• This record comes from PubMed

Time to intra-arrest therapeutic hypothermia in out-of-hospital cardiac arrest patients and its association with neurologic outcome: a propensity matched sub-analysis of the PRINCESS trial

. 2020 Jul ; 46 (7) : 1361-1370. [epub] 20200608

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
20160637 Hjärt-Lungfonden

Links

PubMed 32514590
PubMed Central PMC7334260
DOI 10.1007/s00134-020-06024-3
PII: 10.1007/s00134-020-06024-3
Knihovny.cz E-resources

PURPOSE: To study the association between early initiation of intra-arrest therapeutic hypothermia and neurologic outcome in out-of-hospital cardiac arrest. METHODS: A prespecified sub-analysis of the PRINCESS trial (NCT01400373) that randomized 677 bystander-witnessed cardiac arrests to transnasal evaporative intra-arrest cooling initiated by emergency medical services or cooling started after hospital arrival. Early cooling (intervention) was defined as intra-arrest cooling initiated < 20 min from collapse (i.e., ≤ median time to cooling in PRINCESS). Propensity score matching established comparable control patients. Primary outcome was favorable neurologic outcome, Cerebral Performance Category (CPC) 1-2 at 90 days. Complete recovery (CPC 1) was among secondary outcomes. RESULTS: In total, 300 patients were analyzed and the proportion with CPC 1-2 at 90 days was 35/150 (23.3%) in the intervention group versus 24/150 (16%) in the control group, odds ratio (OR) 1.92, 95% confidence interval (CI) 0.95-3.85, p = .07. In patients with shockable rhythm, CPC 1-2 was 29/57 (50.9%) versus 17/57 (29.8%), OR 3.25, 95%, CI 1.06-9.97, p = .04. The proportion with CPC 1 at 90 days was 31/150 (20.7%) in the intervention group and 17/150 (11.3%) in controls, OR 2.27, 95% CI 1.12-4.62, p = .02. In patients with shockable rhythms, the proportion with CPC 1 was 27/57 (47.4%) versus 12/57 (21.1%), OR 5.33, 95% CI 1.55-18.3, p = .008. CONCLUSIONS: In the whole study population, intra-arrest cooling initiated < 20 min from collapse compared to cooling initiated at hospital was not associated with improved favorable neurologic outcome. In the subgroup with shockable rhythms, early cooling was associated with improved favorable outcome and complete recovery.

See more in PubMed

Nolan JP, Soar J, Cariou A, Cronberg T, Moulaert VR, Deakin CD, Bottiger BW, Friberg H, Sunde K, Sandroni C. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines for Post-resuscitation Care 2015: Section 5 of the European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation. 2015;95:202–222. doi: 10.1016/j.resuscitation.2015.07.018. PubMed DOI

Callaway CW, Donnino MW, Fink EL, Geocadin RG, Golan E, Kern KB, Leary M, Meurer WJ, Peberdy MA, Thompson TM, Zimmerman JL. Part 8: Post-Cardiac Arrest Care: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2015;132(18 Suppl 2):S465–482. doi: 10.1161/cir.0000000000000262. PubMed DOI PMC

Sandroni C, Combes A, Nolan JP. Focus on post-resuscitation care. Intensive Care Med. 2019;45(9):1283–1287. doi: 10.1007/s00134-019-05666-2. PubMed DOI

Cariou A, Nolan JP, Sunde K. Ten strategies to increase survival of cardiac arrest patients. Intensive Care Med. 2015;41(10):1820–1823. doi: 10.1007/s00134-015-3788-z. PubMed DOI

Jakkula P, Reinikainen M, Hastbacka J, Loisa P, Tiainen M, Pettila V, Toppila J, Lahde M, Backlund M, Okkonen M, Bendel S, Birkelund T, Pulkkinen A, Heinonen J, Tikka T, Skrifvars MB. Targeting two different levels of both arterial carbon dioxide and arterial oxygen after cardiac arrest and resuscitation: a randomised pilot trial. Intensive Care Med. 2018;44(12):2112–2121. doi: 10.1007/s00134-018-5453-9. PubMed DOI PMC

Froehler MT, Geocadin RG. Hypothermia for neuroprotection after cardiac arrest: mechanisms, clinical trials and patient care. J Neurol Sci. 2007;261(1–2):118–126. doi: 10.1016/j.jns.2007.04.042. PubMed DOI

Che D, Li L, Kopil CM, Liu Z, Guo W, Neumar RW. Impact of therapeutic hypothermia onset and duration on survival, neurologic function, and neurodegeneration after cardiac arrest. Crit Care Med. 2011;39(6):1423–1430. doi: 10.1097/CCM.0b013e318212020a. PubMed DOI PMC

Abella BS, Zhao D, Alvarado J, Hamann K, Vanden Hoek TL, Becker LB. Intra-arrest cooling improves outcomes in a murine cardiac arrest model. Circulation. 2004;109(22):2786–2791. doi: 10.1161/01.Cir.0000131940.19833.85. PubMed DOI

Nozari A, Safar P, Stezoski SW, Wu X, Kostelnik S, Radovsky A, Tisherman S, Kochanek PM. Critical time window for intra-arrest cooling with cold saline flush in a dog model of cardiopulmonary resuscitation. Circulation. 2006;113(23):2690–2696. doi: 10.1161/circulationaha.106.613349. PubMed DOI

Zhao D, Abella BS, Beiser DG, Alvarado JP, Wang H, Hamann KJ, Hoek TL, Becker LB. Intra-arrest cooling with delayed reperfusion yields higher survival than earlier normothermic resuscitation in a mouse model of cardiac arrest. Resuscitation. 2008;77(2):242–249. doi: 10.1016/j.resuscitation.2007.10.015. PubMed DOI PMC

Wang H, Barbut D, Tsai MS, Sun S, Weil MH, Tang W. Intra-arrest selective brain cooling improves success of resuscitation in a porcine model of prolonged cardiac arrest. Resuscitation. 2010;81(5):617–621. doi: 10.1016/j.resuscitation.2010.01.027. PubMed DOI

Kuboyama K, Safar P, Radovsky A, Tisherman SA, Stezoski SW, Alexander H. Delay in cooling negates the beneficial effect of mild resuscitative cerebral hypothermia after cardiac arrest in dogs: a prospective, randomized study. Crit Care Med. 1993;21(9):1348–1358. doi: 10.1097/00003246-199309000-00019. PubMed DOI

Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J, Hovdenes J, Kjaergaard J, Kuiper M, Pellis T, Stammet P, Wanscher M, Wise MP, Aneman A, Al-Subaie N, Boesgaard S, Bro-Jeppesen J, Brunetti I, Bugge JF, Hingston CD, Juffermans NP, Koopmans M, Kober L, Langorgen J, Lilja G, Moller JE, Rundgren M, Rylander C, Smid O, Werer C, Winkel P, Friberg H. Targeted temperature management at 33°C versus 36°C after cardiac arrest. New Engl J Med. 2013;369(23):2197–2206. doi: 10.1056/NEJMoa1310519. PubMed DOI

HACA-group Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. New Engl J Med. 2002;346(8):549–556. doi: 10.1056/NEJMoa012689. PubMed DOI

Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. New Engl J Med. 2002;346(8):557–563. doi: 10.1056/NEJMoa003289. PubMed DOI

Kim F, Nichol G, Maynard C, Hallstrom A, Kudenchuk PJ, Rea T, Copass MK, Carlbom D, Deem S, Longstreth WT, Jr, Olsufka M, Cobb LA. Effect of prehospital induction of mild hypothermia on survival and neurological status among adults with cardiac arrest: a randomized clinical trial. JAMA. 2014;311(1):45–52. doi: 10.1001/jama.2013.282173. PubMed DOI

Bernard SA, Smith K, Finn J, Hein C, Grantham H, Bray JE, Deasy C, Stephenson M, Williams TA, Straney LD, Brink D, Larsen R, Cotton C, Cameron P. Induction of therapeutic hypothermia during out-of-hospital cardiac arrest using a rapid infusion of cold saline: the RINSE trial (rapid infusion of cold normal saline) Circulation. 2016;134(11):797–805. doi: 10.1161/circulationaha.116.021989. PubMed DOI

Debaty G, Maignan M, Savary D, Koch FX, Ruckly S, Durand M, Picard J, Escallier C, Chouquer R, Santre C, Minet C, Guergour D, Hammer L, Bouvaist H, Belle L, Adrie C, Payen JF, Carpentier F, Gueugniaud PY, Danel V, Timsit JF. Impact of intra-arrest therapeutic hypothermia in outcomes of prehospital cardiac arrest: a randomized controlled trial. Intensive Care Med. 2014;40(12):1832–1842. doi: 10.1007/s00134-014-3519-x. PubMed DOI

Ditchey RV, Lindenfeld J. Potential adverse effects of volume loading on perfusion of vital organs during closed-chest resuscitation. Circulation. 1984;69(1):181–189. doi: 10.1161/01.cir.69.1.181. PubMed DOI

Yannopoulos D, Zviman M, Castro V, Kolandaivelu A, Ranjan R, Wilson RF, Halperin HR. Intra-cardiopulmonary resuscitation hypothermia with and without volume loading in an ischemic model of cardiac arrest. Circulation. 2009;120(14):1426–1435. doi: 10.1161/circulationaha.109.848424. PubMed DOI

Castren M, Nordberg P, Svensson L, Taccone F, Vincent JL, Desruelles D, Eichwede F, Mols P, Schwab T, Vergnion M, Storm C, Pesenti A, Pachl J, Guerisse F, Elste T, Roessler M, Fritz H, Durnez P, Busch HJ, Inderbitzen B, Barbut D. Intra-arrest transnasal evaporative cooling: a randomized, prehospital, multicenter study (PRINCE: Pre-ROSC IntraNasal Cooling Effectiveness) Circulation. 2010;122(7):729–736. doi: 10.1161/circulationaha.109.931691. PubMed DOI

Nordberg P, Taccone FS, Castren M, Truhlar A, Desruelles D, Forsberg S, Hollenberg J, Vincent JL, Svensoon L. Design of the PRINCESS trial: pre-hospital resuscitation intra-nasal cooling effectiveness survival study (PRINCESS) BMC emergency medicine. 2013;13:21. doi: 10.1186/1471-227x-13-21. PubMed DOI PMC

Abou-Chebl A, Sung G, Barbut D, Torbey M. Local brain temperature reduction through intranasal cooling with the RhinoChill device: preliminary safety data in brain-injured patients. Stroke. 2011;42(8):2164–2169. doi: 10.1161/strokeaha.110.613000. PubMed DOI

Nordberg P, Taccone FS, Truhlar A, Forsberg S, Hollenberg J, Jonsson M, Cuny J, Goldstein P, Vermeersch N, Higuet A, Jimenes FC, Ortiz FR, Williams J, Desruelles D, Creteur J, Dillenbeck E, Busche C, Busch HJ, Ringh M, Konrad D, Peterson J, Vincent JL, Svensson L. Effect of trans-nasal evaporative intra-arrest cooling on functional neurologic outcome in out-of-hospital cardiac arrest: the PRINCESS randomized clinical trial. JAMA. 2019;321(17):1677–1685. doi: 10.1001/jama.2019.4149. PubMed DOI PMC

Perkins GD, Jacobs IG, Nadkarni VM, Berg RA, Bhanji F, Biarent D, Bossaert LL, Brett SJ, Chamberlain D, de Caen AR, Deakin CD, Finn JC, Grasner JT, Hazinski MF, Iwami T, Koster RW, Lim SH, Ma MH, McNally BF, Morley PT, Morrison LJ, Monsieurs KG, Montgomery W, Nichol G, Okada K, Ong ME, Travers AH, Nolan JP. Cardiac Arrest and Cardiopulmonary Resuscitation Outcome Reports: Update of the Utstein Resuscitation Registry Templates for Out-of-Hospital Cardiac Arrest: A Statement for Healthcare Professionals From a Task Force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia); and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. Resuscitation. 2015;96:328–340. doi: 10.1016/j.resuscitation.2014.11.002. PubMed DOI

Jennett B, Bond M. Assessment of outcome after severe brain damage. Lancet (London, England) 1975;1(7905):480–484. doi: 10.1016/S0140-6736(75)92830-5. PubMed DOI

Benz-Woerner J, Delodder F, Benz R, Cueni-Villoz N, Feihl F, Rossetti AO, Liaudet L, Oddo M. Body temperature regulation and outcome after cardiac arrest and therapeutic hypothermia. Resuscitation. 2012;83(3):338–342. doi: 10.1016/j.resuscitation.2011.10.026. PubMed DOI

den Hartog AW, de Pont AC, Robillard LB, Binnekade JM, Schultz MJ, Horn J. Spontaneous hypothermia on intensive care unit admission is a predictor of unfavorable neurological outcome in patients after resuscitation: an observational cohort study. Crit Care. 2010;14(3):R121. doi: 10.1186/cc9077. PubMed DOI PMC

Lascarrou JB, Merdji H, Le Gouge A, Colin G, Grillet G, Girardie P, Coupez E, Dequin PF, Cariou A, Boulain T, Brule N, Frat JP, Asfar P, Pichon N, Landais M, Plantefeve G, Quenot JP, Chakarian JC, Sirodot M, Legriel S, Letheulle J, Thevenin D, Desachy A, Delahaye A, Botoc V, Vimeux S, Martino F, Giraudeau B, Reignier J. Targeted Temperature Management for Cardiac Arrest with Nonshockable Rhythm. New Engl J Med. 2019 doi: 10.1056/NEJMoa1906661. PubMed DOI

Kreutziger J, Wenzel V. Shape and size of cardiopulmonary resuscitation trials to optimise impact of advanced life support interventions. Resuscitation. 2012;83(8):923–924. doi: 10.1016/j.resuscitation.2012.03.039. PubMed DOI

Geocadin RG, Callaway CW, Fink EL, Golan E, Greer DM, Ko NU, Lang E, Licht DJ, Marino BS, McNair ND, Peberdy MA, Perman SM, Sims DB, Soar J, Sandroni C. Standards for studies of neurological prognostication in comatose survivors of cardiac arrest: a scientific statement from the American Heart Association. Circulation. 2019;140(9):e517–e542. doi: 10.1161/cir.0000000000000702. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...