• This record comes from PubMed

Comprehensive Comparison of Clinically Relevant Grain Proteins in Modern and Traditional Bread Wheat Cultivars

. 2020 May 13 ; 21 (10) : . [epub] 20200513

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
fellowship National Scholarship Programme of the Slovak Republic
0117U000385 National Academy of Sciences of Ukraine
APVV-18-0302 Slovak Research and Development Agency
26240220096 European Regional Development Fund through Operational Programme Research and Development

Bread wheat (Triticum aestivum L.) is one of the most valuable cereal crops for human consumption. Its grain storage proteins define bread quality, though they may cause food intolerances or allergies in susceptible individuals. Herein, we discovered a diversity of grain proteins in three Ukrainian wheat cultivars: Sotnytsia, Panna (both modern selection), and Ukrainka (landrace). Firstly, proteins were isolated with a detergent-containing buffer that allowed extraction of various groups of storage proteins (glutenins, gliadins, globulins, and albumins); secondly, the proteome was profiled by the two-dimensional gel electrophoresis. Using multi-enzymatic digestion, we identified 49 differentially accumulated proteins. Parallel ultrahigh-performance liquid chromatography separation followed by direct mass spectrometry quantification complemented the results. Principal component analysis confirmed that differences among genotypes were a major source of variation. Non-gluten fraction better discriminated bread wheat cultivars. Various accumulation of clinically relevant plant proteins highlighted one of the modern genotypes as a promising donor for the breeding of hypoallergenic cereals.

See more in PubMed

Kuźniar A., Włodarczyk K., Grządziel J., Goraj W., Gałązka A., Wolińska A. Culture-independent analysis of an endophytic core microbiome in two species of wheat: Triticum aestivum L. (cv. ‘Hondia’) and the first report of microbiota in Triticum spelta L. (cv. ‘Rokosz’) Syst. Appl. Microbiol. 2020;43:126025. doi: 10.1016/j.syapm.2019.126025. PubMed DOI

Shewry P.R., Halford N.G., Lafiandra D. Genetics of Wheat Gluten Proteins. In: Hall J.C., Dunlap J.C., Friedmann T., editors. Advances in Genetics. Elsevier; Amsterdam, The Netherlands: PubMed

Payne P.I. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu. Rev. Plant. Physiol. 1987;38:141–153. doi: 10.1146/annurev.pp.38.060187.001041. DOI

Rasheed A., Xia X., Yan Y., Appels R., Mahmood T., He Z. Wheat seed storage proteins: Advances in molecular genetics, diversity and breeding applications. J. Cereal Sci. 2014;60:11–24. doi: 10.1016/j.jcs.2014.01.020. DOI

Lee J.-Y., Beom H.-R., Altenbach S.B., Lim S.-H., Kim Y.-T., Kang C.-S., Yoon U.-H., Gupta R., Kim S.-T., Ahn S.-N., et al. Comprehensive identification of LMW-GS genes and their protein products in a common wheat variety. Funct. Integr. Genom. 2016;16:269–279. doi: 10.1007/s10142-016-0482-3. PubMed DOI

Juhász A., Békés F., Wrigley C.W. Wheat Proteins. In: Ustunol Z., editor. Applied Food Protein Chemistry. Vol. 303. Wiley Blackwell; Hoboken, NJ, USA: 2014. p. 219.

Gil-Humanes J., Pistón F., Rosell C.M., Barro F. Significant down-regulation of γ-gliadins has minor effect on gluten and starch properties of bread wheat. J. Cereal Sci. 2012;56:161–170. doi: 10.1016/j.jcs.2012.02.009. DOI

Shewry P.R., Tatham A.S. Improving wheat to remove coeliac epitopes but retain functionality. J. Cereal Sci. 2016;67:12–21. doi: 10.1016/j.jcs.2015.06.005. PubMed DOI PMC

Wang D.-W., Li D., Wang J., Zhao Y., Wang Z., Yue G., Liu X., Qin H., Zhang K., Dong L., et al. Genome-wide analysis of complex wheat gliadins, the dominant carriers of celiac disease epitopes. Sci. Rep. 2017;7:44609. doi: 10.1038/srep44609. PubMed DOI PMC

Barak S., Mudgil D., Khatkar B.S. Relationship of gliadin and glutenin proteins with dough rheology, flour pasting and bread making performance of wheat varieties. LWT Food Sci. Technol. 2013;51:211–217. doi: 10.1016/j.lwt.2012.09.011. DOI

Peña E., Bernardo A., Soler C., Jouve N. Relationship between common wheat (Triticum aestivum L.) gluten proteins and dough rheological properties: Gluten proteins and rheological properties in wheat. Euphytica. 2005;143:169–177. doi: 10.1007/s10681-005-3157-z. DOI

Hadjivassiliou M., Sanders D.S., Grünewald R.A., Woodroofe N., Boscolo S., Aeschlimann D. Gluten sensitivity: From gut to brain. Lancet Neurol. 2010;9:318–330. doi: 10.1016/S1474-4422(09)70290-X. PubMed DOI

Sapone A., Bai J.C., Ciacci C., Dolinsek J., Green P.H.R., Hadjivassiliou M., Kaukinen K., Rostami K., Sanders D.S., Schumann M., et al. Spectrum of gluten-related disorders: Consensus on new nomenclature and classification. BMC Med. 2012;10:13. doi: 10.1186/1741-7015-10-13. PubMed DOI PMC

Scherf K.A., Koehler P., Wieser H. Gluten and wheat sensitivities—An overview. J. Cereal Sci. 2016;67:2–11. doi: 10.1016/j.jcs.2015.07.008. DOI

Camarca A., Anderson R.P., Mamone G., Fierro O., Facchiano A., Costantini S., Zanzi D., Sidney J., Auricchio S., Sette A., et al. Intestinal T cell responses to gluten peptides are largely heterogeneous: Implications for a peptide-based therapy in celiac disease. J. Immunol. 2009;182:4158–4166. doi: 10.4049/jimmunol.0803181. PubMed DOI PMC

Mamone G., Picariello G., Addeo F., Ferranti P. Proteomic analysis in allergy and intolerance to wheat products. Expert Rev. Proteom. 2011;8:95–115. doi: 10.1586/epr.10.98. PubMed DOI

Huebener S., Tanaka C.K., Uhde M., Zone J.J., Vensel W.H., Kasarda D.D., Beams L., Briani C., Green P.H.R., Altenbach S.B., et al. Specific nongluten proteins of wheat are novel target antigens in celiac disease humoral response. J. Proteome Res. 2015;14:503–511. doi: 10.1021/pr500809b. PubMed DOI PMC

Junker Y., Zeissig S., Kim S.-J., Barisani D., Wieser H., Leffler D.A., Zevallos V., Libermann T.A., Dillon S., Freitag T.L., et al. Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J. Exp. Med. 2012;209:2395–2408. doi: 10.1084/jem.20102660. PubMed DOI PMC

Altenbach S.B., Tanaka C.K., Allen P.V. Quantitative proteomic analysis of wheat grain proteins reveals differential effects of silencing of omega-5 gliadin genes in transgenic lines. J. Cereal Sci. 2014;59:118–125. doi: 10.1016/j.jcs.2013.11.008. DOI

Pistón F., Gil-Humanes J., Rodríguez-Quijano M., Barro F. Down-regulating γ-gliadins in bread wheat leads to non-specific increases in other gluten proteins and has no major effect on dough gluten strength. PLoS ONE. 2011;6:e24754. doi: 10.1371/journal.pone.0024754. PubMed DOI PMC

Spaenij-Dekking L., Kooy-Winkelaar Y., Van Veelen P., Drijfhout J.W., Jonker H., Van Soest L., Smulders M.J.M., Bosch D., Gilissen L.J.W.J., Koning F. Natural variation in toxicity of wheat: Potential for selection of nontoxic varieties for celiac disease patients. Gastroenterology. 2005;129:797–806. doi: 10.1053/j.gastro.2005.06.017. PubMed DOI

Ribeiro M., Rodriguez-Quijano M., Nunes F.M., Carrillo J.M., Branlard G., Igrejas G. New insights into wheat toxicity: Breeding did not seem to contribute to a prevalence of potential celiac disease’s immunostimulatory epitopes. Food Chem. 2016;213:8–18. doi: 10.1016/j.foodchem.2016.06.043. PubMed DOI

Malalgoda M., Meinhardt S.W., Simsek S. Detection and quantitation of immunogenic epitopes related to celiac disease in historical and modern hard red spring wheat cultivars. Food Chem. 2018;264:101–107. doi: 10.1016/j.foodchem.2018.04.131. PubMed DOI

Shewry P.R. Do ancient types of wheat have health benefits compared with modern bread wheat? J. Cereal Sci. 2018;79:469–476. doi: 10.1016/j.jcs.2017.11.010. PubMed DOI PMC

Pompa M., Giuliani M.M., Palermo C., Agriesti F., Centonze D., Flagella Z. Comparative analysis of gluten proteins in three durum wheat cultivars by a proteomic approach. J. Agric. Food Chem. 2013;61:2606–2617. doi: 10.1021/jf304566d. PubMed DOI

Yahata E., Maruyama-Funatsuki W., Nishio Z., Tabiki T., Takata K., Yamamoto Y., Tanida M., Saruyama H. Wheat cultivar-specific proteins in grain revealed by 2-DE and their application to cultivar identification of flour. Proteomics. 2005;5:3942–3953. doi: 10.1002/pmic.200402103. PubMed DOI

García-Molina M.D., Muccilli V., Saletti R., Foti S., Masci S., Barro F. Comparative proteomic analysis of two transgenic low-gliadin wheat lines and non-transgenic wheat control. J. Proteom. 2017;165:102–112. doi: 10.1016/j.jprot.2017.06.010. PubMed DOI

Vensel W.H., Dupont F.M., Sloane S., Altenbach S.B. Effect of cleavage enzyme, search algorithm and decoy database on mass spectrometric identification of wheat gluten proteins. Phytochemistry. 2011;72:1154–1161. doi: 10.1016/j.phytochem.2011.01.002. PubMed DOI

Martínez-Esteso M.J., Nørgaard J., Brohée M., Haraszi R., Maquet A., O’Connor G. Defining the wheat gluten peptide fingerprint via a discovery and targeted proteomics approach. J. Proteom. 2016;147:156–168. doi: 10.1016/j.jprot.2016.03.015. PubMed DOI

Scherf K.A., Poms R.E. Recent developments in analytical methods for tracing gluten. J. Cereal Sci. 2016;67:112–122. doi: 10.1016/j.jcs.2015.08.006. DOI

Nakamura R., Teshima R. Proteomics-based allergen analysis in plants. J. Proteom. 2013;93:40–49. doi: 10.1016/j.jprot.2013.03.018. PubMed DOI

Lollier V., Denery-Papini S., Brossard C., Tessier D. Meta-analysis of IgE-binding allergen epitopes. Clin. Immunol. 2014;153:31–39. doi: 10.1016/j.clim.2014.03.010. PubMed DOI

Yokooji T., Kurihara S., Murakami T., Chinuki Y., Takahashi H., Morita E., Harada S., Ishii K., Hiragun M., Hide M., et al. Characterization of causative allergens for wheat-dependent exercise-induced anaphylaxis sensitized with hydrolyzed wheat proteins in facial soap. Allergol. Int. 2013;62:435–445. doi: 10.2332/allergolint.13-OA-0561. PubMed DOI

Reig-Otero Y., Mañes J., Manyes L. Amylase-trypsin inhibitors in wheat and other cereals as potential activators of the effects of nonceliac gluten sensitivity. J. Med. Food. 2018;21:207–214. doi: 10.1089/jmf.2017.0018. PubMed DOI

Mameri H., Denery-Papini S., Pietri M., Tranquet O., Larré C., Drouet M., Paty E., Jonathan A.-M., Beaudouin E., Moneret-Vautrin D.-A., et al. Molecular and immunological characterization of wheat Serpin (Tri a 33) Mol. Nutr. Food Res. 2012;56:1874–1883. doi: 10.1002/mnfr.201200244. PubMed DOI

Ma F., Li M., Yu L., Li Y., Liu Y., Li T., Liu W., Wang H., Zheng Q., Li K., et al. Transformation of common wheat (Triticum aestivum L.) with avenin-like b gene improves flour mixing properties. Mol. Breed. 2013;32:853–865. doi: 10.1007/s11032-013-9913-1. PubMed DOI PMC

Barrachina M.N., Sueiro A.M., Casas V., Izquierdo I., Hermida-Nogueira L., Guitián E., Casanueva F.F., Abián J., Carrascal M., Pardo M., et al. A combination of proteomic approaches identifies a panel of circulating extracellular vesicle proteins related to the risk of suffering cardiovascular disease in obese patients. Proteomics. 2019;19:1800248. doi: 10.1002/pmic.201800248. PubMed DOI

Ribeiro M., Nunes-Miranda J.D., Branlard G., Carrillo J.M., Rodriguez-Quijano M., Igrejas G. One hundred years of grain omics: Identifying the glutens that feed the world. J. Proteome Res. 2013;12:4702–4716. doi: 10.1021/pr400663t. PubMed DOI

Rombouts I., Lagrain B., Brunnbauer M., Delcour J.A., Koehler P. Improved identification of wheat gluten proteins through alkylation of cysteine residues and peptide-based mass spectrometry. Sci. Rep. 2013;3:2279. doi: 10.1038/srep02279. PubMed DOI PMC

Uvackova L., Skultety L., Bekesova S., McClain S., Hajduch M. The MSE-proteomic analysis of gliadins and glutenins in wheat grain identifies and quantifies proteins associated with celiac disease and baker’s asthma. J. Proteom. 2013;93:65–73. doi: 10.1016/j.jprot.2012.12.011. PubMed DOI

Bromilow S., Gethings L.A., Langridge J.I., Shewry P.R., Buckley M., Bromley M.J., Mills E.N.C. Comprehensive proteomic profiling of wheat gluten using a combination of data-independent and data-dependent acquisition. Front. Plant Sci. 2017;7:2020. doi: 10.3389/fpls.2016.02020. PubMed DOI PMC

Ma C.-Y., Gao L.-Y., Li N., Li X.-H., Ma W.-J., Appels R., Yan Y.-M. Proteomic analysis of albumins and globulins from wheat variety Chinese spring and its fine deletion line 3BS-8. Int. J. Mol. Sci. 2012;13:13398–13413. doi: 10.3390/ijms131013398. PubMed DOI PMC

Gell G., Kovács K., Veres G., Korponay-Szabó I.R., Juhász A. Characterization of globulin storage proteins of a low prolamin cereal species in relation to celiac disease. Sci. Rep. 2017;7:39876. doi: 10.1038/srep39876. PubMed DOI PMC

Cho K., Beom H.-R., Jang Y.-R., Altenbach S.B., Vensel W.H., Simon-Buss A., Lim S.-H., Kim M.G., Lee J.-Y. Proteomic profiling and epitope analysis of the complex α-, γ-, and ω-gliadin families in a commercial bread wheat. Front. Plant Sci. 2018;9:818. doi: 10.3389/fpls.2018.00818. PubMed DOI PMC

Akagawa M., Handoyo T., Ishii T., Kumazawa S., Morita N., Suyama K. Proteomic analysis of wheat flour allergens. J. Agric. Food Chem. 2007;55:6863–6870. doi: 10.1021/jf070843a. PubMed DOI

Mari A., Rasi C., Palazzo P., Scala E. Allergen databases: Current status and perspectives. Curr. Allergy Asthma Rep. 2009;9:376–383. doi: 10.1007/s11882-009-0055-9. PubMed DOI

Juhász A., Haraszi R., Maulis C. ProPepper: A curated database for identification and analysis of peptide and immune-responsive epitope composition of cereal grain protein families. Database. 2015;2015:bav100. doi: 10.1093/database/bav100. PubMed DOI PMC

Bromilow S., Gethings L.A., Buckley M., Bromley M., Shewry P.R., Langridge J.I., Mills E.N.C. A curated gluten protein sequence database to support development of proteomics methods for determination of gluten in gluten-free foods. J. Proteom. 2017;163:67–75. doi: 10.1016/j.jprot.2017.03.026. PubMed DOI PMC

van Den Broeck H.C., Cordewener J.H.G., Nessen M.A., America A.H.P., van der Meer I.M. Label free targeted detection and quantification of celiac disease immunogenic epitopes by mass spectrometry. J. Chromatogr. A. 2015;1391:60–71. doi: 10.1016/j.chroma.2015.02.070. PubMed DOI

Malalgoda M., Ohm J.-B., Meinhardt S., Simsek S. Association between gluten protein composition and breadmaking quality characteristics in historical and modern spring wheat. Cereal Chem. 2018;95:226–238. doi: 10.1002/cche.10014. DOI

Newton A.C., Akar T., Baresel J.P., Bebeli P.J., Bettencourt E., Bladenopoulos K.V., Czembor J.H., Fasoula D.A., Katsiotis A., Koutis K., et al. Cereal landraces for sustainable agriculture. A review. Agron. Sustain. Dev. 2010;30:237–269. doi: 10.1051/agro/2009032. DOI

Gregová E., Hermuth J., Kraic J., Dotlačil L. Protein heterogeneity in European wheat landraces and obsolete cultivars. Genet. Resour. Crop Evol. 1999;46:521–528. doi: 10.1023/A:1008751815445. DOI

Lupi R., Masci S., Rogniaux H., Tranquet O., Brossard C., Lafiandra D., Moneret-Vautrin D.A., Denery-Papini S., Larré C. Assessment of the allergenicity of soluble fractions from GM and commercial genotypes of wheats. J. Cereal Sci. 2014;60:179–186. doi: 10.1016/j.jcs.2014.02.009. DOI

Sánchez-León S., Gil-Humanes J., Ozuna C.V., Giménez M.J., Sousa C., Voytas D.F., Barro F. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 2018;16:902–910. doi: 10.1111/pbi.12837. PubMed DOI PMC

Рибалка О., Мoргун Б., Пoчинoк В. Сучасні дoслідження якoсті зерна пшениці у світі: Генетика, біoтехнoлoгія та харчoва цінність запасних білків. Физиoлoгия и биoхимия культурных растений. 2012;44:3–22.

Metakovsky E., Melnik V., Rodriguez-Quijano M., Upelniek V., Carrillo J.M. A catalog of gliadin alleles: Polymorphism of 20th-century common wheat germplasm. Crop J. 2018;6:628–641. doi: 10.1016/j.cj.2018.02.003. DOI

Dupont F.M., Vensel W.H., Tanaka C.K., Hurkman W.J., Altenbach S.B. Deciphering the complexities of the wheat flour proteome using quantitative two-dimensional electrophoresis, three proteases and tandem mass spectrometry. Proteome Sci. 2011;9:101. doi: 10.1186/1477-5956-9-10. PubMed DOI PMC

Distler U., Kuharev J., Navarro P., Tenzer S. Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. Nat. Protoc. 2016;11:795–812. doi: 10.1038/nprot.2016.042. PubMed DOI

Nováková S., Šubr Z., Kováč A., Fialová I., Beke G., Danchenko M. Cucumber mosaic virus resistance: Comparative proteomics of contrasting Cucumis sativus cultivars after long-term infection. J. Proteom. 2020;214:103626. doi: 10.1016/j.jprot.2019.103626. PubMed DOI

Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...