Innate Immune System and Multiple Sclerosis. Granulocyte Numbers Are Reduced in Patients Affected by Relapsing-Remitting Multiple Sclerosis during the Remission Phase
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
32422897
PubMed Central
PMC7290702
DOI
10.3390/jcm9051468
PII: jcm9051468
Knihovny.cz E-resources
- Keywords
- CD64, PD-L1, granulocytes, monocytes, multiple sclerosis, relapsing-remitting,
- Publication type
- Journal Article MeSH
BACKGROUND: Multiple sclerosis (MS) is a neurodegenerative disease that affects the central nervous system. The cause of MS is still unknown, and the role of innate immunity is still poorly understood. OBJECTIVE: The goal of this study was to understand whether, compared to healthy controls, the elements of innate immunity are altered in the blood of MS patients in the remitting phase. METHODS: A total of 77 naïve MS patients and 50 healthy controls were included in this cohort study. Peripheral blood samples were collected and analyzed. All the calculations were performed with the statistical system R (r-project.org). RESULTS: The results showed that MS patients had significantly lower relative representations of granulocytes than healthy controls, while the relative representations of monocytes remained unchanged. CD64- and PD-L1-positive granulocytes exhibited a nonsignificant decreasing trend, while granulocytes with other membrane markers remained noticeably unchanged. CONCLUSION: The results of this study suggest that studies of the causes of MS and its treatment should also be focused on the elements of the innate immune response.
See more in PubMed
Yamasaki R., Kira J.I. Multiple Sclerosis. Adv. Exp. Med. Biol. 2019;1190:217–247. PubMed
Macaron G., Ontaneda D. Diagnosis and Management of Progressive Multiple Sclerosis. Biomedicines. 2019;7:56. doi: 10.3390/biomedicines7030056. PubMed DOI PMC
Zandoná M.E., Kim S.H., Hyun J.W., Park B., Joo J., Kim H.J. The onset location of neuromyelitis optica spectrum disorder predicts the location of subsequent relapses. Mult. Scler. J. 2014;20:1908–1911. doi: 10.1177/1352458514528763. PubMed DOI
Katz Sand I. Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr. Opin. Neurol. 2015;28:193–205. doi: 10.1097/WCO.0000000000000206. PubMed DOI
Katz Sand I., Krieger S., Farrell C., Miller A.E. Diagnostic uncertainty during the transition to secondary progressive multiple sclerosis. Mult. Scler. 2014;20:1654–1657. doi: 10.1177/1352458514521517. PubMed DOI
Ghasemi N., Razavi S., Nikzad E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. Cell J. 2017;19:1–10. PubMed PMC
Olsson T., Barcellos L.F., Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 2017;13:25–36. doi: 10.1038/nrneurol.2016.187. PubMed DOI
Perron H., Lang A. The human endogenous retrovirus link between genes and environment in multiple sclerosis and in multifactorial diseases associating neuroinflammation. Clin. Rev. Allergy Immunol. 2010;39:51–61. doi: 10.1007/s12016-009-8170-x. PubMed DOI
Wekerle H. Nature, nurture, and microbes: The development of multiple sclerosis. Acta Neurol. Scand. 2017;136(Suppl. 201):22–25. doi: 10.1111/ane.12843. PubMed DOI
Ellwardt E., Zipp F. Molecular mechanisms linking neuroinflammation and neurodegeneration in MS. Pt. AExp. Neurol. 2014;262:8–17. doi: 10.1016/j.expneurol.2014.02.006. PubMed DOI
Yadav S.K., Mindur J.E., Ito K., Dhib-Jalbut S. Advances in the immunopathogenesis of multiple sclerosis. Curr. Opin. Neurol. 2015;28:206–219. doi: 10.1097/WCO.0000000000000205. PubMed DOI
Canto E., Oksenberg J.R. Multiple sclerosis genetics. Mult. Scler. 2018;24:75–79. doi: 10.1177/1352458517737371. PubMed DOI
Patsopoulos N.A., Baranzini S.E., Santaniello A., Shoostari P., Cotsapas C., Wong G., Beecham A.H., James T., Replogle J., Vlachos I.S., et al. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. 2019:365. PubMed PMC
Turvey S.E., Broide D.H. Innate immunity. J. Allergy Clin. Immunol. 2010;125(Suppl. 2):S24–S32. doi: 10.1016/j.jaci.2009.07.016. PubMed DOI PMC
Saferding V., Blüml S. Innate immunity as the trigger of systemic autoimmune diseases. J. Autoimmun. 2019;110:102382. doi: 10.1016/j.jaut.2019.102382. PubMed DOI
Hernández-Pedro N.Y., Espinosa-Ramirez G., de la Cruz V.P., Pineda B., Sotelo J. Initial immunopathogenesis of multiple sclerosis: Innate immune response. Clin. Dev. Immunol. 2013;2013:413465. doi: 10.1155/2013/413465. PubMed DOI PMC
Gandhi R., Laroni A., Weiner H.L. Role of the innate immune system in the pathogenesis of multiple sclerosis. J. Neuroimmunol. 2010;221:7–14. doi: 10.1016/j.jneuroim.2009.10.015. PubMed DOI PMC
Chu F., Shi M., Zheng C., Shen D., Zhu J., Zheng X., Cui L. The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2018;318:1–7. doi: 10.1016/j.jneuroim.2018.02.015. PubMed DOI
Ohl K., Tenbrock K., Kipp M. Oxidative stress in multiple sclerosis: Central and peripheral mode of action. Exp. Neurol. 2016;277:58–67. doi: 10.1016/j.expneurol.2015.11.010. PubMed DOI PMC
Nikić I., Merkler D., Sorbara C., Brinkoetter M., Kreutzfeldt M., Bareyre F.M., Brück W., Bishop D., Misgeld T., Kerschensteiner M. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 2011;17:495–499. doi: 10.1038/nm.2324. PubMed DOI
Haider L., Fischer M.T., Frischer J.M., Bauer J., Höftberger R., Botond G., Esterbauer H., Binder C.J., Witztum J.L., Lassmann H. Oxidative damage in multiple sclerosis lesions. Brain. 2011;134:1914–1924. doi: 10.1093/brain/awr128. PubMed DOI PMC
Fani Maleki A., Rivest S. Innate Immune Cells: Monocytes, Monocyte-Derived Macrophages and Microglia as Therapeutic Targets for Alzheimer’s Disease and Multiple Sclerosis. Front. Cell. Neurosci. 2019;13:355. doi: 10.3389/fncel.2019.00355. PubMed DOI PMC
Shemer A., Jung S. Differential roles of resident microglia and infiltrating monocytes in murine CNS autoimmunity. Semin. Immunopathol. 2015;37:613–623. doi: 10.1007/s00281-015-0519-z. PubMed DOI
Cadman E.T., Lawrence R.A. Granulocytes: Effector cells or immunomodulators in the immune response to helminth infection? Parasite Immunol. 2010;32:1–19. doi: 10.1111/j.1365-3024.2009.01147.x. PubMed DOI
Ueda Y., Kondo M., Kelsoe G. Inflammation and the reciprocal production of granulocytes and lymphocytes in bone marrow. J. Exp. Med. 2005;201:1771–1780. doi: 10.1084/jem.20041419. PubMed DOI PMC
Eyerich S., Metz M., Bossios A., Eyerich K. New biological treatments for asthma and skin allergies. Allergy. 2020;75:546–560. doi: 10.1111/all.14027. PubMed DOI
Thompson A.J., Banwell B.L., Barkhof F., Carroll W.M., Coetzee T., Comi G., Correale J., Fazekas F., Filippi M., Freedman M.S., et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–173. doi: 10.1016/S1474-4422(17)30470-2. PubMed DOI
Tsivgoulis G., Katsanos A.H., Grigoriadis N., Hadjigeorgiou G.M., Heliopoulos I., Kilidireas C., Voumvourakis K. The effect of disease modifying therapies on brain atrophy in patients with relapsing-remitting multiple sclerosis: A systematic review and meta-analysis. PLoS ONE. 2015;10:e0116511. doi: 10.1371/journal.pone.0116511. PubMed DOI PMC
Ho D.E., Imai K., King G., Stuart E.A. MatchIt: Nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 2011;42:1–28. doi: 10.18637/jss.v042.i08. DOI
The R Project for Statistical Computing. [(accessed on 25 December 2019)]; Available online: http://r-project.org/
Lin A., Loré K. Granulocytes: New members of the antigen-presenting cell family. Front. Immunol. 2017;8:1781. doi: 10.3389/fimmu.2017.01781. PubMed DOI PMC
Gerrits J.H., McLaughlin P.M.J., Nienhuis B.N., Smit J.W., Loef B. Polymorphic mononuclear neutrophils CD64 index for diagnosis of sepsis in postoperative surgical patients and critically ill patients. Clin. Chem. Lab. Med. 2013;51:897–905. doi: 10.1515/cclm-2012-0279. PubMed DOI
Hussein O.A., El-Toukhy M.A., El-Rahman H.S. Neutrophil CD64 expression in inflammatory autoimmune diseases: Its value in distinguishing infection from disease flare. Immunol. Investig. 2010;39:699–712. doi: 10.3109/08820139.2010.491520. PubMed DOI
Annunziata P., Masi G., Cioni C. Association of circulating anti-CD64 IgM levels with favourable long-term clinical outcomes in multiple sclerosis patients. J. Neuroimmunol. 2019;330:130–135. doi: 10.1016/j.jneuroim.2019.03.005. PubMed DOI
Alsaab H.O., Sau S., Alzhrani R., Tatiparti K., Bhise K., Kashaw S.K., Iyer A.K. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front. Pharm. 2017;8:561. doi: 10.3389/fphar.2017.00561. PubMed DOI PMC
Luo Q., Huang Z., Ye J., Deng Y., Fang L., Li X., Guo Y., Jiang H., Ju B., Huang Q., et al. PD-L1-expressing neutrophils as a novel indicator to assess disease activity and severity of systemic lupus erythematosus. Arthr. Res. Ther. 2016;18:47. doi: 10.1186/s13075-016-0942-0. PubMed DOI PMC
Jayaraman A., Sharma M., Prabhakar B., Holterman M., Jayaraman S. Amelioration of progressive autoimmune encephalomyelitis by epigenetic regulation involves selective repression of mature neutrophils during the preclinical phase. Exp. Neurol. 2018;304:14–20. doi: 10.1016/j.expneurol.2018.02.008. PubMed DOI
Murdock B.J., Bender D.E., Kashlan S.R., Figueroa-Romero C., Backus C., Callaghan B.C., Goutman S.A., Feldman E.L. Increased ratio of circulating neutrophils to monocytes in amyotrophic lateral sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2016;3:e242. doi: 10.1212/NXI.0000000000000242. PubMed DOI PMC
Rossi B., Constantin G., Zenaro E. The emerging role of neutrophils in neurodegeneration. Immunobiology. 2020;225:151865. doi: 10.1016/j.imbio.2019.10.014. PubMed DOI
Woodberry T., Bouffler S., Wilson A., Buckland R., Brüstle A. The Emerging Role of Neutrophil Granulocytes in Multiple Sclerosis. J. Clin. Med. 2018;7:511. doi: 10.3390/jcm7120511. PubMed DOI PMC
Croxford A.L., Kurschus F.C., Waisman A. Mouse models for multiple sclerosis: Historical facts and future implications. Biochim. Biophys. Acta Mol. Basis Dis. 2011;1812:177–183. doi: 10.1016/j.bbadis.2010.06.010. PubMed DOI
Pierson E.R., Wagner C.A., Goverman J.M. The contribution of neutrophils to CNS autoimmunity. Clin. Immunol. 2018;189:23–28. doi: 10.1016/j.clim.2016.06.017. PubMed DOI PMC
Aubé B., Lévesque S.A., Paré A., Chamma É., Kébir H., Gorina R., Lécuyer M.A., Alvarez J.I., De Koninck Y., Engelhardt B., et al. Neutrophils Mediate Blood–Spinal Cord Barrier Disruption in Demyelinating Neuroinflammatory Diseases. J. Immunol. 2014;193:2438–2454. doi: 10.4049/jimmunol.1400401. PubMed DOI
Kostic M., Dzopalic T., Zivanovic S., Zivkovic N., Cvetanovic A., Stojanovic I., Vojinovic S., Marjanovic G., Savic V., Colic M. IL-17 and Glutamate Excitotoxicity in the Pathogenesis of Multiple Sclerosis. Scand. J. Immunol. 2014;79:181–186. doi: 10.1111/sji.12147. PubMed DOI
Chabas D., Ness J., Belman A., Yeh E.A., Kuntz N., Gorman M.P., Strober J.B., De Kouchkovsky I., McCulloch C., Chitnis T., et al. Younger children with MS have a distinct CSF inflammatory profile at disease onset. Neurology. 2010;74:399–405. doi: 10.1212/WNL.0b013e3181ce5db0. PubMed DOI PMC
Bisgaard A.K., Pihl-Jensen G., Frederiksen J.L. The neutrophil-to-lymphocyte ratio as disease actvity marker in multiple sclerosis and optic neuritis. Mult. Scler. Relat. Disord. 2017;18:213–217. doi: 10.1016/j.msard.2017.10.009. PubMed DOI
Demirci S., Demirci S., Kutluhan S., Koyuncuoglu H.R., Yurekli V.A. The clinical significance of the neutrophil-to-lymphocyte ratio in multiple sclerosis. Int. J. Neurosci. 2016;126:700–706. doi: 10.3109/00207454.2015.1050492. PubMed DOI
Ortler S., Leder C., Mittelbronn M., Zozulya A.L., Knolle P.A., Chen L., Kroner A., Wiendl H. B7-H1 restricts neuroantigen-specific T cell responses and confines inflammatory CNS damage: Implications for the lesion pathogenesis of multiple sclerosis. Eur. J. Immunol. 2008;38:1734–1744. doi: 10.1002/eji.200738071. PubMed DOI
Javan M.R., Aslani S., Zamani M.R., Rostamnejad J., Asadi M., Farhoodi M., Nicknam M.H. Downregulation of immunosuppressive molecules, PD-1 and PD-L1 but not PD-L2, in the patients with multiple sclerosis. Iran. J. Allergy Asthma Immunol. 2016;15:296–302. PubMed