The role of the microbiome and psychosocial stress in the expression and activity of drug metabolizing enzymes in mice
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32444678
PubMed Central
PMC7244717
DOI
10.1038/s41598-020-65595-9
PII: 10.1038/s41598-020-65595-9
Knihovny.cz E-zdroje
- MeSH
- játra enzymologie mikrobiologie MeSH
- messenger RNA genetika metabolismus MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- psychický stres * MeSH
- regulace genové exprese enzymů MeSH
- střevní mikroflóra fyziologie MeSH
- systém (enzymů) cytochromů P-450 genetika metabolismus MeSH
- transkripční faktory genetika metabolismus MeSH
- xenobiotika metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- systém (enzymů) cytochromů P-450 MeSH
- transkripční faktory MeSH
- xenobiotika MeSH
The gut microbiota is involved in a number of different metabolic processes of the host organism, including the metabolism of xenobiotics. In our study, we focused on liver cytochromes P450 (CYPs), which can metabolize a wide range of exo- and endogenous molecules. We studied changes in mRNA expression and CYP enzyme activities, as well as the mRNA expression of transcription factors that have an important role in CYP expression, all in stressed germ-free (GF) and stressed specific-pathogen-free (SPF) mice. Besides the presence of the gut microbiota, we looked at the difference between acute and chronic stress. Our results show that stress has an impact on CYP mRNA expression, but it is mainly chronic stress that has a significant effect on enzyme activities along with the gut microbiome. In acutely stressed mice, we observed significant changes at the mRNA level, however, the corresponding enzyme activities were not influenced. Our study suggests an important role of the gut microbiota along with chronic psychosocial stress in the expression and activity of CYPs, which can potentially lead to less effective drug metabolism and, as a result, a harmful impact on the organism.
Institute of Microbiology Academy of Sciences of the Czech Republic Nový Hrádek Czech Republic
Institute of Physiology Academy of Sciences of the Czech Republic Prague Czech Republic
Zobrazit více v PubMed
D’Argenio V, Salvatore F. The role of the gut microbiome in the healthy adult status. Clin Chim Acta. 2015;451:97–102. doi: 10.1016/j.cca.2015.01.003. PubMed DOI
Walker AW, Duncan SH, Louis P, Flint HJ. Phylogeny, culturing, and metagenomics of the human gut microbiota. Trends Microbiol. 2014;22:267–274. doi: 10.1016/j.tim.2014.03.001. PubMed DOI
Lankelma JM, Nieuwdorp M, de Vos WM, Wiersinga WJ. The gut microbiota in internal medicine: implications for health and disease. Neth J Med. 2015;73:61–68. PubMed
Lynch SV, Pedersen O. The Human Intestinal Microbiome in Health and Disease. N Engl J Med. 2016;375:2369–2379. doi: 10.1056/NEJMra1600266. PubMed DOI
Claus SP, Guillou H, Ellero-Simatos S. The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes. 2016;2:16003. doi: 10.1038/npjbiofilms.2016.3. PubMed DOI PMC
Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nature reviews. Microbiology. 2016;14:273–287. doi: 10.1038/nrmicro.2016.17. PubMed DOI PMC
Wilson ID, Nicholson JK. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res. 2017;179:204–222. doi: 10.1016/j.trsl.2016.08.002. PubMed DOI PMC
Park BK, Pirmohamed M, Kitteringham NR. The role of cytochrome P450 enzymes in hepatic and extrahepatic human drug toxicity. Pharmacol Ther. 1995;68:385–424. doi: 10.1016/0163-7258(95)02013-6. PubMed DOI
Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138:103–141. doi: 10.1016/j.pharmthera.2012.12.007. PubMed DOI
Guengerich, F. P. In Cytochrome P450: Structure, Mechanism, and Biochemistry (ed. Paul R. Ortiz de Montellano) 523-785 (Springer International Publishing (2015).
Korecka A, et al. Bidirectional communication between the Aryl hydrocarbon Receptor (AhR) and the microbiome tunes host metabolism. NPJ Biofilms Microbiomes. 2016;2:16014. doi: 10.1038/npjbiofilms.2016.14. PubMed DOI PMC
Yang H, Wang H. Signaling control of the constitutive androstane receptor (CAR) Protein Cell. 2014;5:113–123. doi: 10.1007/s13238-013-0013-0. PubMed DOI PMC
Xing Y, Yan J, Niu Y. PXR: a center of transcriptional regulation in cancer. Acta Pharm Sin B. 2020;10:197–206. doi: 10.1016/j.apsb.2019.06.012. PubMed DOI PMC
Timsit YE, Negishi M. CAR and PXR: the xenobiotic-sensing receptors. Steroids. 2007;72:231–246. doi: 10.1016/j.steroids.2006.12.006. PubMed DOI PMC
Thomas M, et al. Peroxisome proliferator-activated receptor alpha, PPARalpha, directly regulates transcription of cytochrome P450 CYP2C8. Front Pharmacol. 2015;6:261. doi: 10.3389/fphar.2015.00261. PubMed DOI PMC
Harvey RD, Morgan ET. Cancer, inflammation, and therapy: effects on cytochrome p450-mediated drug metabolism and implications for novel immunotherapeutic agents. Clinical pharmacology and therapeutics. 2014;96:449–457. doi: 10.1038/clpt.2014.143. PubMed DOI
Slavich GM, Irwin MR. From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol Bull. 2014;140:774–815. doi: 10.1037/a0035302. PubMed DOI PMC
Schneiderman N, Ironson G, Siegel SD. Stress and health: psychological, behavioral, and biological determinants. Annu Rev Clin Psychol. 2005;1:607–628. doi: 10.1146/annurev.clinpsy.1.102803.144141. PubMed DOI PMC
Konstandi M, Johnson EO, Lang MA. Consequences of psychophysiological stress on cytochrome P450-catalyzed drug metabolism. Neurosci Biobehav Rev. 2014;45:149–167. doi: 10.1016/j.neubiorev.2014.05.011. PubMed DOI
Segerstrom SC, Miller GE. Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry. Psychological Bulletin. 2004;130:601–630. doi: 10.1037/0033-2909.130.4.601. PubMed DOI PMC
Bjorkholm B, et al. Intestinal microbiota regulate xenobiotic metabolism in the liver. PloS one. 2009;4:e6958. doi: 10.1371/journal.pone.0006958. PubMed DOI PMC
Selwyn FP, Cui JY, Klaassen CD. RNA-Seq Quantification of Hepatic Drug Processing Genes in Germ-Free Mice. Drug metabolism and disposition: the biological fate of chemicals. 2015;43:1572–1580. doi: 10.1124/dmd.115.063545. PubMed DOI PMC
Neavin, D. R., Liu, D., Ray, B. & Weinshilboum, R. M. The Role of the Aryl Hydrocarbon Receptor (AHR) in Immune and Inflammatory Diseases. Int J Mol Sci 19, 10.3390/ijms19123851 (2018). PubMed PMC
Gao J, Xie W. Targeting xenobiotic receptors PXR and CAR for metabolic diseases. Trends Pharmacol Sci. 2012;33:552–558. doi: 10.1016/j.tips.2012.07.003. PubMed DOI PMC
Kaipainen A, et al. PPARalpha deficiency in inflammatory cells suppresses tumor growth. PloS one. 2007;2:e260. doi: 10.1371/journal.pone.0000260. PubMed DOI PMC
Zidek Z, Anzenbacher P, Kmonickova E. Current status and challenges of cytokine pharmacology. Br J Pharmacol. 2009;157:342–361. doi: 10.1111/j.1476-5381.2009.00206.x. PubMed DOI PMC
Richardson TA, Morgan ET. Hepatic cytochrome P450 gene regulation during endotoxin-induced inflammation in nuclear receptor knockout mice. J Pharmacol Exp Ther. 2005;314:703–709. doi: 10.1124/jpet.105.085456. PubMed DOI
Aitken AE, Richardson TA, Morgan ET. Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol. 2006;46:123–149. doi: 10.1146/annurev.pharmtox.46.120604.141059. PubMed DOI
Kelly JR, et al. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci. 2015;9:392. doi: 10.3389/fncel.2015.00392. PubMed DOI PMC
Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol Stress. 2017;7:124–136. doi: 10.1016/j.ynstr.2017.03.001. PubMed DOI PMC
Kozakova H, et al. Colonization of germ-free mice with a mixture of three lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization. Cellular & molecular immunology. 2016;13:251–262. doi: 10.1038/cmi.2015.09. PubMed DOI PMC
Vodicka M, et al. Microbiota affects the expression of genes involved in HPA axis regulation and local metabolism of glucocorticoids in chronic psychosocial stress. Brain Behav Immun. 2018;73:615–624. doi: 10.1016/j.bbi.2018.07.007. PubMed DOI
Zimprich A, et al. A robust and reliable non-invasive test for stress responsivity in mice. Front Behav Neurosci. 2014;8:125. doi: 10.3389/fnbeh.2014.00125. PubMed DOI PMC
Wu XY, et al. Effect of pentobarbital and isoflurane on acute stress response in rat. Physiol Behav. 2015;145:118–121. doi: 10.1016/j.physbeh.2015.04.003. PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Lake, B. G. in Biochemical Toxicology, A Practical Approach Ch. 183-215, (IRL Press (1987).
Schenkman JB, Jansson I. Spectral analyses of cytochromes P450. Methods Mol Biol. 1998;107:25–33. doi: 10.1385/0-89603-519-0:25. PubMed DOI
Phillips I, Shephard E. Cytochrome P450 Protocols. Humana Press. 2006;320:364. doi: 10.1385/1592599982. DOI
Kronbach T, Mathys D, Umeno M, Gonzalez FJ, Meyer UA. Oxidation of Midazolam and Triazolam by Human-Liver Cytochrome P450iiia4. Molecular Pharmacology. 1989;36:89–96. PubMed
Butyrate Treatment of DSS-Induced Ulcerative Colitis Affects the Hepatic Drug Metabolism in Mice