SERIAL-ORDER recall in working memory across the cognitive spectrum of Parkinson's disease and neuroimaging correlates
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32394540
DOI
10.1111/jnp.12208
Knihovny.cz E-resources
- Keywords
- Backward Digit Span Task, Parkinson’s disease, SERIAL ORDER, mild cognitive impairment, working memory,
- MeSH
- Cognition MeSH
- Cognitive Dysfunction * diagnostic imaging etiology MeSH
- Memory, Short-Term MeSH
- Humans MeSH
- Neuropsychological Tests MeSH
- Neuroimaging MeSH
- Parkinson Disease * complications diagnostic imaging MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
We sought to determine if Parkinson's disease (PD) with mild cognitive impairment (MCI) is associated with a greater SERIAL-ORDER (mental manipulation) than ANY-ORDER (auditory span, storage) deficit in working memory (WM). We investigated WM combining neuropsychological measures with the study of brain functional connectivity. A cohort of 160 patients with idiopathic PD, classified as PD-MCI (n = 87) or PD with normal cognition (PD-NC; n = 73), and 70 matched healthy controls were studied. Verbal WM was assessed with the Backward Digit Span Task (BDT; Lamar et al., 2007, Neuropsychologia, 45, 245), measuring SERIAL-ORDER and ANY-ORDER recall. Resting-state MRI data were collected for 15 PD-MCI, 15 PD-NC and 30 controls. Hypothesis-driven seed-based functional connectivity of the dorsolateral prefrontal cortex (DLPFC) was compared between the three groups and correlated with BDT performance. We found the main effect of the test (impairment in SERIAL ORDER > ANY ORDER) and group ((NC = PD-NC) > PD-MCI) in BDT performance that was even more pronounced in SERIAL ORDER when controlling for ANY ORDER variability but not vice versa. Furthermore, PD-MCI compared to other groups were characterized by the functional disconnection between the bilateral DLPFC and the cerebellum. In functional correlations, DLPFC connectivity was positively related to both SERIAL- and ANY-ORDER performance. In conclusion, PD-MCI patients evidenced greater SERIAL-ORDER (manipulation and cognitive control) than ANY-ORDER (storage) working memory impairment than PD-NC and controls with a disrupted DLPFC resting-state connectivity that was also related to the verbal WM performance.
Clinic for Cognitive Neurology University Clinic Leipzig Germany
Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
School of Psychology University of Western Australia Crawley Western Australia Australia
See more in PubMed
Aarsland, D., Creese, B., Politis, M., Chaudhuri, K. R., Weintraub, D., & Ballard, C. (2017). Cognitive decline in Parkinson disease. Nature Reviews Neurology, 13, 217-231. https://doi.org/10.1038/nrneurol.2017.27
Ackermann, H., Mathiak, K., & Riecker, A. (2007). The contribution of the cerebellum to speech production and speech perception: Clinical and functional imaging data. Cerebellum, 6(3), 202-213. https://doi.org/10.1080/14734220701266742
Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.
Anderson, J. R., & Matessa, M. (1997). A production system theory of serial memory. Psychological Review, 104, 728-748. https://doi.org/10.1037/0033-295X.104.4.728
Baddeley, A. D. (1986). Working memory. London, UK: Oxford University Press.
Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1-29. https://doi.org/10.1146/annurev-psych-120710-100422
Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), Psychology of learning and motivation (Vol. 8, pp. 47-89). Cambridge, MA: Academic Press.
Baddeley, A. D., Thomson, N., & Buchanan, M. (1975). Word length and the structure of short-term memory. Journal of Verbal Learning and Verbal Behavior, 14(6), 575-589. https://doi.org/10.1016/S0022-5371(75)80045-4
Bamiou, D. E., Musiek, F. E., & Luxon, L. M. (2003). The insula (Island of Reil) and its role in auditory processing. Literature review. Brain Research Reviews, 42(2), 143-154. https://doi.org/10.1016/S0165-0173(03)00172-3
Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions to human working memory. Cortex, 49, 1195-1205. https://doi.org/10.1016/j.cortex.2012.05.022
Beck, A. T., Steer, R. A., & Brown, G. (1996). Manual for the beck depression inventory-II. San Antonio, TX: Pearson.
Bezdicek, O., Michalec, J., Nikolai, T., Havrankova, P., Roth, J., Jech, R., & Ruzicka, E. (2015). Clinical validity of the Mattis Dementia Rating Scale in differentiating mild cognitive impairment in Parkinson’s disease and normative data. Dementia and Geriatric Cognitive Disorders, 39, 303-311. https://doi.org/10.1159/000375365
Bohnen, N. I., Kaufer, D. I., Hendrickson, R., Ivanco, L. S., Lopresti, B. J., Constantine, G. M., … Dekosky, S. T. (2006). Cognitive correlates of cortical cholinergic denervation in Parkinson's disease and Parkinsonian dementia. Journal of Neurology, 253(2), 242-247. https://doi.org/10.1007/s00415-005-0971-0
Bohnen, N. I., Kaufer, D. I., Ivanco, L. S., Lopresti, B., Koeppe, R. A., Davis, J. G., … DeKosky, S. T. (2003). Cortical cholinergic function is more severely affected in Parkinsonian dementia than in Alzheimer disease: An in vivo positron emission tomographic study. Archives of Neurology, 60, 1745-1748. https://doi.org/10.1001/archneur.60.12.1745
Brown, G. D. A., Preece, T., & Hulme, C. (2000). Oscillator-based memory for serial order. Psychological Review, 107(1), 127-181. https://doi.org/10.1037/0033-295X.107.1.127
Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C., & Yeo, B. T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 2322-2345. https://doi.org/10.1152/jn.00339.2011
Burgess, N., & Hitch, G. J. (1992). Toward a network model of the articulatory loop. Journal of Memory and Language, 31(4), 429-460. https://doi.org/10.1016/0749-596X(92)90022-P
Burgess, N., & Hitch, G. J. (1999). Memory for serial order: A network model of the phonological loop and its timing. Psychological Review, 106, 551-581. https://doi.org/10.1037//0033-295x.106.3.551
Burton, M. W., Small, S. L., & Blumstein, S. E. (2000). The role of segmentation in phonological processing: An fMRI investigation. Journal of Cognitive Neuroscience, 12, 679-690. https://doi.org/10.1162/089892900562309
Chatham, Ch. H, & Badre, D. (2015). Multiple gates on working memory. Current Opinion in Behavioral Sciences, 2015(1), 23-31. https://doi.org/10.1016/j.cobeha.2014.08.001
Chen, S. H., & Desmond, J. E. (2005a). Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. NeuroImage, 24(2), 332-338. https://doi.org/10.1016/j.neuroimage.2004.08.032
Chen, S. H., & Desmond, J. E. (2005b). Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia, 43, 1227-1237. https://doi.org/10.1016/j.neuropsychologia.2004.12.015
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates.
Conrad, R. (1964). Acoustic confusions in immediate memory. British Journal of Psychology, 55(1), 75-84. https://doi.org/10.1111/j.2044-8295.1964.tb00899.x
Cools, R., Stefanova, E., Barker, R. A., Robbins, T. W., & Owen, A. M. (2002). Dopaminergic modulation of high-level cognition in Parkinson's disease: The role of the prefrontal cortex revealed by PET. Brain, 125(Pt 3), 584-594. https://doi.org/10.1093/brain/awf052
Costa, A., Peppe, A., Dell'Agnello, G., Caltagirone, C., & Carlesimo, G. A. (2009). Dopamine and cognitive functioning in de novo subjects with Parkinson's disease: Effects of pramipexole and pergolide on working memory. Neuropsychologia, 47, 1374-1381. https://doi.org/10.1016/j.neuropsychologia.2009.01.039
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-114. discussion 114-185. https://doi.org/10.1017/S0140525X01003922
Curtis, C. E., & D'Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7(9), 415-423. https://doi.org/10.1016/S1364-6613(03)00197-9
Dagher, A., Owen, A. M., Boecker, H., & Brooks, D. J. (2001). The role of the striatum and hippocampus in planning: a PET activation study in Parkinson's disease. Brain, 124(Pt 5), 1020-1032. https://doi.org/10.1093/brain/124.5.1020
Dalrymple-Alford, J. C., Livingston, L., MacAskill, M. R., Graham, C., Melzer, T. R., Porter, R. J., … Anderson, T. J. (2011). Characterizing mild cognitive impairment in Parkinson's disease. Movement Disorders, 26, 629-636. https://doi.org/10.1002/mds.23592
D'Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 3, 115-142. https://doi.org/10.1146/annurev-psych-010814-015031
Di Martino, A., Scheres, A., Margulies, D. S., Kelly, A. M., Uddin, L. Q., Shehzad, Z., … Milham, M. P. (2008). Functional connectivity of human striatum: A resting state FMRI study. Cerebral Cortex, 18, 2735-2747. https://doi.org/10.1093/cercor/bhn041
Dice, Lee R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297-302. https://doi.org/10.2307/1932409
Drewnowski, A., & Murdock, Jr, B. B. (1980). The role of auditory features in memory span for words. Journal of Experimental Psychology: Human Learning, 6(3), 319-332.https://doi.org/10.1037/0278-7393.6.3.319
Ebbinghaus, H. (1885). Über das Gedächtnis. Untersuchungen zur experimentellen Psychologie. Leipzig, Germany: Verlag von Duncker & Humblot.
Emrani, S., Libon, D. J., Lamar, M., Price, C. C., Jefferson, A. L., Gifford, K. A., … Au, R. (2018). assessing working memory in mild cognitive impairment with serial order recall. Journal of Alzheimers Disease, 61, 917-928. https://doi.org/10.3233/jad-170555
Emre, M., Aarsland, D., Brown, R., Burn, D. J., Duyckaerts, C., Mizuno, Y., & Dubois, B.(2007). Clinical diagnostic criteria for dementia associated with Parkinson's disease. Movement Disorders, 22(12), 1689-1707. https://doi.org/10.1002/mds.21507
Estes, W. K. (1973). Phonemic coding and rehearsal in short-term memory for letter strings. Journal of Verbal Learning and Verbal Behavior, 12(4), 360-372. https://doi.org/10.1016/S0022-5371(73)80015-5
Fallon, S. J., Smulders, K., Esselink, R. A., van de Warrenburg, B. P., Bloem, B. R., & Cools, R. (2015). Differential optimal dopamine levels for set-shifting and working memory in Parkinson's disease. Neuropsychologia, 77, 42-51. https://doi.org/10.1016/j.neuropsychologia.2015.07.031
Gabrieli, J. D. E., Singh, J., Stebbins, G. T., & Goetz, C. G. (1996). Reduced working memory span in Parkinson's disease: Evidence for the role of frontostriatal system in working and strategic memory. Neuropsychology, 10(3), 322-332. https://doi.org/10.1037/0894-4105.10.3.321
Gerton, B. K., Brown, T. T., Meyer-Lindenberg, A., Kohn, P., Holt, J. L., Olsen, R. K., & Berman, K. F. (2004). Shared and distinct neurophysiological components of the digits forward and backward tasks as revealed by functional neuroimaging. Neuropsychologia, 42, 1781-1787. https://doi.org/10.1016/j.neuropsychologia.2004.04.023
Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14, 477-485. https://doi.org/10.1016/0896-6273(95)90304-6
Gratwicke, J., Jahanshahi, M., & Foltynie, T. (2015). Parkinson's disease dementia: A neural networks perspective. Brain, 138(Pt 6), 1454-1476. https://doi.org/10.1093/brain/awv104
Hughes, A. J., Daniel, S. E., Kilford, L., & Lees, A. J. (1992). Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. Journal of Neurology Neurosurgery and Psychiatry, 55(3), 181-184.
Hurlstone, M. J., Hitch, G. J., & Baddeley, A. D. (2014). Memory for serial order across domains: An overview of the literature and directions for future research. Psychological Bulletin, 140(2), 339-373. https://doi.org/10.1037/a0034221
Johansen-Berg, H., Behrens, T. E., Sillery, E., Ciccarelli, O., Thompson, A. J., Smith, S. M., & Matthews, P. M. (2005). Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. Cerebral Cortex, 15(1), 31-39. https://doi.org/10.1093/cercor/bhh105
Jurica, P. J., Leitten, C. L., Mattis, S., & Schmidt, K. S. (2001). Dementia rating scale-2™. Professional manual. Lutz, FL: Psychological Assessment Resources.
Kahana, M. J. (2014). Foundations of human memory. New York, NY: Oxford University Press.
Kehagia, A. A., Barker, R. A., & Robbins, T. W. (2010). Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson's disease. Lancet Neurology, 9(12), 1200-1213. https://doi.org/10.1016/s1474-4422(10)70212-x
Kehagia, A. A., Barker, R. A., & Robbins, T. W. (2013). Cognitive impairment in Parkinson's disease: The dual syndrome hypothesis. Neurodegenerative Disease, 11, 79-92. https://doi.org/10.1159/000341998
Kensinger, E. A., Shearer, D. K., Locascio, J. J., Growdon, J. H., & Corkin, S. (2003). Working memory in mild Alzheimer's disease and early Parkinson's disease. Neuropsychology, 17(2), 230-239. https://doi.org/10.1037/0894-4105.17.2.230
Lamar, M., Catani, M., Price, C. C., Heilman, K. M., & Libon, D. J. (2008). The impact of region-specific leukoaraiosis on working memory deficits in dementia. Neuropsychologia, 46, 2597-2601. https://doi.org/10.1016/j.neuropsychologia.2008.04.007
Lamar, M., Price, C. C., Libon, D. J., Penney, D. L., Kaplan, E., Grossman, M., & Heilman, K. M. (2007). Alterations in working memory as a function of leukoaraiosis in dementia. Neuropsychologia, 45(2), 245-254. https://doi.org/10.1016/j.neuropsychologia.2006.07.009
Lara, A. H., & Wallis, J. D. (2015). The role of prefrontal cortex in working memory: A mini review. Frontiers in Systems Neuroscience, 9, 173. https://doi.org/10.3389/fnsys.2015.00173
Lashley, K. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior: The Hixon Symposium (pp. 112-146). New York, NY: Wiley.
Lee, Y., Ham, J. H., Cha, J., Park, Y.-H., Lee, J. J., Sunwoo, M. K., … Lee, P. H. (2018). The cholinergic contribution to the resting-state functional network in non-demented Parkinson’s disease. Scientific Reports, 8(1), 7683. https://doi.org/10.1038/s41598-018-26075-3
Lewandowsky, S., & Murdock, Jr, B. B. (1989). Memory for serial order. Psychological Review, 96(1), 25-57. https://doi.org/10.1037/0033-295X.96.1.25
Lewis, S. J., Cools, R., Robbins, T. W., Dove, A., Barker, R. A., & Owen, A. M. (2003). Using executive heterogeneity to explore the nature of working memory deficits in Parkinson's disease. Neuropsychologia, 41(6), 645-654. https://doi.org/10.1016/S0028-3932(02)00257-9
Lewis, S. J., Dove, A., Robbins, T. W., Barker, R. A., & Owen, A. M. (2003). Cognitive impairments in early Parkinson's disease are accompanied by reductions in activity in frontostriatal neural circuitry. Journal of Neuroscience, 23, 6351-6356. https://doi.org/10.1523/JNEUROSCI.23-15-06351.2003
Lewis, S. J., Slabosz, A., Robbins, T. W., Barker, R. A., & Owen, A. M. (2005). Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson's disease. Neuropsychologia, 43, 823-832. https://doi.org/10.1016/j.neuropsychologia.2004.10.001
Litvan, I., Bhatia, K. P., Burn, D. J., Goetz, C. G., Lang, A. E., McKeith, I., … Wenning, G. K. (2003). Movement Disorders Society Scientific Issues Committee report: SIC Task Force appraisal of clinical diagnostic criteria for Parkinsonian disorders. Movement Disorders, 18(5), 467-486. https://doi.org/10.1002/mds.10459
Litvan, I., Goldman, J. G., Troster, A. I., Schmand, B. A., Weintraub, D., Petersen, R. C., … Emre, M. (2012). Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society Task Force guidelines. Movement Disorders, 27(3), 349-356. https://doi.org/10.1002/mds.24893
Long, N. M., & Kahana, M. J. (2019). Hippocampal contributions to serial-order memory. Hippocampus, 29(3), 252-259. https://doi.org/10.1002/hipo.23025
Ma, J., Ma, S., Zou, H., Zhang, Y., Chan, P., & Ye, Z. (2018). Impaired serial ordering in nondemented patients with mild Parkinson's disease. PLoS ONE, 13(5), e0197489. https://doi.org/10.1371/journal.pone.0197489
Ma, S., Zhang, Y., Liu, N., Xiao, W., Li, S., Zhang, G., … Ye, Z. (2019). Altered transposition asymmetry in serial ordering in early Parkinson's disease. Parkinsonism and Related Disorders, 62, 62-67. https://doi.org/10.1016/j.parkreldis.2019.01.028
Martinez-Horta, S., & Kulisevsky, J. (2011). Is all cognitive impairment in Parkinson's disease "mild cognitive impairment"? Journal of Neural Transmission (Vienna), 118, 1185-1190. https://doi.org/10.1007/s00702-011-0675-9
Mattay, V. S., Tessitore, A., Callicott, J. H., Bertolino, A., Goldberg, T. E., Chase, T. N., … Weinberger, D. R. (2002). Dopaminergic modulation of cortical function in patients with Parkinson's disease. Annals of Neurology, 51(2), 156-164. https://doi.org/10.1002/ana.10078
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure and Function, 214(5-6), 655-667. https://doi.org/10.1007/s00429-010-0262-0
Miller, E. K., Lundqvist, M., & Bastos, A. M. (2018). Working Memory 2.0. Neuron, 100, 463-475. https://doi.org/10.1016/j.neuron.2018.09.023
Miller, G. A. (1956). The magical number seven plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81-97. https://doi.org/10.1037/h0043158
Miyake, A., & Shah, P. (1999). Models of working memory. Mechanisms of active maintenance and executive control. Cambridge, UK: Cambridge University Press.
Morris, R. G., Downes, J. J., Sahakian, B. J., Evenden, J. L., Heald, A., & Robbins, T. W. (1988). Planning and spatial working memory in Parkinson's disease. Journal of Neurology Neurosurgery and Psychiatry, 51(6), 757-766. https://doi.org/10.1136/jnnp.51.6.757
Moustafa, A. A., Sherman, S. J., & Frank, M. J. (2008). A dopaminergic basis for working memory, learning and attentional shifting in Parkinsonism. Neuropsychologia, 46, 3144-3156. https://doi.org/10.1016/j.neuropsychologia.2008.07.011
Murdock, B. B. (1993). TODAM2: A model for the storage and retrieval of item, associative, and serial-order information. Psychological Review, 100(2), 183-203. https://doi.org/10.1037/0033-295X.100.2.183
Nagel, B. J., Herting, M. M., Maxwell, E. C., Bruno, R., & Fair, D. (2013). Hemispheric lateralization of verbal and spatial working memory during adolescence. Brain and Cognition, 82(1), 58-68. https://doi.org/10.1016/j.bandc.2013.02.007
Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75-79. https://doi.org/10.1038/nn1165
O'Reilly, J. X., Beckmann, C. F., Tomassini, V., Ramnani, N., & Johansen-Berg, H. (2009). Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral Cortex, 20, 953-965. https://doi.org/10.1093/cercor/bhp157
O'Reilly, R. C., & Frank, M. J. (2006). Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18(2), 283-328. https://doi.org/10.1162/089976606775093909
Owen, A. M. (2004). Cognitive dysfunction in Parkinson's disease: The role of frontostriatal circuitry. Neuroscientist, 10(6), 525-537. https://doi.org/10.1177/1073858404266776
Owen, A. M., Sahakian, B. J., & Robbins, T. W. (1998). The role of executive deficits in memory disorders in neurodegenerative disease. In A. I. Tröster (Ed.), Memory in neurodegenerative disease: biological, cognitive and clinical perspectives. Cambridge, UK: Cambridge University Press.
Page, M. P. A., & Norris, D. (1998). The primacy model: A new model of immediate serial recall. Psychological Review, 105, 761-781. https://doi.org/10.1037//0033-295x.105.4.761-781
Paulesu, E., Frith, C. D., & Frackowiak, R. S. (1993). The neural correlates of the verbal component of working memory. Nature, 362, 342-345. https://doi.org/10.1038/362342a0
Postuma, R. B., & Dagher, A. (2006). Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cerebral Cortex, 16, 1508-1521. https://doi.org/10.1093/cercor/bhj088
Rhodes, E., Lamar, M., Libon, D. J., & Giovannetti, T. (2018). Memory for serial order in Alzheimer's disease and vascular dementia: A competitive queuing analysis. Archives of Clinical Neuropsychology, 34(1), 2-13. https://doi.org/10.1093/arclin/acy013
Robbins, T. W., & Arnsten, A. F. (2009). The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annual of Review Neuroscience, 32, 267-287. https://doi.org/10.1146/annurev.neuro.051508.135535
Rottschy, C., Langner, R., Dogan, I., Reetz, K., Laird, A. R., Schulz, J. B., … Eickhoff, S. B. (2012). Modelling neural correlates of working memory: A coordinate-based meta-analysis. NeuroImage, 60(1), 830-846. https://doi.org/10.1016/j.neuroimage.2011.11.050
Salmi, J., Pallesen, K. J., Neuvonen, T., Brattico, E., Korvenoja, A., Salonen, O., & Carlson, S. (2010). Cognitive and motor loops of the human cerebro-cerebellar system. Journal of Cognitive Neuroscience, 22, 2663-2676. https://doi.org/10.1162/jocn.2009.21382
Schlosser, R. G., Wagner, G., & Sauer, H. (2006). Assessing the working memory network: Studies with functional magnetic resonance imaging and structural equation modeling. Neuroscience, 139(1), 91-103. https://doi.org/10.1016/j.neuroscience.2005.06.037
Shiffrin, R. M., & Cook, J. R. (1978). Short-term forgetting of item and order information. Journal of Verbal Learning and Verbal Behavior, 17(2), 189-218. https://doi.org/10.1016/S0022-5371(78)90146-9
Smith, E. E., & Jonides, J. (1997). Working memory: A view from neuroimaging. Cognitive Psychology, 33(1), 5-42. https://doi.org/10.1006/cogp.1997.0658
Smith, E. E., Jonides, J., Marshuetz, C., & Koeppe, R. A. (1998). Components of verbal working memory: Evidence from neuroimaging. Proceedings of the National Academy Sciences USA, 95, 876-882. https://doi.org/10.1073/pnas.95.3.876
Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., … Beckmann, C. F. (2009). Correspondence of the brain's functional architecture during activation and rest. Proceedings of the National Academy of Sciences USA, 106, 13040-13045. https://doi.org/10.1073/pnas.0905267106
Stoodley, C. J. (2012). The cerebellum and cognition: Evidence from functional imaging studies. Cerebellum, 11(2), 352-365. https://doi.org/10.1007/s12311-011-0260-7
Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. NeuroImage, 44, 489-501. https://doi.org/10.1016/j.neuroimage.2008.08.039
Tomlinson, C. L., Stowe, R., Patel, S., Rick, C., Gray, R., & Clarke, C. E. (2010). Systematic review of levodopa dose equivalency reporting in Parkinson's disease. Movement Disorders, 25, 2649-2653. https://doi.org/10.1002/mds.23429
Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: A meta-analysis. Cognitive Affective and Behavioral Neuroscience, 3, 255-274. https://doi.org/10.1073/pnas.0905267106
Wickelgren, W. A. (1965a). Short-term memory for phonemically similar lists. American Journal of Psychology, 78(4), 567-574. https://doi.org/10.2307/1420917
Wickelgren, W. A. (1965b). Short-term memory for repeated and non-repeated items. Quarterly Journal of Experimental Psychology, 17, 14-25. https://doi.org/10.1080/17470216508416404
Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8(8), 665-670. https://doi.org/10.1038/nmeth.1635