Characterization and in vitro assembly of tick-borne encephalitis virus C protein
Language English Country Great Britain, England Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- C protein, DENV, TBEV, assembly, flavivirus, protein-nucleic acid interaction,
- MeSH
- Circular Dichroism MeSH
- Chromatography, Gel MeSH
- Hydrogen-Ion Concentration MeSH
- Magnetic Resonance Spectroscopy MeSH
- Nucleocapsid chemistry metabolism MeSH
- Recombinant Proteins chemistry genetics isolation & purification MeSH
- Viral Proteins chemistry genetics isolation & purification metabolism MeSH
- Dengue Virus chemistry MeSH
- Encephalitis Viruses, Tick-Borne chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Recombinant Proteins MeSH
- Viral Proteins MeSH
Tick-borne encephalitis virus (TBEV), a member of flaviviruses, represents a serious health threat by causing human encephalitis mainly in central and eastern Europe, Russia, and northeastern Asia. As no specific therapy is available, there is an urgent need to understand all steps of the TBEV replication cycle at the molecular level. One of the critical events is the packaging of flaviviral genomic RNA by TBEV C protein to form a nucleocapsid. We purified recombinant TBEV C protein and used a combination of physical-chemical approaches, such as size-exclusion chromatography, circular dichroism, NMR spectroscopies, and transmission electron microscopy, to analyze its structural stability and its ability to dimerize/oligomerize. We compared the ability of TBEV C protein to assemble in vitro into a nucleocapsid-like structure with that of dengue C protein.
Department of Biotechnology University of Chemistry and Technology Prague Prague Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Prague Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
NMR Laboratory University of Chemistry and Technology Prague Prague Czech Republic
See more in PubMed
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O et al. (2013) The global distribution and burden of dengue. Nature 496, 504-507.
Bogovic P and Strle F (2015) Tick-borne encephalitis: a review of epidemiology, clinical characteristics, and management. World J Clin Cases 3, 430-441.
Taba P, Schmutzhard E, Forsberg P, Lutsar I, Ljøstad U, Mygland Å, Levchenko I, Strle F and Steiner I (2017) EAN consensus review on prevention, diagnosis and management of tick-borne encephalitis. Eur J Neurol 24, 1214.e61.
Ruzek D, Avšič Županc T, Borde J, Chrdle A, Eyer L, Karganova G, Kholodilov I, Knap N, Kozlovskaya L, Matveev A et al. (2019) Tick-borne encephalitis in Europe and Russia: review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res 164, 23-51.
Kaiser R (2012) Tick-borne encephalitis-still a serious disease? Wien Med Wochenschr 162, 229.
Kollaritsch H, Chmelík V, Dontsenko I, Grzeszczuk A, Kondrusik M, Usonis V and Lakos A (2011) The current perspective on tick-borne encephalitis awareness and prevention in six Central and Eastern European countries: report from a meeting of experts convened to discuss TBE in their region. Vaccine 29, 4556-4564.
Chambers TJ, Hahn CS, Galler R and Rice CM (1990) Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44, 649-688.
Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG et al. (2002) Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717-725.
Fuzik T, Formanova P, Ruzek D, Yoshii K, Niedrig M and Plevka P (2018) Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat Commun 9, 436.
Mukhopadhyay S, Kim BS, Chipman PR, Rossmann MG and Kuhn RJ (2003) Structure of West Nile virus. Science 302, 248.
Zhang XK, Ge P, Yu XK, Brannan JM, Bi GQ, Zhang QF, Schein S and Zhou ZH (2013) Cryo-EM structure of the mature dengue virus at 3.5-angstrom resolution. Nat Struct Mol Biol 20, 105-U133.
Sirohi D, Chen ZG, Sun L, Klose T, Pierson TC, Rossmann MG and Kuhn RJ (2016) The 3.8 angstrom resolution cryo-EM structure of Zika virus. Science 352, 467-470.
Ferlenghi I, Clarke M, Ruttan T, Allison SL, Schalich J, Heinz FX, Harrison SC, Rey FA and Fuller SD (2001) Molecular organization of a recombinant subviral particle from tick-borne encephalitis. Mol Cell 7, 593-602.
Wang X, Li S-H, Zhu L, Nian Q-G, Yuan S, Gao Q, Hu Z, Ye Q, Li X-F, Xie D-Y et al. (2017) Near-atomic structure of Japanese encephalitis virus reveals critical determinants of virulence and stability. Nat Commun 8, 14.
Zhang Y, Corver J, Chipman PR, Zhang W, Pletnev SV, Sedlak D, Baker TS, Strauss JH, Kuhn RJ and Rossmann MG (2003) Structures of immature flavivirus particles. EMBO J 22, 2604-2613.
Freire JM, Santos NC, Veiga AS, Da Poian AT and Castanho MARB (2015) Rethinking the capsid proteins of enveloped viruses: multifunctionality from genome packaging to genome transfection. FEBS J 282, 2267-2278.
Ma L, Jones CT, Groesch TD, Kuhn RJ and Post CB (2004) Solution structure of dengue virus capsid protein reveals another fold. Proc Natl Acad Sci USA 101, 3414-3419.
Cronican JJ, Thompson DB, Beier KT, McNaughton BR, Cepko CL and Liu DR (2010) Potent delivery of functional proteins into mammalian cells in vitro and in vivo using a supercharged protein. ACS Chem Biol 5, 747-752.
Freire JM, Veiga AS, Conceição TM, Kowalczyk W, Mohana-Borges R, Andreu D, Santos NC, Da Poian AT and Castanho MARB (2013) Intracellular nucleic acid delivery by the supercharged dengue virus capsid protein. PLoS One 8, 1-10.
Shang Z, Song H, Shi Y, Qi J and Gao GF (2018) Crystal structure of the capsid protein from Zika virus. J Mol Biol 430, 948-962.
Dokland T, Walsh M, Mackenzie JM, Khromykh AA, Ee K-H and Wang S (2004) West Nile virus core protein. Structure 12, 1157-1163.
Jones CT, Ma L, Burgner JW, Groesch TD, Post CB and Kuhn RJ (2003) Flavivirus capsid is a dimeric alpha-helical protein. J Virol 77, 7143-7149.
Carvalho FA, Carneiro FA, Martins IC, Assuncao-Miranda I, Faustino AF, Pereira RM, Bozza PT, Castanho MARB, Mohana-Borges R, Da Poian AT et al. (2012) Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins. J Virol 86, 2096-2108.
Markoff L, Falgout B and Chang A (1997) A conserved internal hydrophobic domain mediates the stable membrane integration of the dengue virus capsid protein. Virology 233, 105-117.
Garcia-Blanco MA, Vasudevan SG, Bradrick SS and Nicchitta C (2016) Flavivirus RNA transactions from viral entry to genome replication. Antiviral Res 134, 244-249.
Pulkkinen LIA, Butcher SJ and Anastasina M (2018) Tick-borne encephalitis virus: a structural view. Viruses 10, 350.
Barabás O, Rumlová M, Erdei A, Pongrácz V, Pichová I and Vértessy BG (2003) dUTPase and nucleocapsid polypeptides of the Mason-Pfizer monkey virus form a fusion protein in the virion with homotrimeric organization and low catalytic efficiency. J Biol Chem 278, 38803-38812.
Doležal M, Hadravová R, Kožíšek M, Bednárová L, Langerová H, Ruml T and Rumlová M (2016) Functional and structural characterization of novel type of linker connecting capsid and nucleocapsid protein domains in murine leukemia virus. J Biol Chem 291, 20630-20642.
Strohalmová-Bohmová K, Spiwok V, Lepšík M, Hadravová R, Křížová I, Ulbrich P, Pichová I, Bednárová L, Ruml T and Rumlová M (2014) Role of Mason-Pfizer monkey virus CA-NC spacer peptide-like domain in assembly of immature particles. J Virol 88, 14148-14160.
Greenfield NJ (2006) Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc 1, 2527-2535.
Sreerama N and Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287, 252-260.
Sreerama N and Woody RW (2004) Computation and analysis of protein circular dichroism spectra. Methods Enzymol 383, 318-351.
Sreerama N and Woody RW (2004) On the analysis of membrane protein circular dichroism spectra. Protein Sci 13, 100-112.
Hadravova R, Rumlova M and Ruml T (2015) FAITH - fast assembly inhibitor test for HIV. Virology 486, 78-87.
Rumlova M and Ruml T (2018) In vitro methods for testing antiviral drugs. Biotechnol Adv 36, 557-576.
Krizova I, Hadravova R, Stokrova J, Gunterova J, Dolezal M, Ruml T, Rumlova M and Pichova I (2012) The G-patch domain of Mason-Pfizer monkey virus is a part of reverse transcriptase. J Virol 86, 1988-1998.
Wildova M, Hadravova R, Stokrova J, Krizova I, Ruml T, Hunter E, Pichova I and Rumlova M (2008) The effect of point mutations within the N-terminal domain of Mason-Pfizer monkey virus capsid protein on virus core assembly and infectivity. Virology 380, 157-163.
Rumlova M, Benedikova J, Cubinkova R, Pichova I and Ruml T (2001) Comparison of classical and affinity purification techniques of Mason-Pfizer monkey virus capsid protein: the alteration of the product by an affinity tag. Protein Expr Purif 23, 75-83.
Morando MA, Barbosa GM, Cruz-Oliveira C, Da Poian AT and Almeida FCL (2019) Dynamics of zika virus capsid protein in solution: the properties and exposure of the hydrophobic cleft are controlled by the alpha-helix 1 sequence. Biochemistry 58, 2488-2498.
Ulbrich P, Haubova S, Nermut MV, Hunter E, Rumlova M and Ruml T (2006) Distinct roles for nucleic acid in in vitro assembly of purified Mason-Pfizer monkey virus CANC proteins. J Virol 80, 7089-7099.
Yu F, Joshi SM, Ma YM, Kingston RL, Simon MN and Vogt VM (2001) Characterization of Rous sarcoma virus Gag particles assembled in vitro. J Virol 75, 2753-2764.
Kiermayr S, Kofler RM, Mandl CW, Messner P and Heinz FX (2004) Isolation of capsid protein dimers from the tick-borne encephalitis flavivirus and in vitro assembly of capsid-like particles. J Virol 78, 8078-8084.
Zhang Y, Kostyuchenko VA and Rossmann MG (2007) Structural analysis of viral nucleocapsids by subtraction of partial projections. J Struct Biol 157, 356-364.
Tellinghuisen TL, Hamburger AE, Fisher BR, Ostendorp R and Kuhn RJ (1999) In vitro assembly of alphavirus cores by using nucleocapsid protein expressed in Escherichia coli. J Virol 73, 5309-5319.
Kunkel M, Lorinczi M, Rijnbrand R, Lemon SM and Watowich SJ (2001) Self-assembly of nucleocapsid-like particles from recombinant hepatitis C virus core protein. J Virol 75, 2119-2129.
López C, Gil L, Lazo L, Menéndez I, Marcos E, Sánchez J, Valdés I, Falcón V, de la Rosa MC, Márquez G et al. (2009) In vitro assembly of nucleocapsid-like particles from purified recombinant capsid protein of dengue-2 virus. Arch Virol 154, 695-698.
Bohmova K, Hadravova R, Stokrova J, Tuma R, Ruml T, Pichova I and Rumlova M (2010) Effect of dimerizing domains and basic residues on in vitro and in vivo assembly of Mason-Pfizer monkey virus and human immunodeficiency virus. J Virol 84, 1977-1988.
Nermut MV, Bron P, Thomas D, Rumlova M, Ruml T and Hunter E (2002) Molecular organization of Mason-Pfizer monkey virus capsids assembled from Gag polyprotein in Escherichia coli. J Virol 76, 4321-4330.
Rumlova-Klikova M, Hunter E, Nermut MV, Pichova I and Ruml T (2000) Analysis of Mason-Pfizer monkey virus gag domains required for capsid assembly in bacteria: role of the N-terminal proline residue of CA in directing particle shape. J Virol 74, 8452-8459.
Dostálková A, Hadravová R, Kaufman F, Křížová I, Škach K, Flegel M, Hrabal R, Ruml T and Rumlová M (2019) A simple, high-throughput stabilization assay to test HIV-1 uncoating inhibitors. Sci Rep 9, 17076.
Oliveira ERA, Mohana-Borges R, de Alencastro RB and Horta BAC (2017) The flavivirus capsid protein: structure, function and perspectives towards drug design. Virus Res 227, 115-123.
Palus M, Bily T, Elsterova J, Langhansova H, Salat J, Vancova M and Ruzek D (2014) Infection and injury of human astrocytes by tick-borne encephalitis virus. J Gen Virol 95, 2411-2426.
Bílý T, Palus M, Eyer L, Elsterová J, Vancová M and Růžek D (2015) Electron tomography analysis of tick-borne encephalitis virus infection in human neurons. Sci Rep 5, 10745.
Lorenz IC, Kartenbeck J, Mezzacasa A, Allison SL, Heinz FX and Helenius A (2003) Intracellular assembly and secretion of recombinant subviral particles from tick-borne encephalitis virus. J Virol 77, 4370-4382.
Offerdahl DK, Dorward DW, Hansen BT and Bloom ME (2012) A three-dimensional comparison of tick-borne flavivirus infection in mammalian and tick cell lines. PLoS One 7, e47912.
Klikova M, Rhee SS, Hunter E and Ruml T (1995) Efficient in-vivo and in-vitro assembly of retroviral capsids from Gag precursor proteins expressed in bacteria. J Virol 69, 1093-1098.
Hadravova R, de Marco A, Ulbrich P, Stokrova J, Dolezal M, Pichova I, Ruml T, Briggs JAG and Rumlova M (2012) In vitro assembly of virus-like particles of a gammaretrovirus, the murine leukemia virus XMRV. J Virol 86, 1297-1306.
Xie X, Zou J, Zhang X, Zhou Y, Routh AL, Kang C, Popov VL, Chen X, Wang Q-Y, Dong H et al. (2019) Dengue NS2A protein orchestrates virus assembly. Cell Host Microbe 26, 606-622.e8.
Zhang X, Xie X, Xia H, Zou J, Huang L, Popov VL, Chen X and Shi P-YZhang X, Xie X, Xia H, Zou J, Huang L, Popov VL, Chen X, Shi P-Y (2019) Zika Virus NS2A-Mediated Virion Assembly. mBio. 10, 5:http://dx.doi.org/10.1128/mbio.02375-19.