartoum Strain of Leishmania Donovani).

Sundar S., Rai M., Chakravarty J., Agarwal D., Agrawal N., Vaillant M., Olliaro P., Murray H.W. New treatment approach in Indian visceral leishmaniasis: single-dose liposomal amphotericin B followed by short-course oral miltefosine. Clin. Infect. Dis. 2008;47:1000–1006. PubMed

Turner K.G., Vacchina P., Robles-Murguia M., Wadsworth M., McDowell M.A., Morales M.A. Fitness and phenotypic characterization of miltefosine-resistant Leishmania major. PLoS Neglected Trop. Dis. 2015;9 PubMed PMC

Van Bockstal L., Sádlová J., Suau H.A., Hendrickx S., Meneses C., Kamhawi S., Volf P., Maes L., Caljon G. Impaired development of a miltefosine-resistant Leishmania infantum strain in the sand fly vectors Phlebotomus perniciosus and Lutzomyia longipalpis. Int. J. Parasitol.: Drugs Drug Resist. 2019;11:1–7. PubMed PMC

Vanaerschot M., De Doncker S., Rijal S., Maes L., Dujardin J.-C., Decuypere S. Antimonial resistance in Leishmania donovani is associated with increased in vivo parasite burden. PLoS One. 2011;6 PubMed PMC

Vanaerschot M., Decuypere S., Berg M., Roy S., Dujardin J.-C. Drug-resistant microorganisms with a higher fitness–can medicines boost pathogens? Crit. Rev. Microbiol. 2013;39:384–394. PubMed

Vanaerschot M., Huijben S., Van den Broeck F., Dujardin J.C. Drug resistance in vector borne parasites: multiple actors and scenarios for an evolutionary arms race. FEMS Microbiol. Rev. 2014;38:41–55. PubMed

Vermeersch M., da Luz R.I., Tote K., Timmermans J.P., Cos P., Maes L. In vitro susceptibilities of Leishmania donovani promastigote and amastigote stages to antileishmanial reference drugs: practical relevance of stage-specific differences. Antimicrob. Agents Chemother. 2009;53:3855–3859. PubMed PMC

Volf P., Volfova V. Establishment and maintenance of sand fly colonies. J. Vector Ecol. 2011;36(Suppl. 1):S1–S9. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...