Influence of Exhaust System Setup on Working Zone Pollution by Dust during Sawing of Particleboards
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32455760
PubMed Central
PMC7277351
DOI
10.3390/ijerph17103626
PII: ijerph17103626
Knihovny.cz E-zdroje
- Klíčová slova
- dust emission, dust exhaust system, particleboard, sawing, wood dust,
- MeSH
- dřevo MeSH
- inhalační expozice MeSH
- látky znečišťující vzduch v pracovním prostředí * MeSH
- prach * MeSH
- pracovní expozice * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- látky znečišťující vzduch v pracovním prostředí * MeSH
- prach * MeSH
Air pollution by wood dust in furniture production sites is an important hygiene issue. The dust is created by all types of wood and wood-based material machining, and its concentration in the working zone surrounding the machining stand depends on the effectiveness of the dust exhaust system. In present research, three setups of the dust extraction system for a conventional table sawing machine are considered while machining particleboards. The results showed a high impact of the exhaust system connection setup on the dust concentration in the air surrounding the sawing machine work stand. The use of both main and auxiliary sawdust extraction connectors together ensured the highest clearness of the air, with only 0.5 mg/m3 of dust concentration. Closing the upper hood leads to a concentration five times higher, while disconnecting it results in a ten times higher dust content. The finest dust particles (<1 µm), however, are the most numerous in the case of closing the hood.
Zobrazit více v PubMed
Palmqvist J., Gustafsson S.-I. Emission of dust in planing and milling of wood. Holz Als Roh Und Werkstoff. 1999;57:164–170. doi: 10.1007/s001070050035. DOI
Fujimoto K., Takano T., Okumura S. Difference in mass concentration of airborne dust during circular sawing of five wood-based materials. J. Wood Sci. 2011;57:149–154. doi: 10.1007/s10086-010-1145-y. DOI
Kučerka M., Očkajová A. Thermowood and granularity of abrasive wood dust. Acta Facultatis Xylologiae Zvolen res Publica Slovaca. 2018;60:43–51. doi: 10.17423/afx.2018.60.2.04. DOI
Piernik M., Rogoziński T., Krauss A., Pinkowski G. The influence of the thermal modification of pine (Pinus sylvestris L.) wood on the creation of fine dust particles in plane milling: Fine dust creation in the plane milling of thermally modified pine wood. J. Occup. Health. 2019;61:481–488. doi: 10.1002/1348-9585.12075. PubMed DOI PMC
Mračková E., Krišťák Ľ., Kučerka M., Gaff M., Gajtanska M. Creation of wood dust during wood processing: Size analysis, dust separation, and occupational health. BioResources. 2015;11:209–222. doi: 10.15376/biores.11.1.209-222. DOI
Baran S., Teul I. Wood dust: An occupational hazard which increases the risk of respiratory disease. J. Physiol. Pharmacol. 2007;58:43–50. PubMed
Kos A., Beljo-Lučić R., Šega K., Rapp A.O. Influence of woodworking machine cutting parameters on the surrounding air dustiness. Holz Als Roh Und Werkstoff. 2004;62:169–176. doi: 10.1007/s00107-004-0473-2. DOI
Čavlović A., Beljo Lučić R., Ištvanić J. Exposure to wood dust in Croatian woodworking industry. Wood Res. 2009;54:109–116.
Chung K.Y.K., Cuthbert R.J., Revell G.S., Wassel S.G., Summers N. A study on dust emission, particle size distribution and formaldehyde concentration during machining of medium density fibreboard. Ann. Occup. Hyg. 2000;44:455–466. doi: 10.1016/S0003-4878(00)00005-3. PubMed DOI
Liou S., Cheng S., Lai F., Yang J. Respiratory symptoms and pulmonary function in mill workers exposed to wood dust. Am. J. Ind. Med. 1996;30:293–299. doi: 10.1002/(SICI)1097-0274(199609)30:3<293::AID-AJIM7>3.0.CO;2-#. PubMed DOI
Baran S., Swietlik K., Teul I. Lung function: Occupational exposure to wood dust. Eur. J. Med. Res. 2009;14:14–17. doi: 10.1186/2047-783X-14-S4-14. PubMed DOI PMC
Heikkilä P., Martikainen R., Kurppa K., Husgafvel-Pursiainen K., Karjalainen A. Asthma incidence in wood-processing industries in Finland in a register-based population study. Scand. J. Work Environ. Health. 2008;34:66–72. doi: 10.5271/sjweh.1191. PubMed DOI
Llorente J.L., Pérez-Escuredo J., Alvarez-Marcos C., Suárez C., Hermsen M. Genetic and clinicalaspects of wood dust related intestinal-type sinonasal adenocarcinoma: A review. Eur. Arch. Otorhinolaryngol. 2009;266:1–7. doi: 10.1007/s00405-008-0749-y. PubMed DOI
Jacobsen G., Schaumburg I., Sigsgaard T., Schlünssen V. Non-malignant respiratory diseases and occupational exposure to wood dust. Part II. Dry wood industry. Ann. Agric. Environ. Med. 2010;17:29–44. PubMed
Schlünssen V., Kespohl S., Jacobsen G., Raulf-Heimsoth M., Schaumburg I., Sigsgaard T. Immunoglobulin E-mediated sensitization to pine and beech dust in relation to wood dust exposure levels and respiratory symptoms in the furniture industry. Scand. J. Work. Environ. Health. 2011;37:159–167. doi: 10.5271/sjweh.3087. PubMed DOI
Siew S.S., Kauppinen T., Kyyrönen P., Heikkilä P., Pukkala E. Occupational exposure to wood dust and formaldehyde and risk of nasal, nasopharyngeal, and lung cancer among Finnish men. Cancer Manag. Res. 2012;4:223–232. doi: 10.2147/CMAR.S30684. PubMed DOI PMC
Zhang J.X., Xu H., Shen T., Zhu Q.X. Wood dust exposure and risk of sinonasal and nasopharyngeal cancer: A meta-analysis. Austin J. Dermatol. 2014;1:1009.
Hancock D.G., Langley M.E., Chia K.L., Woodman R.J., Shanahan E.M. Wood dust exposure and lung cancer risk: A meta-analysis. Int. J. Cardiol. 2015;72:889–898. doi: 10.1136/oemed-2014-102722. PubMed DOI
Staffieri C., Lovato A., Aielli F., Bortoletto M., Giacomelli L., Carrieri M., Romeo S., Boscolo-Rizzo P., Da Mosto M.C., Bartolucci G.B., et al. Investigating nasal cytology as a potential tool for diagnosing occupational rhinitis in woodworkers. Int. Forum Allergy Rhinol. 2015;5:814–819. doi: 10.1002/alr.21562. PubMed DOI
Vallières E., Pintos J., Parent M.E., Siemiatycki J. Occupational exposure to wood dust and risk of lung cancer in two population-based case-control studies in Montreal, Canada. Environ. Health. 2015;14:1. doi: 10.1186/1476-069X-14-1. PubMed DOI PMC
Wiggans R.E., Evans G., Fishwick D., Barber C.M. Asthma in furniture and wood processing workers: A systematic review. Occup. Med. 2016;66:193–201. doi: 10.1093/occmed/kqv149. PubMed DOI
Top Y. Relationship between Employees’ Perception of Airborne Wood Dust and Ventilation Applications in Micro-Scale Enterprises Producing Furniture. BioResources. 2020;15:1252–1264. doi: 10.15376/biores.15.1.1252-1264. DOI
Wieloch G., Mostowski R. The new construction the exhaust fan for woodworking machine dedusting. Ann. WULS—SGGW For. Wood Technol. 2011;76:180–183.
Scheeper B., Kromhout H., Boleij J.S.M. Wood-dust exposure during wood-working processes. Ann. Occup. Hyg. 1995;39:141–154. doi: 10.1016/0003-4878(94)00105-A. PubMed DOI
Felder Manuals . Workshop Formatting Saw. Felder KG; Hall in Tirol, Austria: 2015. (In Polish)
Beljo-Lučić R., Čavlović A.O., Jug M. Definitions and relation of airborne wood dust fractions; Proceedings of the 4th International Scientific Conference—Woodworking Techniques; Prague, Czech Republic. 7–10 September 2011.
Očkajová A., Beljo Lučić R., Čavlović A., Terenòvá J. Reduction of dustiness in sawing wood by universal circular saw. Drvna Industrija. 2006;57:119–126.
Orłowski K.A., Chuchała D., Muziński T., Barański J., Banski A., Rogoziñski T. The effect of wood drying method on the granularity of sawdust obtained during the sawing process using the frame sawing machine. Acta Facultatis Xylologiae Zvolen Res Publica Slovaca. 2019;61:83–92. doi: 10.17423/afx.2019.61.1.08. DOI
Black N., Dilworth M., Summers N. Occupational Exposure to Wood Dust in the British Woodworking Industry in 1999/2000. Ann. Occup. Hyg. 2007;51:249–260. doi: 10.1093/annhyg/mem00. PubMed DOI
Baranski J., Jewartowski M., Wajs J., Orlowski K., Pikala T. Experimental examination and modification of chip suction system in circular sawing machine. Drvna Industrija. 2018;69:223–230. doi: 10.5552/drind.2018.1743. DOI
Barański J., Pikała T. Application in circular sawing machines of the experimental results of investigations of the chip removing system operation. Ann. WULS—SGGW For. Wood Technol. 2017;100:199–205.
Barański J., Jewartowski M., Wajs J., Orłowski K. Numerical analysis of chip removing system operation in circular sawing machine using CFD software. Chip Chipless Woodwork. Process. 2018;11:31–37.
Mikkelsen A.B., Schlünssen V., Sigsgaard T., Schaumburg I. Determinants of Wood Dust Exposure in the Danish Furniture Industry. Ann. Occup. Hyg. 2002;46:673–685. doi: 10.1093/annhyg/mef082. PubMed DOI