Potent Inhibition of Biphasic Tubular Reabsorption of Lithium by Acetazolamide and Foscarnet in Rats
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32584131
PubMed Central
PMC8549892
DOI
10.33549/physiolres.934285
PII: 934285
Knihovny.cz E-zdroje
- MeSH
- acetazolamid farmakologie MeSH
- antivirové látky farmakologie MeSH
- chlorid lithný antagonisté a inhibitory farmakokinetika farmakologie MeSH
- diuretika farmakologie MeSH
- foskarnet farmakologie MeSH
- krysa rodu Rattus MeSH
- lékové interakce MeSH
- modely nemocí na zvířatech MeSH
- potkani Wistar MeSH
- proximální tubuly ledvin účinky léků metabolismus MeSH
- renální reabsorpce účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetazolamid MeSH
- antivirové látky MeSH
- chlorid lithný MeSH
- diuretika MeSH
- foskarnet MeSH
Lithium is mainly excreted into urine, and a large fraction of lithium filtered through glomeruli is reabsorbed in the proximal tubule. However, the mechanisms responsible for lithium reabsorption remain unclear. We previously reported that the reabsorption of lithium was biphasic in rats, and that foscarnet inhibited lithium reabsorption with a high affinity type. We herein evaluated the effects of acetazolamide and foscarnet on the renal excretion of lithium in rats treated with lithium chloride at 2 doses. In rats intravenously injected with a bolus of 25 mg/kg lithium chloride, acetazolamide facilitated the urinary excretion of lithium, and increased the fractional excretion of lithium from 0.446 to 0.953, near the theoretically maximum value. At a dose of 2.5 mg/kg lithium chloride, the fractional excretion of lithium was 0.241 in control rats, 0.420 in rats administered acetazolamide, and 0.976 in rats administered acetazolamide and foscarnet. These results showed the potent inhibition of lithium reabsorption by acetazolamide and foscarnet in rats. And, it was exhibited that the effects of acetazolamide on lithium reabsorption differed with the dosages of lithium administered.
Department of Pharmaceutics School of Pharmacy Aichi Gakuin University Kusumoto Chikusa Nagoya Japan
Zobrazit více v PubMed
BIBER J, HERNANDO N, FORSTER I. Phosphate transporters and their function. Annu Rev Physiol. 2013;75:535–550. doi: 10.1146/annurev-physiol-030212-183748. PubMed DOI
de GROOT T, SINKE AP, KORTENOEVEN ML, ALSADY M, BAUMGARTEN R, DEVUYST O, LOFFING J, WETZELS JF, DEEN PM. Acetazolamide attenuates lithium-induced nephrogenic diabetes insipidus. J Am Soc Nephrol. 2016;27:2082–2091. doi: 10.1681/ASN.2015070796. PubMed DOI PMC
FENVES AZ, EMMETT M, WHITE MG. Lithium intoxication associated with acute renal failure. South Med J. 1984;77:1472–1474. doi: 10.1097/00007611-198411000-00030. PubMed DOI
FINLEY PR. Drug interactions with lithium: an update. Clin Pharmacokinet. 2016;55:925–941. doi: 10.1007/s40262-016-0370-y. PubMed DOI
FINLEY PR, WARNER MD, PEABODY CA. Clinical relevance of drug interactions with lithium. Clin Pharmacokinet. 1995;29:172–191. doi: 10.2165/00003088-199529030-00004. PubMed DOI
FORSTER I, HERNANDO N, BIBER J, MURER H. The voltage dependence of a cloned mammalian renal type II Na+/Pi cotransporter (NaPi-2) J Gen Physiol. 1998;112:1–18. doi: 10.1085/jgp.112.1.1. PubMed DOI PMC
FRANSEN R, BOER WH, BOER P, DORHOUT MEES EJ, KOOMANS HA. Effects of furosemide or acetazolamide infusion on renal handling of lithium: a micropuncture study in rats. Am J Physiol. 1993;264:R129–R134. doi: 10.1152/ajpregu.1993.264.1.R129. PubMed DOI
GADALLAH MF, FEINSTEIN EI, MASSRY SG. Lithium intoxication: clinical course and therapeutic considerations. Miner Electrolyte Metab. 1988;14:146–149. PubMed
GHEZZI C, MURER H, FORSTER IC. Substrate interactions of the electroneutral Na+-coupled inorganic phosphate cotransporter (NaPi-IIc) J Physiol. 2009;17:4293–4307. doi: 10.1113/jphysiol.2009.175596. PubMed DOI PMC
KORTENOEVEN ML, LI Y, SHAW S, GAEGGELER HP, ROSSIER BC, WETZELS JF, DEEN PM. Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus. Kidney Int. 2009;76:44–53. doi: 10.1038/ki.2009.91. PubMed DOI
KRISHNAN D, LIU L, WIEBE SA, CASEY JR, CORDAT E, ALEXANDER RT. Carbonic anhydrase II binds to and increases the activity of the epithelial sodium-proton exchanger, NHE3. Am J Physiol Renal Physiol. 2015;309:F383–F392. doi: 10.1152/ajprenal.00464.2014. PubMed DOI PMC
LEBLANC M, RAYMOND M, BONNARDEAUX A, ISENRING P, PICHETTE V, GEADAH D, QUIMET D, ETHIER J, CARDINAL J. Lithium poisoning treated by high-performance continuous arteriovenous and venovenous hemodiafiltration. Am J Kidney Dis. 1996;27:365–372. doi: 10.1016/S0272-6386(96)90359-5. PubMed DOI
PRICE LH, HENINGER GR. Lithium in the treatment of mood disorders. N Engl J Med. 1994;331:591–598. doi: 10.1056/NEJM199409013310907. PubMed DOI
STEELE TH, DUDGEON KL, LARMORE CK. Pharmacological characterization of lithium reabsorption in the rat. J Pharmacol Exp Ther. 1976;196:188–193. PubMed
THOMAS L, XUE J, DOMINGUEZ RIEG JA, RIEG T. Contribution of NHE3 and dietary phosphate to lithium pharmacokinetics. Eur J Pharm Sci. 2019;128:1–7. doi: 10.1016/j.ejps.2018.11.008. PubMed DOI PMC
THOMSEN K, SCHOU M. Renal lithium excretion in man. Am J Physiol. 1968;215:823–827. doi: 10.1152/ajplegacy.1968.215.4.823. PubMed DOI
TIMMER RT, SANDS JM. Lithium intoxication. J Am Soc Nephrol. 1999;10:666–674. PubMed
UWAI Y, ARIMA R, TAKATSU C, FURUTA R, KAWASAKI T, NABEKURA T. Sodium-phosphate cotransporter mediates reabsorption of lithium in rat kidney. Pharmacol Res. 2014;87:94–98. doi: 10.1016/j.phrs.2014.06.012. PubMed DOI
UWAI Y, KAWASAKI T, NABEKURA T. Nonlinear disposition of lithium in rats and saturation of its tubular reabsorption by the sodium-phosphate cotransporter as a cause. Biopharm Drug Dispos. 2018;39:83–87. doi: 10.1002/bdd.2116. PubMed DOI
VALLON V, RIEG T. Regulation of renal NaCl and water transport by the ATP/UTP/P2Y2 receptor system. Am J Physiol Renal Physiol. 2011;301:F463–F475. doi: 10.1152/ajprenal.00236.2011. PubMed DOI PMC
VILLA-BELLOSTA R, BOGAERT YE, LEVI M, SORRIBAS V. Characterization of phosphate transport in a rat vascular smooth muscle cells: implications for vascular calcification. Arterioscler Thromb Vasc Biol. 2007;27:1030–1036. doi: 10.1161/ATVBAHA.106.132266. PubMed DOI
YUKAWA E, NOMIYAMA N, HIGUCHI S, AOYAMA T. Lithium population pharmacokinetics from routine clinical data: role of patient characteristics for estimating dosing regimens. Ther Drug Monit. 1993;15:75–82. doi: 10.1097/00007691-199304000-00002. PubMed DOI
ZHANG Y, NORIAN JM, MAGYAR CE, HOLSTEIN-RATHLOU NH, MIRCHEFF AK, McDONOUGH AA. In vivo PTH provokes apical NHE3 and NaPi2 redistribution and Na-K-ATPase inhibition. Am J Physiol. 1999;276:F711–F719. doi: 10.1152/ajprenal.1999.276.5.F711. PubMed DOI
Analysis of sex difference in the tubular reabsorption of lithium in rats