• This record comes from PubMed

Type A Trichothecene Diacetoxyscirpenol-Induced Emesis Corresponds to Secretion of Peptide YY and Serotonin in Mink

. 2020 Jun 25 ; 12 (6) : . [epub] 20200625

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
Excellence project UHK - International CEP Register
2016YFD0501207, 2016YFD0501009 National Key R & D Program - International
31972741, 31572576 NSFC - International
2016T90477 China Postdoctoral Science Foundation - International

The trichothecene mycotoxins contaminate cereal grains and have been related to alimentary toxicosis resulted in emetic response. This family of mycotoxins comprises type A to D groups of toxic sesquiterpene chemicals. Diacetoxyscirpenol (DAS), one of the most toxic type A trichothecenes, is considered to be a potential risk for human and animal health by the European Food Safety Authority. Other type A trichothecenes, T-2 toxin and HT-2 toxin, as well as type B trichothecene deoxynivalenol (DON), have been previously demonstrated to induce emetic response in the mink, and this response has been associated with the plasma elevation of neurotransmitters peptide YY (PYY) and serotonin (5-hydroxytryptamine, 5-HT). However, it is found that not all the type A and type B trichothecenes have the capacity to induce PYY and 5-HT. It is necessary to identify the roles of these two emetogenic mediators on DAS-induced emesis. The goal of this study was to determine the emetic effect of DAS and relate this effect to PYY and 5-HT, using a mink bioassay. Briefly, minks were fasted one day before experiment and given DAS by intraperitoneally and orally dosing on the experiment day. Then, emetic episodes were calculated and blood collection was employed for PYY and 5-HT test. DAS elicited robust emetic responses that corresponded to upraised PYY and 5-HT. Blocking the neuropeptide Y2 receptor (NPY2R) diminished emesis induction by PYY and DAS. The serotonin 3 receptor (5-HT3R) inhibitor granisetron totally restrained the induction of emesis by serotonin and DAS. In conclusion, our findings demonstrate that PYY and 5-HT have critical roles in DAS-induced emetic response.

See more in PubMed

Pestka J.J. Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. World Mycotoxin J. 2010;3:323–347. doi: 10.3920/WMJ2010.1247. DOI

Pestka J.J. Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Arch. Toxicol. 2010;84:663–679. doi: 10.1007/s00204-010-0579-8. PubMed DOI

Zhang J., Zhang H., Liu S., Wu W., Zhang H. Comparison of anorectic potencies of type A Trichothecenes T-2 toxin, HT-2 toxin, Diacetoxyscirpenol, and Neosolaniol. Toxins. 2018;10:179. doi: 10.3390/toxins10050179. PubMed DOI PMC

JECFA . Deoxynivalenol. WHO Press; Geneva, Switzerland: 2011. Evaluation of certain contaminants in food: 72nd report of the joint FAO/WHO expert committee on food additives; pp. 37–48. (WHO Technical Report Series, No. 959).

Vesonder R.F., Ciegler A., Jensen A.H. Isolation of the emetic principle from fusarium-infected corn. Appl. Microbiol. 1973;26:1008–1010. doi: 10.1128/AEM.26.6.1008-1010.1973. PubMed DOI PMC

Lysøe E., Frandsen R.J.N., Divon H.H., Terzi V., Orrù L., Lamontanara A., Kolseth A.-K., Nielsen K.F., Thrane U. Draft genome sequence and chemical profiling of Fusarium langsethiae, an emerging producer of type A trichothecenes. Int. J. Food Microbiol. 2016;221:29–36. doi: 10.1016/j.ijfoodmicro.2016.01.008. PubMed DOI

Knutsen H.K., Alexander J., Barregård L., Bignami M., Brüschweiler B., Ceccatelli S., Cottrill B., DiNovi M., Grasl-Kraupp B., Hogstrand C., et al. Risk to human and animal health related to the presence of 4,15-diacetoxyscirpenol in food and feed. EFSA J. 2018;16 doi: 10.2903/j.efsa.2018.5367. PubMed DOI PMC

Andrews P.L.R., Davis C.J., Bingham S., Davidson H.I.M., Hawthorn J., Maskell L. The abdominal visceral innervation and the emetic reflex: Pathways, pharmacology, and plasticity. Can. J. Physiol. Pharmacol. 1990;68:325–345. doi: 10.1139/y90-047. PubMed DOI

Bauer J., Bollwahn W., Gareis M., Gedek B., Heinritzi K. Kinetic profiles of diacetoxyscirpenol and two of its metabolites in blood serum of pigs. Appl. Environ. Microbiol. 1985;49:842–845. doi: 10.1128/AEM.49.4.842-845.1985. PubMed DOI PMC

Bauer J., Gareis M., Gedek B. Metabolism of the trichothecenes T-2 toxin, diacetoxyscirpenol, and deoxynivalenol by farm animals. In: Chelkowski J., editor. Topics in Secondary Metabolism-Volume 2, Fusarium: Mycotoxins, Taxonomy and Pathogenicity. Elsevier; Amsterdam, The Netherlands: 1989. pp. 139–165.

Ueno Y. General toxicology. In: Ueno Y., editor. Trichothecenes: Chemical, Biological, and Toxicological Aspects. Elsevier; New York, NY, USA: 1983. pp. 135–146.

Coppock R.W., Gelberg H.B., Hoffmann W.E., Buck W.B. The acute toxicopathy of intravenous diacetoxyscirpenol (anguidine) administration in swine. Fundam. Appl. Toxicol. 1985;5:1034–1049. doi: 10.1016/0272-0590(85)90140-X. PubMed DOI

Coppock R.W., Hoffmann W.E., Gelberg H.B., Bass D., Buck W.B. Hematologic changes induced by intravenous administration of diacetoxyscirpenol in pigs, dogs, and calves. Am. J. Veter-Res. 1989;50:411–415. PubMed

Hornby P.J. Central neurocircuitry associated with emesis. Am. J. Med. 2001;111:106S–112S. doi: 10.1016/S0002-9343(01)00849-X. PubMed DOI

Johnston K.D., Lu Z., Rudd J.A. Looking beyond 5-HT3 receptors: A review of the wider role of serotonin in the pharmacology of nausea and vomiting. Eur. J. Pharmacol. 2014;722:13–25. doi: 10.1016/j.ejphar.2013.10.014. PubMed DOI

Naylor R., Rudd J.A. Mechanisms of chemotherapy/radiotherapy-induced emesis in animal models. Oncology. 1996;53:8–17. doi: 10.1159/000227634. PubMed DOI

Navari R.M., Aapro M. Antiemetic prophylaxis for chemotherapy-induced nausea and vomiting. N. Engl. J. Med. 2016;374:1356–1367. doi: 10.1056/NEJMra1515442. PubMed DOI

Koga T., Fukuda H. Descending pathway from the central pattern generator of vomiting. NeuroReport. 1997;8:2587–2590. doi: 10.1097/00001756-199707280-00033. PubMed DOI

Le Roux C.W., Borg C.-M., Murphy K.G., Vincent R.P., Ghatei M.A., Bloom S.R. Supraphysiological doses of intravenous PYY3-36 cause nausea, but no additional reduction in food intake. Ann. Clin. Biochem. Int. J. Lab. Med. 2008;45:93–95. doi: 10.1258/acb.2007.007068. PubMed DOI

Wu W., Bates M.A., Bursian S.J., Flannery B., Zhou H.-R., Link J.E., Zhang H., Pestka J.J. Peptide YY3-36 and 5-hydroxytryptamine mediate emesis induction by trichothecene deoxynivalenol (vomitoxin) Toxicol. Sci. 2013;133:186–195. doi: 10.1093/toxsci/kft033. PubMed DOI PMC

Rojas C., Raje M., Tsukamoto T., Slusher B.S. Molecular mechanisms of 5-HT3 and NK1 receptor antagonists in prevention of emesis. Eur. J. Pharmacol. 2014;722:26–37. doi: 10.1016/j.ejphar.2013.08.049. PubMed DOI

Hesketh P.J. Chemotherapy-induced nausea and vomiting. N. Engl. J. Med. 2008;358:2482–2494. doi: 10.1056/NEJMra0706547. PubMed DOI

Kovac A.L. Comparative pharmacology and guide to the use of the serotonin 5-HT3 receptor antagonists for postoperative nausea and vomiting. Drugs. 2016;76:1719–1735. doi: 10.1007/s40265-016-0663-3. PubMed DOI

Du Bois A., Vach W., Kiechle M., Cramer-Giraud U., Meerpohl H.G. Pathophysiology, Severity, Pattern, and Risk Factors for Carboplatin-induced Emesis. Oncology. 1996;53:46–50. doi: 10.1159/000227640. PubMed DOI

Perry M.R., Rhee J., Smith W.L. Plasma levels of peptide YY correlate with Cisplatin-induced emesis in dogs. J. Pharm. Pharmacol. 1994;46:553–557. doi: 10.1111/j.2042-7158.1994.tb03855.x. PubMed DOI

Wu W., Bates M.A., Bursian S.J., Link J.E., Flannery B.M., Sugita-Konishi Y., Watanabe M., Zhang H., Pestka J.J. Comparison of emetic potencies of the 8-ketotrichothecenes deoxynivalenol, 15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol, fusarenon X, and nivalenol. Toxicol. Sci. 2012;131:279–291. doi: 10.1093/toxsci/kfs286. PubMed DOI PMC

Wu W., Zhou H.-R., Bursian S.J., Link J.E., Pestka J.J. Emetic responses to T-2 toxin, HT-2 toxin and emetine correspond to plasma elevations of peptide YY3–36 and 5-hydroxytryptamine. Arch. Toxicol. 2015;90:997–1007. doi: 10.1007/s00204-015-1508-7. PubMed DOI PMC

Wu W., Zhou H.-R., Bursian S.J., Pan X., Link J.E., Berthiller F., Adam G., Krantis A., Durst T., Pestka J.J., et al. Comparison of anorectic and emetic potencies of deoxynivalenol (vomitoxin) to the plant metabolite deoxynivalenol-3-glucoside and synthetic deoxynivalenol derivatives EN139528 and EN139544. Toxicol. Sci. 2014;142:167–181. doi: 10.1093/toxsci/kfu166. PubMed DOI PMC

Wu W., Zhou H.-R., He K., Pan X., Sugita-Konishi Y., Watanabe M., Zhang H., Pestka J.J. Role of cholecystokinin in anorexia induction following oral exposure to the 8-ketotrichothecenes deoxynivalenol, 15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol, fusarenon x, and nivalenol. Toxicol. Sci. 2014;138:278–289. doi: 10.1093/toxsci/kft335. PubMed DOI PMC

Horn C.C. Why is the neurobiology of nausea and vomiting so important? Appetite. 2007;50:430–434. doi: 10.1016/j.appet.2007.09.015. PubMed DOI PMC

Du Sert N.P., Holmes A.M., Wallis R., Andrews P.L. Predicting the emetic liability of novel chemical entities: A comparative study. Br. J. Pharmacol. 2012;165:1848–1867. doi: 10.1111/j.1476-5381.2011.01669.x. PubMed DOI PMC

Du Sert N.P., Rudd J.A., Apfel C.C., Andrews P.L.R. Cisplatin-induced emesis: Systematic review and meta-analysis of the ferret model and the effects of 5-HT3 receptor antagonists. Cancer Chemother. Pharmacol. 2010;67:667–686. doi: 10.1007/s00280-010-1339-4. PubMed DOI PMC

Kottschade L., Novotny P., Lyss A., Mazurczak M., Loprinzi C., Barton D.L. Chemotherapy-induced nausea and vomiting: Incidence and characteristics of persistent symptoms and future directions NCCTG N08C3 (Alliance) Support. Care Cancer. 2016;24:2661–2667. doi: 10.1007/s00520-016-3080-y. PubMed DOI PMC

Kris M.G., Gralla R.J., Clark R.A., Tyson L.B., O’Connell J.P., Wertheim M.S., Kelsen D.P. Incidence, course, and severity of delayed nausea and vomiting following the administration of high-dose cisplatin. J. Clin. Oncol. 1985;3:1379–1384. doi: 10.1200/JCO.1985.3.10.1379. PubMed DOI

Tohmola N., Johansson A., Sane T., Renkonen R., Hämäläinen E., Itkonen O. Transient elevation of serum 5-HIAA by dietary serotonin and distribution of 5-HIAA in serum protein fractions. Ann. Clin. Biochem. Int. J. Lab. Med. 2014;52:428–433. doi: 10.1177/0004563214554842. PubMed DOI

Bearcroft C.P., Farthing M.J.G., Perrett D. Determination of 5-hydroxytryptamine, 5-hydroxyindoleacetic acid and tryptophan in plasma and urine by HPLC with fluorimetric detection. Biomed. Chromatogr. 1995;9:23–27. doi: 10.1002/bmc.1130090105. PubMed DOI

Kojima S.-I., Tohei A., Anzai N. A role for endogenous peptide YY in tachykinin NK2 receptor-triggered 5-HT release from guinea pig isolated colonic mucosa. Br. J. Pharmacol. 2012;167:1362–1368. doi: 10.1111/j.1476-5381.2012.02094.x. PubMed DOI PMC

Prelusky D.B., Trenholm H.L. The efficacy of various classes of anti-emetics in preventing deoxynivalenol-induced vomiting in swine. Nat. Toxins. 1993;1:296–302. doi: 10.1002/nt.2620010508. PubMed DOI

Fioramonti J., Dupuy C., Dupuy J., Bueno L. The mycotoxin, deoxynivalenol, delays gastric emptying through serotonin-3 receptors in rodents. J. Pharmacol. Exp. Ther. 1993;266:1255–1260. PubMed

Halatchev I.G., Cone R.D. Peripheral administration of PYY3–36 produces conditioned taste aversion in mice. Cell Metab. 2005;1:159–168. doi: 10.1016/j.cmet.2005.02.003. PubMed DOI

Zhang J., Jia H., Wang Q., Wu W., Zhang H. Role of peptide YY3-36 and glucose-dependent insulinotropic polypeptide in anorexia induction by trichothecences t-2 toxin, ht-2 toxin, diacetoxyscirpenol, and neosolaniol. Toxicol. Sci. 2017;159:203–210. doi: 10.1093/toxsci/kfx128. PubMed DOI

Zhang J., Sheng K., Wu W., Zhang H. Anorectic responses to T-2 toxin, HT-2 toxin, diacetoxyscirpenol and neosolaniol correspond to plasma elevations of neurotransmitters 5-hydroxytryptamine and substance P. Ecotoxicol. Environ. Saf. 2018;161:451–458. doi: 10.1016/j.ecoenv.2018.06.005. PubMed DOI

Sheng K., Zhang H., Yue J., Gu W., Gu C., Zhang H., Wu W. Anorectic response to the trichothecene T-2 toxin correspond to plasma elevations of the satiety hormone glucose-dependent insulinotropic polypeptide and peptide YY 3-36. Toxicology. 2018:28–36. doi: 10.1016/j.tox.2018.04.007. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...