The 3D hype: Evaluating the potential of real 3D visualization in geo-related applications
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32437375
PubMed Central
PMC7241704
DOI
10.1371/journal.pone.0233353
PII: PONE-D-20-05236
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- geografická kartografie * MeSH
- lidé středního věku MeSH
- lidé MeSH
- lineární modely MeSH
- mladý dospělý MeSH
- počítačová grafika MeSH
- reakční čas MeSH
- zeměpis metody statistika a číselné údaje MeSH
- zobrazování trojrozměrné metody statistika a číselné údaje MeSH
- zraková percepce MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The use of 3D visualization technologies has increased rapidly in many applied fields, including geovisualization, and has been researched from many different perspectives. However, the findings for the benefits of 3D visualization, especially in stereoscopic 3D forms, remain inconclusive and disputed. Stereoscopic "real" 3D visualization was proposed as encouraging the visual perception of shapes and volume of displayed content yet criticised as problematic and limited in a number of ways, particularly in visual discomfort and increased response time in tasks. In order to assess the potential of real 3D visualization for geo-applications, 91 participants were engaged in this study to work with digital terrain models in different 3D settings. The researchers examined the effectivity of stereoscopic real 3D visualization compared to monoscopic 3D (or pseudo 3D) visualization under static and interactive conditions and applied three tasks with experimental stimuli representing different geo-related phenomena, i.e. objects in the terrain, flat areas marked in the terrain and terrain elevation profiles. The authors explored the significant effects of real 3D visualization and interactivity factors in terms of response time and correctness. Researchers observed that the option to interact (t = -10.849, p < 0.001) with a virtual terrain and its depiction with real 3D visualization (t = 4.64, p < 0.001) extended the participants' response times. Counterintuitively, the data demonstrated that the static condition increased response correctness (z = 5.38, p < 0.001). Regarding detailed analysis of data, an interactivity factor was proposed as a potential substitute for real 3D visualization in 3D geographical tasks.
Department of Geography Faculty of Science Masaryk University Brno Czech Republic
Department of Information and Library Studies Faculty of Arts Masaryk University Brno Czech Republic
Department of Psychology Faculty of Arts Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Hirmas DR., Slocum T, Halfen AF, White T, Zautner E, Atchley P, et al. Effects of Seating Location and Stereoscopic Display on Learning Outcomes in an Introductory Physical Geography Class. Journal of Geoscience Education 2014; 62(1): 126–137. 10.5408/12-362.1 DOI
Philips A, Walz A, Bergner A, Graeff T, Heistermann M, Kienzler S, et al. Immersive 3D Geovisualization in Higher Education. Journal of Geography in Higher Education 2015; 39(3), 437–449. 10.1080/03098265.2015.1066314 DOI
Stojšić I, Ivkov Džigurski A, Maričić O, Ivanović Bibić L, Đukičin Vučković S. Possible Application of Virtual Reality in Geography Teaching. Journal of Subject Didactics 2017; 1(2): 83–96. 10.5281/zenodo.438169 DOI
Carbonell-Carrera C, Saorín J. Geospatial Google Street View with Virtual Reality: A Motivational Approach for Spatial Training Education. ISPRS International Journal of Geo-Information 2017, 6(9): 1–10. 10.3390/ijgi6090261 DOI
Šašinka Č, Stachoň Z, Sedlák M, Chmelík J, Herman L, Kubíček P, et al. Collaborative Immersive Virtual Environments for Education in Geography. ISPRS International Journal of Geo-Information 2019; 8(1): 1–25. 10.3390/ijgi8010003 DOI
Abulrub A-HG, Budabuss K, Mayer P, Williams MA. The 3D Immersive Virtual Reality Technology Use for Spatial Planning and Public Acceptance. Procedia—Social and Behavioral Sciences 2013; 75(2013): 328–337. 10.1016/j.sbspro.2013.04.037 DOI
Jamei E, Mortimer M, Seyedmahmoudian M, Horan B, Stojcevski A. Investigating the Role of Virtual Reality in Planning for Sustainable Smart Cities. Sustainability 2017; 9(11): 1–16; 10.3390/su9112006 DOI
Afrooz AE, Lowe R, Leao SZ, Pettit C. 3D and Virtual Reality for Supporting Redevelopment Assessment In: Reed R, Pettit C, editors. Real Estate and GIS, 2018. London, UK: Routledge; pp. 162–185. 2018. 10.1201/9781315642789-9 DOI
Tang C-H, Wu W-T, Lin C-Y. Using Virtual Reality to Determine How Emergency Signs Facilitate Way-finding. Applied Ergonomy 2009; 40(4): 722–730. 10.1016/j.apergo.2008.06.009 PubMed DOI
Smith S, Ericson E. Using Immersive Game-based Virtual Reality to Teach Fire-safety Skills to Children. Virtual Reality 2009; 13: 87–99. 10.1007/s10055-009-0113-6 DOI
Meng F, Zhang W. Way-finding during a Fire Emergency: an Experimental Study in a Virtual Environment. Ergonomics 2014; 57(6): 816–827. 10.1080/00140139.2014.904006 PubMed DOI
Preppernau CA, Jenny B. Three-dimensional versus Conventional Volcanic Hazard Maps. Natural Hazards 2015; 78(2): 1329.1347 10.1007/s11069-015-1773-z DOI
Charvát K, Řezník T, Lukas V, Charvát K jr, Jedlička K, Palma R, et al. Advanced Visualisation of Big Data for Agriculture as Part of DataBio Development In: IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 415–418). Valencia, Spain: IEEE; 2018. 10.1109/IGARSS.2018.8517556 DOI
Chmielewski S, Tompalski P. Estimating Outdoor Advertising Media Visibility with Voxel-based Approach. Applied Geography, 87(2017): 1–13. 10.1016/j.apgeog.2017.07.007 DOI
Savova D, Bandrova T. 3D Mapping of Mountain Territories—Virtual Visualization by 3D Symbol System In: Bandrova T, Koneč M, editors. Proceedings of the 5th International Conference on Cartography and GIS (pp. 388–396). Riviera, Bulgaria: Bulgarian Cartographic Association; 2014.
McKenzie G, Klippel A. The Interaction of Landmarks and Map Alignment in You-Are-Here Maps. Cartographic Journal 2016; 53(1): 43–54. 10.1179/1743277414Y.0000000101 DOI
Liao H, Dong W. An Exploratory Study Investigating Gender Effects on Using 3D Maps for Spatial Orientation in Wayfinding. ISPRS International Journal of Geo-Information 2017, 6(3): 1–19. 10.3390/ijgi6030060 DOI
Zhou Y, Dao THD, Thill J-C, Delmelle E. Enhanced 3D Visualization Techniques in Support of Indoor Location Planning. Computers, Environment and Urban Systems 2016; 50(2015): 15–29. 10.1016/j.compenvurbsys.2014.10.003 DOI
Snopková D, Švedová H, Kubíček P, Stachoň Z. Navigation in Indoor Environments: Does the Type of Visual Learning Stimulus Matter?. ISPRS International Journal of Geo-Information 2019; 8(6): 1–26. 10.3390/ijgi8060251 DOI
Bleisch S. 3D Geovisualization—Definition and Structures for the Assessment of Usefulness. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences 2012. I-2 129–134. 10.5194/isprsannals-I-2-129-2012 DOI
MacEachren AM, Kraak MJ. Research Challenges in Geovisualization Cartography and Geographic Information Science 2001, 28(1): 3–12. 10.1559/152304001782173970 DOI
Buchroithner MF, Knust C. True-3D in Cartography. Current Hard and Softcopy Developments In: Moore A, Drecki I, editors. Geospatial Visualisation, 2013. Heidelberg, Germany: Springer; pp. 41.65 10.1007/978-3-642-12272-9 DOI
Seipel S. Evaluating 2D and 3D Geovisualisations for Basic Spatial Assessment. Behaviour & Information Technology 2013; 32(8): 845–858. 10.1080/0144929X.2012.661555 DOI
Aflaki P, Hannuksela M, Sarbolandi H, Gabbouj M. Simultaneous 2D and 3D Perception for Stereoscopic Displays based on Polarized or Active Shutter Glasses. Journal of Visual Communication and Image Representation 2014; 25(4): 622–631. 10.1016/j.jvcir.2013.03.014 DOI
Choi H. Current Status of Stereoscopic 3D LCD TV Technologies. 3D Research 2011; 2(2): 1–4. 10.1007/3DRes.02(2011)4 DOI
Qian N. Binocular Disparity and the Perception of Depth. Neuron 1997; 18(3): 359–368. 10.1016/s0896-6273(00)81238-6 PubMed DOI
Landy M, Maloney L, Johnston E, Young M. Measurement and Modeling of Depth Cue Combination: in Defense of Weak Fusion. Vision Research 1995; 35(3): 389–412. 10.1016/0042-6989(94)00176-m PubMed DOI
Livatino S, De Paolis LT, D’Agostino M, Zocco A, Agrimi A, De Santis A, et al. Stereoscopic Visualization and 3-D Technologies in Medical Endoscopic Teleoperation. IEEE Transactions on Industrial Electronics 2015; 62(1): 525–535. 10.1109/TIE.2014.2334675 DOI
Weber A, Jenny B, Wanner M, Cron J, Marty P, Hurni L. Cartography Meets Gaming: Navigating Globes, Block Diagrams and 2D Maps with Gamepads and Joysticks. Cartographic Journal 2010; 47(1): 92–100. 10.1179/000870409X12472347560588 DOI
Torres J, Ten M, Zarzoso J, Salom L, Gaitán R, Lluch J. Comparative Study of Stereoscopic Techniques Applied to a Virtual Globe. Cartographic Journal 2013; 50(4): 369–375. 10.1179/1743277413Y.0000000034 DOI
Dušek R, Miřijovský J. Vizualizace prostorových dat: chaos v dimenzích [Visualization of Geospatial Data: Chaos in the Dimensions]. Geografie 2009, 114(3): 169–178.
IEEE 610:1990. IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries. Piscataway, NJ, USA: IEEE; 1990.
Rubin J, Chisnell D, Spool J. Handbook of Usability Testing: How to Plan, Design, and Conduct Effective Tests. 2nd ed Hoboken, NJ, USA: Wiley; 2008.
Van Beurden MHPH, Kuijsters A, Ijsselsteijn WA. Performance of a Path Tracing Task Using Stereoscopic and Motion based Depth Cues In: Second International Workshop on Quality of Multimedia Experience (QoMEX) (pp. 176–18). Trondheim, Norway: IEEE; 2010. 10.1109/QOMEX.2010.5516268 DOI
Rydmark M, Kling-Petersen T, Pascher R, Philip F. 3D Visualization and Stereographic Techniques for Medical Research and Education. Studies in Health Technology and Informatics 2001. 81: 434–439. 10.3233/978-1-60750-925-7-434 PubMed DOI
Juřík V, Herman L, Šašinka Č, Stachoň Z, Chmelík J. When the Display Matters: A Multifaceted Perspective on 3D Geovisualizations. Open Geosciences 2017, 9(1): 89–100. 10.1515/geo-2017-0007 DOI
Fuhrmann S, Komogortsev O, Tamir D. Investigating Hologram-Based Route Planning. Transactions in GIS 2009, 13(s1): 177–196. 10.1111/j.1467-9671.2009.01158.x DOI
Kjellin A, Pettersson LW, Seipel S, Lind M. Evaluating 2D and 3D Visualizations of Spatiotemporal Information. ACM Transactions on Applied Perception 2010; 7(3): 1–23. 10.1145/1773965.1773970 DOI
Seipel S, Carvalho L. Solving Combined Geospatial Tasks Using 2D and 3D Bar Charts In: 16th International Conference on Information Visualisation (pp. 157–163). Montpellier, France: IEEE; 2012. 10.1109/IV.2012.36 DOI
Edler D, Bestgen A, Kuchinke L. Dickmann F. Grids in Topographic Maps Reduce Distortions in the Recall of Learned Object Locations. PLoS ONE 2014, 9(5): 1–10. 10.1371/journal.pone.0098148 PubMed DOI PMC
Zanola S, Fabrikant SI, Çöltekin A. The Effect of Realism on the Confidence in Spatial Data Quality in Stereoscopic 3D Displays In: Proceedings, 24th International Cartography Conference (ICC 2009). Santiago: ICA; 2009. http://www.geo.uzh.ch/~sara/pubs/zanola_fabrikant_coeltekin_icc09.pdf
Shepherd I. Travails in the Third Dimension: A Critical Evaluation of Three Dimensional Geographical Visualization In: Dodge M, McDerby M, Turner M, editors. Geographic Visualization: Concepts, Tools and Applications; 2008. Hoboken, NJ, USA: Wiley; pp. 199–222.
Roth RE. Cartographic Interaction Primitives: Framework and Synthesis. Cartographic Journal 2012; 49(4): 376–395. 10.1179/1743277412Y.0000000019 DOI
Carbonell-Carrera C. Spatial-Thinking Knowledge Acquisition from Route-Based Learning and Survey Learning: Improvement of Spatial Orientation Skill with Geographic Information Science Sources. Journal of Surveying Engineering 2017, 143(1), 05016009 10.1061/(asce)su.1943-5428.0000200 DOI
Herman L, Juřík V, Stachoň Z, Vrbík D, Russnák J, Řezník T. Evaluation of User Performance in Interactive and Static 3 D Maps. ISPRS International Journal of Geo-Information 2018; 7(11): 1–25. 10.3390/ijgi7110415 DOI
Carbonell-Carrera C, Gunalp P, Saorin JL, Hess-Medler S. Think Spatially With Game Engine. ISPRS International Journal of Geo-Information 2020, 9(3), 159 10.3390/ijgi9030159 DOI
Bleisch S, Dykes J, Nebiker S. Evaluating the Effectiveness of Representing Numeric Information through Abstract Graphics in 3D Desktop Virtual Environments. Cartographic Journal 2013; 45(3): 216–226. 10.1179/000870408X311404 DOI
erbert G, Chen X. A Comparison of Usefulness of 2D and 3D Representations of Urban Planning. Cartography and Geographic Information Science 2014, 42(1): 22–32. 10.1080/15230406.2014.987694 DOI
Kubíček P, Šašinka Č, Stachoň Z, Herman L, Juřík V, Urbánek T, et al. Identification of Altitude Profiles in 3D Geovisualizations: The Role of Interaction and Spatial Abilities. International Journal of Digital Earth 2019; 12(2): 156–172. 10.1080/17538947.2017.1382581 DOI
Bingham G, Lind M. Large Continuous Perspective Transformations are Necessary and Sufficient for Accurate Perception of Metric Shape. Perception & Psychophysics 2008; 70(3): 524–540. 10.3758/PP.70.3.524 PubMed DOI
Rogers B, Graham M. Similarities between Motion Parallax and Stereopsis in Human Depth Perception. Vision research 1982; 22(2): 261–270. 10.1016/0042-6989(82)90126-2 PubMed DOI
Keehner M, Hegarty M, Cohen C, Khooshabeh P, Montello D. Spatial Reasoning With External Visualizations: What Matters Is What You See, Not Whether You Interact. Cognitive Science: A Multidisciplinary Journal 2008; 32(7): 1099–1132. 10.1080/03640210801898177 PubMed DOI
Liu B, Dong W, Meng L. Using Eye Tracking to Explore the Guidance and Constancy of Visual Variables in 3D Visualization. ISPRS International Journal of Geo-Information 2017, 6(9): 1–18. 10.3390/ijgi6090274 DOI
Juřík V, Herman L, Šašinka Č, Stachoň Z, Chmelík J, Strnadová A, et al. Behavior Analysis in Virtual Geovisualizations: Towards Ecological Validity In Bandrova T, Konečný M, editors. Proceedings of the 7th International Conference on Cartography and GIS (pp. 518–527). Sofia, Bulgaria: Bulgarian Cartographic Association, 2018.
Ugwitz P, Juřík V, Herman L, Stachoň Z, Kubíček P, Šašinka Č. Spatial Analysis of Navigation in Virtual Geographic Environments. Applied Sciences 2019; 9(9): 1–22. 10.3390/app9091873 DOI
Quesenbery W. What Does Usability Mean: Looking Beyond ‘Ease of Use’ In: Proceedings of the 48th Annual Conference, Society for Technical Communication (pp. 432–436). Chicago, USA: Society for Technical Communication; 2001. https://www.wqusability.com/articles/more-than-ease-of-use.html
Naepflin U, Menozzi M. Can Movement Parallax Compensate Lacking Stereopsis in Spatial Explorative Search Tasks?. Displays 2001; 22(2): 157–164. 10.1016/S0141-9382(01)00067-1 DOI
Sollenberger RL, Milgram P. Effects of Stereoscopic and Rotational Displays in a Three-dimensional Path-tracing Task. Journal of the Human Factors and Ergonomics Society 35(3): 483–99. 10.1177/001872089303500306 PubMed DOI
Ware C, Franck G. Evaluating Stereo and Motion Cues for Visualizing Information Nets in Three Dimensions. ACM Transactions on Graphics 1996; 15 (2): 121–140. 10.1145/234972.234975 DOI
Faubert J. Motion Parallax, Stereoscopy, and the Perception of Depth: Practical and Theoretical Issues In: Proceedings of SPIE (pp. 168–191). Boston, USA: 2001. 10.1117/12.419794 DOI
Český úřad zeměměřický a katastrální. Ortofoto; 2018/2019 © [cited 2020 Apr 5]. Ortofoto [Web Map Service]. https://geoportal.cuzk.cz/WMS_ORTOFOTO_PUB/WMService.aspx
Kudrnovská O, Kousal J. Výšková členitost reliéfu ČSR, Mapa 1:500 000. Brno, ČSR: Geografický ústav ČSAV; 1971.
Kirby KN, Gerlanc D. BootES: An R Package for Bootstrap Confidence Intervals on Effect Sizes. Behavior Research Methods 2013; 45(4), 905–927. 10.3758/s13428-013-0330-5 PubMed DOI
R Development Core Team. R. 2015.
Bates DM, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 2015; 67(1): 1–48. 10.18637/jss.v067.i01 DOI
Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software 2017; 82(13). 10.18637/jss.v082.i13 DOI