COP1 destabilizes DELLA proteins in Arabidopsis

. 2020 Jun 16 ; 117 (24) : 13792-13799. [epub] 20200529

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32471952

Grantová podpora
R01 GM056006 NIGMS NIH HHS - United States
R01 GM067837 NIGMS NIH HHS - United States
R37 GM067837 NIGMS NIH HHS - United States

DELLA transcriptional regulators are central components in the control of plant growth responses to the environment. This control is considered to be mediated by changes in the metabolism of the hormones gibberellins (GAs), which promote the degradation of DELLAs. However, here we show that warm temperature or shade reduced the stability of a GA-insensitive DELLA allele in Arabidopsis thaliana Furthermore, the degradation of DELLA induced by the warmth preceded changes in GA levels and depended on the E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). COP1 enhanced the degradation of normal and GA-insensitive DELLA alleles when coexpressed in Nicotiana benthamiana. DELLA proteins physically interacted with COP1 in yeast, mammalian, and plant cells. This interaction was enhanced by the COP1 complex partner SUPRESSOR OF phyA-105 1 (SPA1). The level of ubiquitination of DELLA was enhanced by COP1 and COP1 ubiquitinated DELLA proteins in vitro. We propose that DELLAs are destabilized not only by the canonical GA-dependent pathway but also by COP1 and that this control is relevant for growth responses to shade and warm temperature.

Departamento de Genética Molecular de Plantas Centro Nacional de Biotecnología Consejo Superior de Investigaciones Cientίficas 28049 Madrid Spain

Department of Molecular Biology and Radiobiology Central European Institute of Technology Faculty of AgriSciences Mendel University in Brno CZ 61300 Brno Czech Republic

Department of Neurology Keck School of Medicine University of Southern California Los Angeles CA 90098

Department of Plant Microbe Interactions and Cluster of Excellence in Plant Sciences Max Planck Institute for Plant Breeding Research 50829 Cologne Germany

Facultad de Veterinaria y Ciencias Experimentales Universidad Catόlica de Valencia 46001 Valencia Spain

Fundaciόn Instituto Leloir Instituto de Investigaciones Bioquίmicas de Buenos Aires Consejo Nacional de Investigaciones Cientίficas y Técnicas 1405 Buenos Aires Argentina

Fundaciόn Instituto Leloir Instituto de Investigaciones Bioquίmicas de Buenos Aires Consejo Nacional de Investigaciones Cientίficas y Técnicas 1405 Buenos Aires Argentina;

Institute of Synthetic Biology and Cluster of Excellence in Plant Sciences University of Düsseldorf 40225 Düsseldorf Germany

Instituto de Biologίa Molecular y Celular de Plantas Consejo Superior de Investigaciones Cientίficas Universidad Politécnica de Valencia 46022 Valencia Spain

Instituto de Biologίa Molecular y Celular de Plantas Consejo Superior de Investigaciones Cientίficas Universidad Politécnica de Valencia 46022 Valencia Spain;

Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura Facultad de Agronomίa Universidad de Buenos Aires Consejo Nacional de Investigaciones Cientίficas y Técnicas 1417 Buenos Aires Argentina

Zobrazit více v PubMed

Casal J. J., Fankhauser C., Coupland G., Blázquez M. A., Signalling for developmental plasticity. Trends Plant Sci. 9, 309–314 (2004). PubMed

Casal J. J., Photoreceptor signaling networks in plant responses to shade. Annu. Rev. Plant Biol. 64, 403–427 (2013). PubMed

Quint M. et al. ., Molecular and genetic control of plant thermomorphogenesis. Nat. Plants 2, 15190 (2016). PubMed

Claeys H., De Bodt S., Inzé D., Gibberellins and DELLAs: Central nodes in growth regulatory networks. Trends Plant Sci. 19, 231–239 (2014). PubMed

Van De Velde K., Ruelens P., Geuten K., Rohde A., Van Der Straeten D., Exploiting DELLA signaling in cereals. Trends Plant Sci. 22, 880–893 (2017). PubMed

Sun T. P., The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr. Biol. 21, R338–R345 (2011). PubMed

Alabadí D., Blázquez M. A., Molecular interactions between light and hormone signaling to control plant growth. Plant Mol. Biol. 69, 409–417 (2009). PubMed

Alabadí D. et al. ., Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness. Plant J. 53, 324–335 (2008). PubMed

Achard P. et al. ., DELLAs contribute to plant photomorphogenesis. Plant Physiol. 143, 1163–1172 (2007). PubMed PMC

Lantzouni O., Alkofer A., Falter-Braun P., Schwechheimer C., GROWTH-REGULATING FACTORS interact with DELLAs and regulate growth in cold stress. Plant Cell 32, 1018–1034 (2020). PubMed PMC

Stavang J. A. et al. ., Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J. 60, 589–601 (2009). PubMed

Arana M. V., Marín-de la Rosa N., Maloof J. N., Blázquez M. A., Alabadí D., Circadian oscillation of gibberellin signaling in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 108, 9292–9297 (2011). PubMed PMC

de Lucas M. et al. ., A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480–484 (2008). PubMed

Djakovic-Petrovic T., de Wit M., Voesenek L. A., Pierik R., DELLA protein function in growth responses to canopy signals. Plant J. 51, 117–126 (2007). PubMed

Park Y. J., Lee H. J., Ha J. H., Kim J. Y., Park C. M., COP1 conveys warm temperature information to hypocotyl thermomorphogenesis. New Phytol. 215, 269–280 (2017). PubMed

Catalá R., Medina J., Salinas J., Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 108, 16475–16480 (2011). PubMed PMC

Sheerin D. J. et al. ., Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex. Plant Cell 27, 189–201 (2015). PubMed PMC

Lian H. L. et al. ., Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism. Genes Dev. 25, 1023–1028 (2011). PubMed PMC

Liu B., Zuo Z., Liu H., Liu X., Lin C., Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes Dev. 25, 1029–1034 (2011). PubMed PMC

Lu X. D. et al. ., Red-light-dependent interaction of phyB with SPA1 promotes COP1-SPA1 dissociation and photomorphogenic development in Arabidopsis. Mol. Plant 8, 467–478 (2015). PubMed

Hoecker U., The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling. Curr. Opin. Plant Biol. 37, 63–69 (2017). PubMed

Silverstone A. L. et al. ., Repressing a repressor: Gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13, 1555–1566 (2001). PubMed PMC

Dill A., Jung H. S., Sun T. P., The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc. Natl. Acad. Sci. U.S.A. 98, 14162–14167 (2001). PubMed PMC

Cagnola J. I. et al. ., Long-day photoperiod enhances jasmonic acid-related plant defense. Plant Physiol. 178, 163–173 (2018). PubMed PMC

Pacín M., Legris M., Casal J. J., Rapid decline in nuclear COP1 abundance anticipates the stabilisation of its target HY5 in the light. Plant Physiol. 164, 1134–1138 (2014). PubMed PMC

Pacín M., Legris M., Casal J. J., COP1 re-accumulates in the nucleus under shade. Plant J. 75, 631–641 (2013). PubMed

Oravecz A. et al. ., CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis. Plant Cell 18, 1975–1990 (2006). PubMed PMC

Gil J., García-Martínez J. L., Light regulation of gibberellin A1 content and expression of genes coding for GA 20-oxidase and GA 3b-hydroxylase in etiolated pea seedlings. Physiol. Plant. 108, 223–229 (2000).

Zhao X. et al. ., A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation. Plant Physiol. 145, 106–118 (2007). PubMed PMC

Weller J. L., Hecht V., Vander Schoor J. K., Davidson S. E., Ross J. J., Light regulation of gibberellin biosynthesis in pea is mediated through the COP1/HY5 pathway. Plant Cell 21, 800–813 (2009). PubMed PMC

Alabadí D., Gil J., Blázquez M. A., García-Martínez J. L., Gibberellins repress photomorphogenesis in darkness. Plant Physiol. 134, 1050–1057 (2004). PubMed PMC

Gallego-Bartolomé J. et al. ., Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 109, 13446–13451 (2012). PubMed PMC

Hoecker U., Quail P. H., The phytochrome A-specific signaling intermediate SPA1 interacts directly with COP1, a constitutive repressor of light signaling in Arabidopsis. J. Biol. Chem. 276, 38173–38178 (2001). PubMed

Seo H. S. et al. ., LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423, 995–999 (2003). PubMed

von Arnim A. G., Deng X. W., Ring finger motif of Arabidopsis thaliana COP1 defines a new class of zinc-binding domain. J. Biol. Chem. 268, 19626–19631 (1993). PubMed

Deng X. W., Caspar T., Quail P. H., cop1: A regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev. 5, 1172–1182 (1991). PubMed

Delker C. et al. ., The DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis. Cell Rep. 9, 1983–1989 (2014). PubMed

Legris M. et al. ., Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354, 897–900 (2016). PubMed

Jung J. H. et al. ., Phytochromes function as thermosensors in Arabidopsis. Science 354, 886–889 (2016). PubMed

Bou-Torrent J. et al. ., Plant proximity perception dynamically modulates hormone levels and sensitivity in Arabidopsis. J. Exp. Bot. 65, 2937–2947 (2014). PubMed PMC

Willige B. C. et al. ., The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell 19, 1209–1220 (2007). PubMed PMC

Lau O. S., Deng X. W., The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci. 17, 584–593 (2012). PubMed

Love I. M., Grossman S. R., It takes 15 to tango: Making sense of the many Ubiquitin Ligases of p53. Genes Cancer 3, 249–263 (2012). PubMed PMC

Batada N. N., Hurst L. D., Tyers M., Evolutionary and physiological importance of hub proteins. PLOS Comput. Biol. 2, e88 (2006). PubMed PMC

Conti L. et al. ., Small Ubiquitin-like Modifier protein SUMO enables plants to control growth independently of the phytohormone gibberellin. Dev. Cell 28, 102–110 (2014). PubMed

Zentella R. et al. ., O-GlcNAcylation of master growth repressor DELLA by SECRET AGENT modulates multiple signaling pathways in Arabidopsis. Genes Dev. 30, 164–176 (2016). PubMed PMC

Zentella R. et al. ., The Arabidopsis O-fucosyltransferase SPINDLY activates nuclear growth repressor DELLA. Nat. Chem. Biol. 13, 479–485 (2017). PubMed PMC

Yang D. L. et al. ., Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc. Natl. Acad. Sci. U.S.A. 109, E1192–E1200 (2012). PubMed PMC

Crocco C. D. et al. ., The transcriptional regulator BBX24 impairs DELLA activity to promote shade avoidance in Arabidopsis thaliana. Nat. Commun. 6, 6202 (2015). PubMed

Yasumura Y., Crumpton-Taylor M., Fuentes S., Harberd N. P., Step-by-step acquisition of the gibberellin-DELLA growth-regulatory mechanism during land-plant evolution. Curr. Biol. 17, 1225–1230 (2007). PubMed

Bowman J. L. et al. ., Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171, 287–304 e15 (2017). PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Highlights in gibberellin research: A tale of the dwarf and the slender

. 2024 Apr 30 ; 195 (1) : 111-134.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...