Comprehensive Comparison of Clinically Relevant Grain Proteins in Modern and Traditional Bread Wheat Cultivars
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
fellowship
National Scholarship Programme of the Slovak Republic
0117U000385
National Academy of Sciences of Ukraine
APVV-18-0302
Slovak Research and Development Agency
26240220096
European Regional Development Fund through Operational Programme Research and Development
PubMed
32414116
PubMed Central
PMC7279209
DOI
10.3390/ijms21103445
PII: ijms21103445
Knihovny.cz E-resources
- Keywords
- Triticum aestivum L., celiac disease, cereal allergens, discovery proteomics, food quality, gluten,
- MeSH
- Electrophoresis, Gel, Two-Dimensional MeSH
- Albumins chemistry genetics metabolism MeSH
- Bread analysis MeSH
- Gliadin chemistry genetics MeSH
- Globulins chemistry genetics MeSH
- Glutens chemistry genetics MeSH
- Edible Grain chemistry genetics MeSH
- Humans MeSH
- Grain Proteins chemistry classification MeSH
- Proteome genetics MeSH
- Triticum chemistry genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Albumins MeSH
- Gliadin MeSH
- Globulins MeSH
- glutenin MeSH Browser
- Glutens MeSH
- Grain Proteins MeSH
- Proteome MeSH
Bread wheat (Triticum aestivum L.) is one of the most valuable cereal crops for human consumption. Its grain storage proteins define bread quality, though they may cause food intolerances or allergies in susceptible individuals. Herein, we discovered a diversity of grain proteins in three Ukrainian wheat cultivars: Sotnytsia, Panna (both modern selection), and Ukrainka (landrace). Firstly, proteins were isolated with a detergent-containing buffer that allowed extraction of various groups of storage proteins (glutenins, gliadins, globulins, and albumins); secondly, the proteome was profiled by the two-dimensional gel electrophoresis. Using multi-enzymatic digestion, we identified 49 differentially accumulated proteins. Parallel ultrahigh-performance liquid chromatography separation followed by direct mass spectrometry quantification complemented the results. Principal component analysis confirmed that differences among genotypes were a major source of variation. Non-gluten fraction better discriminated bread wheat cultivars. Various accumulation of clinically relevant plant proteins highlighted one of the modern genotypes as a promising donor for the breeding of hypoallergenic cereals.
Institute of Microbiology Czech Academy of Sciences Videnska 1083 14220 Prague Czech Republic
Institute of Neuroimmunology Slovak Academy of Sciences Dubravska 9 84510 Bratislava Slovak Republic
See more in PubMed
Kuźniar A., Włodarczyk K., Grządziel J., Goraj W., Gałązka A., Wolińska A. Culture-independent analysis of an endophytic core microbiome in two species of wheat: Triticum aestivum L. (cv. ‘Hondia’) and the first report of microbiota in Triticum spelta L. (cv. ‘Rokosz’) Syst. Appl. Microbiol. 2020;43:126025. doi: 10.1016/j.syapm.2019.126025. PubMed DOI
Shewry P.R., Halford N.G., Lafiandra D. Genetics of Wheat Gluten Proteins. In: Hall J.C., Dunlap J.C., Friedmann T., editors. Advances in Genetics. Elsevier; Amsterdam, The Netherlands: PubMed
Payne P.I. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu. Rev. Plant. Physiol. 1987;38:141–153. doi: 10.1146/annurev.pp.38.060187.001041. DOI
Rasheed A., Xia X., Yan Y., Appels R., Mahmood T., He Z. Wheat seed storage proteins: Advances in molecular genetics, diversity and breeding applications. J. Cereal Sci. 2014;60:11–24. doi: 10.1016/j.jcs.2014.01.020. DOI
Lee J.-Y., Beom H.-R., Altenbach S.B., Lim S.-H., Kim Y.-T., Kang C.-S., Yoon U.-H., Gupta R., Kim S.-T., Ahn S.-N., et al. Comprehensive identification of LMW-GS genes and their protein products in a common wheat variety. Funct. Integr. Genom. 2016;16:269–279. doi: 10.1007/s10142-016-0482-3. PubMed DOI
Juhász A., Békés F., Wrigley C.W. Wheat Proteins. In: Ustunol Z., editor. Applied Food Protein Chemistry. Vol. 303. Wiley Blackwell; Hoboken, NJ, USA: 2014. p. 219.
Gil-Humanes J., Pistón F., Rosell C.M., Barro F. Significant down-regulation of γ-gliadins has minor effect on gluten and starch properties of bread wheat. J. Cereal Sci. 2012;56:161–170. doi: 10.1016/j.jcs.2012.02.009. DOI
Shewry P.R., Tatham A.S. Improving wheat to remove coeliac epitopes but retain functionality. J. Cereal Sci. 2016;67:12–21. doi: 10.1016/j.jcs.2015.06.005. PubMed DOI PMC
Wang D.-W., Li D., Wang J., Zhao Y., Wang Z., Yue G., Liu X., Qin H., Zhang K., Dong L., et al. Genome-wide analysis of complex wheat gliadins, the dominant carriers of celiac disease epitopes. Sci. Rep. 2017;7:44609. doi: 10.1038/srep44609. PubMed DOI PMC
Barak S., Mudgil D., Khatkar B.S. Relationship of gliadin and glutenin proteins with dough rheology, flour pasting and bread making performance of wheat varieties. LWT Food Sci. Technol. 2013;51:211–217. doi: 10.1016/j.lwt.2012.09.011. DOI
Peña E., Bernardo A., Soler C., Jouve N. Relationship between common wheat (Triticum aestivum L.) gluten proteins and dough rheological properties: Gluten proteins and rheological properties in wheat. Euphytica. 2005;143:169–177. doi: 10.1007/s10681-005-3157-z. DOI
Hadjivassiliou M., Sanders D.S., Grünewald R.A., Woodroofe N., Boscolo S., Aeschlimann D. Gluten sensitivity: From gut to brain. Lancet Neurol. 2010;9:318–330. doi: 10.1016/S1474-4422(09)70290-X. PubMed DOI
Sapone A., Bai J.C., Ciacci C., Dolinsek J., Green P.H.R., Hadjivassiliou M., Kaukinen K., Rostami K., Sanders D.S., Schumann M., et al. Spectrum of gluten-related disorders: Consensus on new nomenclature and classification. BMC Med. 2012;10:13. doi: 10.1186/1741-7015-10-13. PubMed DOI PMC
Scherf K.A., Koehler P., Wieser H. Gluten and wheat sensitivities—An overview. J. Cereal Sci. 2016;67:2–11. doi: 10.1016/j.jcs.2015.07.008. DOI
Camarca A., Anderson R.P., Mamone G., Fierro O., Facchiano A., Costantini S., Zanzi D., Sidney J., Auricchio S., Sette A., et al. Intestinal T cell responses to gluten peptides are largely heterogeneous: Implications for a peptide-based therapy in celiac disease. J. Immunol. 2009;182:4158–4166. doi: 10.4049/jimmunol.0803181. PubMed DOI PMC
Mamone G., Picariello G., Addeo F., Ferranti P. Proteomic analysis in allergy and intolerance to wheat products. Expert Rev. Proteom. 2011;8:95–115. doi: 10.1586/epr.10.98. PubMed DOI
Huebener S., Tanaka C.K., Uhde M., Zone J.J., Vensel W.H., Kasarda D.D., Beams L., Briani C., Green P.H.R., Altenbach S.B., et al. Specific nongluten proteins of wheat are novel target antigens in celiac disease humoral response. J. Proteome Res. 2015;14:503–511. doi: 10.1021/pr500809b. PubMed DOI PMC
Junker Y., Zeissig S., Kim S.-J., Barisani D., Wieser H., Leffler D.A., Zevallos V., Libermann T.A., Dillon S., Freitag T.L., et al. Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J. Exp. Med. 2012;209:2395–2408. doi: 10.1084/jem.20102660. PubMed DOI PMC
Altenbach S.B., Tanaka C.K., Allen P.V. Quantitative proteomic analysis of wheat grain proteins reveals differential effects of silencing of omega-5 gliadin genes in transgenic lines. J. Cereal Sci. 2014;59:118–125. doi: 10.1016/j.jcs.2013.11.008. DOI
Pistón F., Gil-Humanes J., Rodríguez-Quijano M., Barro F. Down-regulating γ-gliadins in bread wheat leads to non-specific increases in other gluten proteins and has no major effect on dough gluten strength. PLoS ONE. 2011;6:e24754. doi: 10.1371/journal.pone.0024754. PubMed DOI PMC
Spaenij-Dekking L., Kooy-Winkelaar Y., Van Veelen P., Drijfhout J.W., Jonker H., Van Soest L., Smulders M.J.M., Bosch D., Gilissen L.J.W.J., Koning F. Natural variation in toxicity of wheat: Potential for selection of nontoxic varieties for celiac disease patients. Gastroenterology. 2005;129:797–806. doi: 10.1053/j.gastro.2005.06.017. PubMed DOI
Ribeiro M., Rodriguez-Quijano M., Nunes F.M., Carrillo J.M., Branlard G., Igrejas G. New insights into wheat toxicity: Breeding did not seem to contribute to a prevalence of potential celiac disease’s immunostimulatory epitopes. Food Chem. 2016;213:8–18. doi: 10.1016/j.foodchem.2016.06.043. PubMed DOI
Malalgoda M., Meinhardt S.W., Simsek S. Detection and quantitation of immunogenic epitopes related to celiac disease in historical and modern hard red spring wheat cultivars. Food Chem. 2018;264:101–107. doi: 10.1016/j.foodchem.2018.04.131. PubMed DOI
Shewry P.R. Do ancient types of wheat have health benefits compared with modern bread wheat? J. Cereal Sci. 2018;79:469–476. doi: 10.1016/j.jcs.2017.11.010. PubMed DOI PMC
Pompa M., Giuliani M.M., Palermo C., Agriesti F., Centonze D., Flagella Z. Comparative analysis of gluten proteins in three durum wheat cultivars by a proteomic approach. J. Agric. Food Chem. 2013;61:2606–2617. doi: 10.1021/jf304566d. PubMed DOI
Yahata E., Maruyama-Funatsuki W., Nishio Z., Tabiki T., Takata K., Yamamoto Y., Tanida M., Saruyama H. Wheat cultivar-specific proteins in grain revealed by 2-DE and their application to cultivar identification of flour. Proteomics. 2005;5:3942–3953. doi: 10.1002/pmic.200402103. PubMed DOI
García-Molina M.D., Muccilli V., Saletti R., Foti S., Masci S., Barro F. Comparative proteomic analysis of two transgenic low-gliadin wheat lines and non-transgenic wheat control. J. Proteom. 2017;165:102–112. doi: 10.1016/j.jprot.2017.06.010. PubMed DOI
Vensel W.H., Dupont F.M., Sloane S., Altenbach S.B. Effect of cleavage enzyme, search algorithm and decoy database on mass spectrometric identification of wheat gluten proteins. Phytochemistry. 2011;72:1154–1161. doi: 10.1016/j.phytochem.2011.01.002. PubMed DOI
Martínez-Esteso M.J., Nørgaard J., Brohée M., Haraszi R., Maquet A., O’Connor G. Defining the wheat gluten peptide fingerprint via a discovery and targeted proteomics approach. J. Proteom. 2016;147:156–168. doi: 10.1016/j.jprot.2016.03.015. PubMed DOI
Scherf K.A., Poms R.E. Recent developments in analytical methods for tracing gluten. J. Cereal Sci. 2016;67:112–122. doi: 10.1016/j.jcs.2015.08.006. DOI
Nakamura R., Teshima R. Proteomics-based allergen analysis in plants. J. Proteom. 2013;93:40–49. doi: 10.1016/j.jprot.2013.03.018. PubMed DOI
Lollier V., Denery-Papini S., Brossard C., Tessier D. Meta-analysis of IgE-binding allergen epitopes. Clin. Immunol. 2014;153:31–39. doi: 10.1016/j.clim.2014.03.010. PubMed DOI
Yokooji T., Kurihara S., Murakami T., Chinuki Y., Takahashi H., Morita E., Harada S., Ishii K., Hiragun M., Hide M., et al. Characterization of causative allergens for wheat-dependent exercise-induced anaphylaxis sensitized with hydrolyzed wheat proteins in facial soap. Allergol. Int. 2013;62:435–445. doi: 10.2332/allergolint.13-OA-0561. PubMed DOI
Reig-Otero Y., Mañes J., Manyes L. Amylase-trypsin inhibitors in wheat and other cereals as potential activators of the effects of nonceliac gluten sensitivity. J. Med. Food. 2018;21:207–214. doi: 10.1089/jmf.2017.0018. PubMed DOI
Mameri H., Denery-Papini S., Pietri M., Tranquet O., Larré C., Drouet M., Paty E., Jonathan A.-M., Beaudouin E., Moneret-Vautrin D.-A., et al. Molecular and immunological characterization of wheat Serpin (Tri a 33) Mol. Nutr. Food Res. 2012;56:1874–1883. doi: 10.1002/mnfr.201200244. PubMed DOI
Ma F., Li M., Yu L., Li Y., Liu Y., Li T., Liu W., Wang H., Zheng Q., Li K., et al. Transformation of common wheat (Triticum aestivum L.) with avenin-like b gene improves flour mixing properties. Mol. Breed. 2013;32:853–865. doi: 10.1007/s11032-013-9913-1. PubMed DOI PMC
Barrachina M.N., Sueiro A.M., Casas V., Izquierdo I., Hermida-Nogueira L., Guitián E., Casanueva F.F., Abián J., Carrascal M., Pardo M., et al. A combination of proteomic approaches identifies a panel of circulating extracellular vesicle proteins related to the risk of suffering cardiovascular disease in obese patients. Proteomics. 2019;19:1800248. doi: 10.1002/pmic.201800248. PubMed DOI
Ribeiro M., Nunes-Miranda J.D., Branlard G., Carrillo J.M., Rodriguez-Quijano M., Igrejas G. One hundred years of grain omics: Identifying the glutens that feed the world. J. Proteome Res. 2013;12:4702–4716. doi: 10.1021/pr400663t. PubMed DOI
Rombouts I., Lagrain B., Brunnbauer M., Delcour J.A., Koehler P. Improved identification of wheat gluten proteins through alkylation of cysteine residues and peptide-based mass spectrometry. Sci. Rep. 2013;3:2279. doi: 10.1038/srep02279. PubMed DOI PMC
Uvackova L., Skultety L., Bekesova S., McClain S., Hajduch M. The MSE-proteomic analysis of gliadins and glutenins in wheat grain identifies and quantifies proteins associated with celiac disease and baker’s asthma. J. Proteom. 2013;93:65–73. doi: 10.1016/j.jprot.2012.12.011. PubMed DOI
Bromilow S., Gethings L.A., Langridge J.I., Shewry P.R., Buckley M., Bromley M.J., Mills E.N.C. Comprehensive proteomic profiling of wheat gluten using a combination of data-independent and data-dependent acquisition. Front. Plant Sci. 2017;7:2020. doi: 10.3389/fpls.2016.02020. PubMed DOI PMC
Ma C.-Y., Gao L.-Y., Li N., Li X.-H., Ma W.-J., Appels R., Yan Y.-M. Proteomic analysis of albumins and globulins from wheat variety Chinese spring and its fine deletion line 3BS-8. Int. J. Mol. Sci. 2012;13:13398–13413. doi: 10.3390/ijms131013398. PubMed DOI PMC
Gell G., Kovács K., Veres G., Korponay-Szabó I.R., Juhász A. Characterization of globulin storage proteins of a low prolamin cereal species in relation to celiac disease. Sci. Rep. 2017;7:39876. doi: 10.1038/srep39876. PubMed DOI PMC
Cho K., Beom H.-R., Jang Y.-R., Altenbach S.B., Vensel W.H., Simon-Buss A., Lim S.-H., Kim M.G., Lee J.-Y. Proteomic profiling and epitope analysis of the complex α-, γ-, and ω-gliadin families in a commercial bread wheat. Front. Plant Sci. 2018;9:818. doi: 10.3389/fpls.2018.00818. PubMed DOI PMC
Akagawa M., Handoyo T., Ishii T., Kumazawa S., Morita N., Suyama K. Proteomic analysis of wheat flour allergens. J. Agric. Food Chem. 2007;55:6863–6870. doi: 10.1021/jf070843a. PubMed DOI
Mari A., Rasi C., Palazzo P., Scala E. Allergen databases: Current status and perspectives. Curr. Allergy Asthma Rep. 2009;9:376–383. doi: 10.1007/s11882-009-0055-9. PubMed DOI
Juhász A., Haraszi R., Maulis C. ProPepper: A curated database for identification and analysis of peptide and immune-responsive epitope composition of cereal grain protein families. Database. 2015;2015:bav100. doi: 10.1093/database/bav100. PubMed DOI PMC
Bromilow S., Gethings L.A., Buckley M., Bromley M., Shewry P.R., Langridge J.I., Mills E.N.C. A curated gluten protein sequence database to support development of proteomics methods for determination of gluten in gluten-free foods. J. Proteom. 2017;163:67–75. doi: 10.1016/j.jprot.2017.03.026. PubMed DOI PMC
van Den Broeck H.C., Cordewener J.H.G., Nessen M.A., America A.H.P., van der Meer I.M. Label free targeted detection and quantification of celiac disease immunogenic epitopes by mass spectrometry. J. Chromatogr. A. 2015;1391:60–71. doi: 10.1016/j.chroma.2015.02.070. PubMed DOI
Malalgoda M., Ohm J.-B., Meinhardt S., Simsek S. Association between gluten protein composition and breadmaking quality characteristics in historical and modern spring wheat. Cereal Chem. 2018;95:226–238. doi: 10.1002/cche.10014. DOI
Newton A.C., Akar T., Baresel J.P., Bebeli P.J., Bettencourt E., Bladenopoulos K.V., Czembor J.H., Fasoula D.A., Katsiotis A., Koutis K., et al. Cereal landraces for sustainable agriculture. A review. Agron. Sustain. Dev. 2010;30:237–269. doi: 10.1051/agro/2009032. DOI
Gregová E., Hermuth J., Kraic J., Dotlačil L. Protein heterogeneity in European wheat landraces and obsolete cultivars. Genet. Resour. Crop Evol. 1999;46:521–528. doi: 10.1023/A:1008751815445. DOI
Lupi R., Masci S., Rogniaux H., Tranquet O., Brossard C., Lafiandra D., Moneret-Vautrin D.A., Denery-Papini S., Larré C. Assessment of the allergenicity of soluble fractions from GM and commercial genotypes of wheats. J. Cereal Sci. 2014;60:179–186. doi: 10.1016/j.jcs.2014.02.009. DOI
Sánchez-León S., Gil-Humanes J., Ozuna C.V., Giménez M.J., Sousa C., Voytas D.F., Barro F. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 2018;16:902–910. doi: 10.1111/pbi.12837. PubMed DOI PMC
Рибалка О., Мoргун Б., Пoчинoк В. Сучасні дoслідження якoсті зерна пшениці у світі: Генетика, біoтехнoлoгія та харчoва цінність запасних білків. Физиoлoгия и биoхимия культурных растений. 2012;44:3–22.
Metakovsky E., Melnik V., Rodriguez-Quijano M., Upelniek V., Carrillo J.M. A catalog of gliadin alleles: Polymorphism of 20th-century common wheat germplasm. Crop J. 2018;6:628–641. doi: 10.1016/j.cj.2018.02.003. DOI
Dupont F.M., Vensel W.H., Tanaka C.K., Hurkman W.J., Altenbach S.B. Deciphering the complexities of the wheat flour proteome using quantitative two-dimensional electrophoresis, three proteases and tandem mass spectrometry. Proteome Sci. 2011;9:101. doi: 10.1186/1477-5956-9-10. PubMed DOI PMC
Distler U., Kuharev J., Navarro P., Tenzer S. Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. Nat. Protoc. 2016;11:795–812. doi: 10.1038/nprot.2016.042. PubMed DOI
Nováková S., Šubr Z., Kováč A., Fialová I., Beke G., Danchenko M. Cucumber mosaic virus resistance: Comparative proteomics of contrasting Cucumis sativus cultivars after long-term infection. J. Proteom. 2020;214:103626. doi: 10.1016/j.jprot.2019.103626. PubMed DOI
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC