New Variants of Nitroxide Mediated Polymerization
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
14.W03.31.0034
Ministry of Education and Science of the Russian Federation
PubMed
32630664
PubMed Central
PMC7408045
DOI
10.3390/polym12071481
PII: polym12071481
Knihovny.cz E-zdroje
- Klíčová slova
- CI-NMP, ESCP, NMP2, PI-NMP, SLNMP, nitroxide mediated polymerization,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Nitroxide-mediated polymerization is now a mature technique, at 35 years of age. During this time, several variants have been developed: electron spin capture polymerization (ESCP), photoNMP (NMP2), chemically initiated NMP (CI-NMP), spin label NMP (SL-NMP), and plasmon-initiated NMP (PI-NMP). This mini-review is devoted to the features and applications of these variants.
Zobrazit více v PubMed
Jones L.W., Major R.T. Substituted O-alkyl hydroxylamines chemically related to medicinally valuable amines. J. Am. Chem. Soc. 1927;49:1527–1540. doi: 10.1021/ja01405a021. DOI
Kovtun G.A., Aleksandrov A.L., Golubev V.A. Interaction of Peroxide Radicals with Esters of Hydroxylamines. Russ. Chem. Bull. 1974;23:2115–2121. doi: 10.1007/BF00921266. Izv. Akad. Nauk SSSR, Ser. Khim.1974, 2197–2203. DOI
Solomon D.H., Rizzardo E., Cacioli P. Polymerization Process and Polymers Produced Thereby. 4,581,429. U.S. Patent. 1986 Aug 4
Bertin D., Gigmes D., Marque S.R.A., Tordo P. Kinetic Subtleties of Nitroxide Mediated Polymerization. Chem. Soc. Rev. 2011;40:2189–2198. doi: 10.1039/c0cs00110d. PubMed DOI
Matyjaszewski K. Controlled Radical Polymerization. Current Opin. Solid State Materials Sci. 1996;1996. 1:769–776. doi: 10.1016/S1359-0286(96)80101-X. DOI
Bagryanskaya E.G., Marque S.R.A. Kinetic Aspects of Nitroxide-Mediated Polymerization. In: Gigmes D., editor. RSC Polymer Chemistry Series, n°=19, Nitroxide Mediated Polymerization: From Fundamentals to Applications in Materials Sciences. Royal Society of Chemistry; London, UK: 2016. pp. 45–113. Chapter 2.
Greszta D., Mardare D., Matyjaszewski K. “Living” Radical Polymerization. 1. Possibilities and Limitations. Macromolecules. 1994;27:638–644. doi: 10.1021/ma00081a002. DOI
Kreutzer J., Yagci Y. Metal Free Reversible-Deactivation Radical Polymerizations: Advances, Challenges, and Opportunities. Polymers. 2018;10:35. doi: 10.3390/polym10010035. PubMed DOI PMC
Grubbs R.B. Nitroxide-Mediated Radical Polymerization: Limitations and Versatility. Polymer Rev. 2011;51:104–137. doi: 10.1080/15583724.2011.566405. DOI
Tebben L., Studer A. Nitroxides: Applications in Synthesis and in Polymer Chemistry. Angew. Chem. Int. Ed. 2011;50:5034–5068. doi: 10.1002/anie.201002547. PubMed DOI
Fischer H. The Persistent Radical Effect: A Principle for Selective Radical Reactions and Living Radical Polymerizations. Chem. Rev. 2001;101:3581–3610. doi: 10.1021/cr990124y. PubMed DOI
Fischer H., Souaille M. The Persistent Radical Effect in Living Radical Polymerization - Borderline Cases and Side-Reactions. Macromol. Symp. 2001;174:231–240. doi: 10.1002/1521-3900(200109)174:1<231::AID-MASY231>3.0.CO;2-7. DOI
Fortunatti C., Sarmoria C., Brandolin A., Asteasuain M. Theoretical Analysis of Nitroxide-Mediated Copolymerization of Styrene and A-Methyl-Styrene Under Different Operating Policies and Reactor Designs. Macromol. React. Engineer. 2013;8:260–281. doi: 10.1002/mren.201200084. DOI
Fukuda T., Goto A., Ohno K. Mechanisms and Kinetics of Living Radical Polymerizations. Macromol. Rapid Commun. 2000;21:151–165. doi: 10.1002/(SICI)1521-3927(200003)21:4<151::AID-MARC151>3.0.CO;2-3. DOI
Goto A., Fukuda T. Kinetics of Living Radical Polymerization. Progr. Polym. Sci. 2004;29:329–385. doi: 10.1016/j.progpolymsci.2004.01.002. DOI
Braunecker W.A., Matyjaszewski K. Controlled/Living Radical Polymerization: Features, Developments, and Perspectives. Progr. Polym. Sci. 2007;32:93–146. doi: 10.1016/j.progpolymsci.2006.11.002. DOI
Gao H., Matyjaszewski K. Synthesis of Functional Polymers with Controlled Architecture by CRP of Monomers in the Presence of Cross-Linkers: From Stars to Gels. Progr. Polym. Sci. 2009;34:317–350. doi: 10.1016/j.progpolymsci.2009.01.001. DOI
Grishin D.F., Grishin I.D. Controlled Radical Polymerization: Prospects for Application for Industrial Synthesis of Polymers. Russ. J. Appl. Chem. 2012;84:2021–2028. doi: 10.1134/S1070427211120019. DOI
Kermagoret A., Gigmes D. Combined Nitroxide Mediated Radical Polymerization Techniques for Block Copolymer Synthesis. Tetrahedron. 2016;72:7672–7685. doi: 10.1016/j.tet.2016.07.002. DOI
Destarac M. Industrial Development of Reversible-Deactivation Radical Polymerization: Is the Induction Period Over? Polym. Chem. 2018;9:4947–4967. doi: 10.1039/C8PY00970H. DOI
Destarac M. Controlled Radical Polymerization: Industrial Stakes, Obstacles and Achievements. Macromol. React. Engineer. 2010;4:165–179. doi: 10.1002/mren.200900087. DOI
Sciannamea V., Jérôme R., Detrembleur C. In-Situ Nitroxide-Mediated Radical Polymerization (NMP) Processes: Their Understanding and Optimization. Chem. Rev. 2008;108:1104–1126. doi: 10.1021/cr0680540. PubMed DOI
Kolyakina E.V., Grishin D.F. Nitroxide Radicals Formed in Situ as Polymer Chain Growth Regulators. Russ. Chem. Rev. 2009;78:535–568. doi: 10.1070/RC2009v078n06ABEH004026. DOI
Zoppe J.O., Ataman N.C., Mocny P., Wang J., Moraes J., Klok H.A. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem. Rev. 2017;117:1105–1318. doi: 10.1021/acs.chemrev.6b00314. PubMed DOI
Charleux B., Nicolas J. Water-Soluble SG1-Based Alkoxyamines: A Breakthrough in Controlled/Living Free-Radical Polymerization in Aqueous Dispersed Media. Polymer. 2007;48:5813–5833. doi: 10.1016/j.polymer.2007.07.031. DOI
Zetterlund P.B., Thickett S.C., Perrier S., Bourgeat-Lami E., Lansalot M. Controlled/Living Radical Polymerization in Dispersed Systems: An Update. Chem. Rev. 2015;115:9745–9800. doi: 10.1021/cr500625k. PubMed DOI
Cunningham M.F. Controlled/Living Radical Polymerization in Aqueous Dispersed Systems. Progr. Polym. Sci. 2008;33:365–398. doi: 10.1016/j.progpolymsci.2007.11.002. DOI
Moad G., Rizzardo E. Alkoxyamine-Initiated Living Radical Polymerization: Factors Affecting Alkoxyamine Homolysis Rates. Macromolecules. 1995;28:8722–8728. doi: 10.1021/ma00130a003. DOI
Johnson C., Moad G., Solomon D.H. The Application of Supercomputers in Modeling Chemical Reaction Kinetics: Kinetic Simulation of“Quasi-Living”Radical Polymerization. Aust. J. Chem. 1990;43:1215–1230. doi: 10.1071/CH9901215. DOI
Gigmes D., Marque S.R.A. Nitroxide Mediated Polymerization and its Applications. In: Chatgilialoglu C., Studer A., editors. Encyclopedia of Radicals in Chemistry, Biology, and Materials. Wiley; Chichester, UK: 2012. pp. 1813–1850.
This term has been coined by Daikh B.E., Finke R.G. The Persistent Radical Effect: A Prototype Example of Extreme, 105 to 1, Product Selectivity in a Free-Radical Reaction Involving Persistent. CoII[Macrocycle] and Alkyl Free Radicals. J. Am. Chem. Soc. 1992;114:2938–2943.
Fischer H. Unusual Selectivities of Radical Reactions by Internal Suppression of Fast Modes. J. Am. Chem. Soc. 1986;108:3925–3927. doi: 10.1021/ja00274a012. DOI
Kothe T., Marque S., Martschke R., Popov M., Fischer H. Radical Reaction Kinetics During Homolysis of N-alkoxyamines: Verification of the Persistent Radical Effect. J. Chem. Soc., Perkin Trans. 1998;2:1553–1559. doi: 10.1039/a802773k. DOI
Yoshikawa C., Goto A., Fukuda T. Quantitative Comparison of Theory and Experiment on Living Radical Polymerization Kinetics. 1. Nitroxide-Mediated Polymerization. Macromolecules. 2002;35:5801–5807. doi: 10.1021/ma012203t. DOI
Tang W., Fukuda T., Matyjaszewski K. Reevaluation of Persistent Radical Effect in NMP. Macromolecules. 2006;39:4332–4337. doi: 10.1021/ma060465v. DOI
Ohno K., Tsujii Y., Miyamoto T., Fukuda T., Goto M., Kobayashi K., Akaike T. Synthesis of a Well-Defined Glycopolymer by Nitroxide-Controlled Free Radical Polymerization. Macromolecules. 1998;31:1064–1069. doi: 10.1021/ma971329g. DOI
Lutz J.F., Desmazes P.L. The Persistent Radical Effect in Nitroxide Mediated Polymerization: Experimental Validity. Macromol. Rapid Commun. 2001;22:189–193. doi: 10.1002/1521-3927(200102)22:3<189::AID-MARC189>3.0.CO;2-X. DOI
Nicolas J., Guillaneuf Y., Lefay C., Bertin D., Gigmes D., Charleux B. Nitroxide-Mediated Polymerization. Progr. Polym. Sci. 2013;38:63–235. doi: 10.1016/j.progpolymsci.2012.06.002. DOI
Garcia-Valdez O., Champagne P., Cunningham M.F. Graft Modification of Natural Polysaccharides via Reversible Deactivation Radical Polymerization. Progr. Polym. Sci. 2018;76:151–173. doi: 10.1016/j.progpolymsci.2017.08.001. DOI
Darabi A., Jessop P.G., Cunningham M.F. CO2-Responsive Polymeric Materials: Synthesis, Self-Assembly, and Functional Applications. Chem. Soc. Rev. 2016;45:4391–4436. doi: 10.1039/C5CS00873E. PubMed DOI
Wong E.H.H., Junkers T., Barner-Kowollik C. Enhanced Spin Capturing Polymerization: An Efficient and Versatile Protocol for Controlling Molecular Weight Distributions. J. Polym. Sci. A Polym. Chem. 2008;46:7273–7279. doi: 10.1002/pola.23025. DOI
Wong E.H.H., Stenzel M.H., Junkers T., Barner-Kowollik C. The Kinetics of Enhanced Spin Capturing Polymerization: Influence of the Nitrone Structure. J. Polym. Sci. A Polym. Chem. 2009;47:1098–1107. doi: 10.1002/pola.23221. DOI
Wong E.H.H., Boyer C., Stenzel M.H., Barner-Kowollik C., Junkers T. Spin Capturing with Nitrones: Radical Coupling Reactions with Concurrent Introduction of Mid-Chain Functionality. Chem. Commun. 2010;46:1959–1961. doi: 10.1039/b925390d. PubMed DOI
Junkers T., Wong E.H.H., Stenzel M.H., Barner-Kowollik C. Formation Efficiency of ABA Blockcopolymers via Enhanced Spin Capturing Polymerization (ESCP): Locating the Alkoxyamine Function. Macromolecules. 2009;42:5027–5035. doi: 10.1021/ma900356p. DOI
Wong E.H.H., Junkers T., Barner-Kowollik C. Nitrones in Synthetic Polymer Chemistry. Polym. Chem. 2011;2:1008–1010. doi: 10.1039/c0py00377h. DOI
Dommanget C., Boisson C., Charleux B., D’Agosto F., Monteil V., Boisson F., Junkers T., Barner-Kowollik C., Guillaneuf Y., Gigmes D. Enhanced Spin Capturing Polymerization of Ethylene. Macromolecules. 2013;46:29–36. doi: 10.1021/ma3014806. DOI
Wong E.H.H., Stenzel M.H., Junkers T., Barner-Kowollik C. Spin Capturing with “Clickable” Nitrones: Generation of Miktoarmed Star Polymers. Macromolecules. 2010;43:3785–3793. doi: 10.1021/ma100263k. DOI
Nikitin S.V., Parkhomenko D.A., Edeleva M.V., Bagryanskaya E.G. Enhanced spin capturing polymerization: Numerical investigation of mechanism. J. Polym. Sci.: Part. A: Polym. Chem. 2015;53:2546–2556. doi: 10.1002/pola.27723. DOI
Scaiano J.C., Connolly T.J., Mohtat N., Pliva C.N. Exploratory Study of the Quenching of Photosensitizers by Initiators of Free Radical “Living” Polymerization. Can. J. Chem. 1997;75:92–97. doi: 10.1139/v97-014. DOI
Yoshida E. Photo-Living Radical Polymerization of Methyl Methacrylate by a Nitroxide Mediator. Colloid. Polym. Sci. 2008;286:1663–1666. doi: 10.1007/s00396-008-1930-y. DOI
Yoshida E. Nitroxide-Mediated Photo-Living Radical Polymerization of Methyl Methacrylate in Solution. Colloid. Polym. Sci. 2010;288:1639–1643. doi: 10.1007/s00396-010-2287-6. DOI
Guillaneuf Y., Bertin D., Gigmes D., Versace D.-L., Lalevée J., Fouassier J.P. Toward Nitroxide-Mediated Photopolymerization. Macromolecules. 2010;43:2204–2212. doi: 10.1021/ma902774s. DOI
Guillaneuf Y., Versace D.-L., Bertin D., Lalevée J., Gigmes D., Fouassier J.P. Importance of the Position of the Chromophore Group on the Dissociation Process of Light Sensitive Alkoxyamines. Macromol. Rapid Commun. 2010;31:1909–1913. doi: 10.1002/marc.201000316. PubMed DOI
Huix-Rotllant M., Ferré N. Theoretical Study of the Photochemical Initiation in Nitroxide-Mediated Photopolymerization. J. Phys. Chem. A. 2014;118:4464–4470. doi: 10.1021/jp501773n. PubMed DOI
Pan X., Tasdelen M.A., Laun J., Junkers T., Yagci Y., Matyjaszewski K. Photomediated Controlled Radical Polymerization. Progr. Polym. Sci. 2016;62:73–125. doi: 10.1016/j.progpolymsci.2016.06.005. DOI
Morris J., Telitel S., Fairfull-Smith K.E., Bottle S.E., Lalevée J., Clément J.-L., Guillaneuf Y., Gigmes D. Novel Polymer Synthesis Methodologies Using Combinations of Thermally- and Photochemically-Induced Nitroxide Mediated Polymerization. Polym. Chem. 2015;6:754–763. doi: 10.1039/C4PY01270D. DOI
Garra P., Dietlin C., Morlet-Savary F., Dumur F., Gigmes D., Fouassier J.P., Lalevée J. Photopolymerization Processes of Thick Films and in Shadow Areas: A Review for the Access to Composites. Polym. Chem. 2017;8:7088–7101. doi: 10.1039/C7PY01778B. DOI
Brémond P., Marque S.R.A. First Proton Triggered C—ON Bond Homolysis in Alkoxyamines. Chem. Commun. 2011;47:4291–4293. doi: 10.1039/c0cc05637e. PubMed DOI
Edeleva M.V., Kirilyuk I.A., Zhurko I.F., Parkhomenko D.A., Tsentalovich Y.P., Bagryanskaya E.G. pH-Sensitive C–ON Bond Homolysis of Alkoxyamines of Imidazoline Series with Multiple Ionizable Groups as an Approach for Control of Nitroxide Mediated Polymerization. J. Org. Chem. 2011;76:5558–5573. doi: 10.1021/jo200341m. PubMed DOI
Brémond P., Koïta A., Marque S.R.A., Pesce V., Roubaud V., Siri D. Chemically Trigerred C—ON Bond Homolysis of Alkoxyamines. Quaternization of the Alkyl Fragments. Org. Lett. 2012;14:358–361. doi: 10.1021/ol2031075. PubMed DOI
Audran G., Bagryanskaya E., Bagryanskaya I., Brémond P., Edeleva M., Marque S.R.A., Parkhomenko D., Tretyakov E., Zhivetyeva S. C—ON Bond Homolysis of Alkoxyamines Triggered by Paramagnetic Copper(II) Salts. Inorg. Chem. Frontier. 2016;3:1464–1472. doi: 10.1039/C6QI00277C. DOI
Audran G., Bagryanskaya E., Bagryanskaya I., Edeleva M., Marque S.R.A., Parkhomenko D., Tretyakov E., Zhivetyeva S. Zinc(II) Hexafluoroacetylacetonate Complexes of Alkoxyamines: NMR and Kinetic Investigations. First Step for a New Way to Prepare Hybrid Materials. ChemistrySelect. 2017;2:3584–3593. doi: 10.1002/slct.201700678. DOI
Edeleva M.V., Bagryanskaya E.G., Marque S.R.A. Imidazoline and Imidazolidine Nitroxides as Controlling Agents in Nitroxide-Mediated Pseudo-living Radical Polymerization. Russ. Chem. Rev. 2018;87:328–349.
Bagryanskaya E., Brémond P., Edeleva M., Marque S.R.A., Parkhomenko D., Roubaud V., Siri D. Chemically Triggered C—ON Bond Homolysis in Alkoxyamines. Part 2: DFT Investigation and Application of the pH Effect on NMP. Macromol. Rapid Commun. 2012;33:152–157. doi: 10.1002/marc.201100590. PubMed DOI
Audran G., Bagryanskaya E., Edeleva M., Marque S.R.A., Parkhomenko D., Tretyakov E., Zhivetyeva S. Coordination-Initiated Nitroxide-Mediated Polymerization (CI-NMP) Aust. J. Chem. 2018;71:334–340. doi: 10.1071/CH17570. DOI
Edeleva M., Morozov D., Parkhomenko D., Polienko Y., Iurchenkova A., Kirilyuk I., Bagryanskaya E. Versatile approach to activation of alkoxyamine homolysis by 1, 3-dipolar cycloaddition for efficient and safe nitroxide mediated polymerization. Chemical Communications. 2019;55:190–193. doi: 10.1039/C8CC08541B. PubMed DOI
Bagryanskaya E.G., Krumkacheva O., Fedin M.V., Marque S.R.A. Development and Application of Spin Traps, Spin Probes, and Spin Labels. Methods Enzym. 2015;563:365–396. PubMed
Gentilini C., Franchi P., Mileo E., Polizzi S., Lucarini M., Pasquato L. Formation of Patches on 3D SAMs Driven by Thiols with Immiscible Chains Observed by ESR Spectroscopy. Angew. Chem. Int. Ed. 2009;48:3060–3064. doi: 10.1002/anie.200805321. PubMed DOI
Ong Q., Luo Z., Stellacci F. Characterization of Ligand Shell for Mixed-Ligand Coated Gold Nanoparticles. Acc. Chem. Res. 2017;50:1911–1919. doi: 10.1021/acs.accounts.7b00165. PubMed DOI
Naveed K.-U.-R., Wang L., Yu H., Ullah R.S., Haroon M., Fahad S., Li J., Elshaarani T., Khan R.U., Nazir A. Recent Progress in the Electron Paramagnetic Resonance Study of Polymers. Polym. Chem. 2018;9:3306–3335. doi: 10.1039/C8PY00689J. DOI
Ebdon J.R., Huckerby T.N., Hunt B.J., Rimmer S. Radical Polymerizations of Methyl Methacrylate Initiated by Methyl 2-[(4-Diphenylmethylene)-2, 5-Cyclohexadienyl]-2-Methyl-Propanoate: A Model System for So-Called “quasi-living” polymerization of methyl methacrylate initiated by phenylazotriphenylmethane. Polymer. 1998;39:4943–4948. doi: 10.1016/S0032-3861(98)00082-2. DOI
Otsu T., Yoshida M., Tazaki T. A Model for Living Radical Polymerization. Makromol. Chem. Rapid Commun. 1982;3:133–140. doi: 10.1002/marc.1982.030030209. DOI
Acar M.H., Yagci Y. Studies on the Block Copolymerization of Methacrylo-Nitrile and Hexafluorobutylmethacrlate Using Phenylazo-Triphenylmethane as Thermal Iniferter. J. Macromol. Sci.: Part. A – Chem. 1991;28:177–183. doi: 10.1080/00222339108054398. DOI
Chernikova E.V., Garina E.S., Zeremskii M.Y., Olenin A.V., Lachinov M.B., Golubev V.B. Quasiliving radical polymerization of methyl methacrylate in the presence of phenylazotriphenylmethane. Polym. Sci. Ser. A. 1995;37:988–993.
Audran G., Bagryanskaya E., Bagryanskaya I., Brémond P., Edeleva M., Marque S.R.A., Parkhomenko D., Rogozhnikova O.Y., Tormyshev V.M., Tretyakov E.V., et al. Trityl-based Alkoxyamines as NMP Controlers and Spin-labels. Polym. Chem. 2016;7:6490–6499. doi: 10.1039/C6PY01303A. PubMed DOI PMC
Zhang K., Monteiro M.J., Jia Z. Stable Organic Radical Polymers: Synthesis and Applications. Polym. Chem. 2016;7:5589–5614. doi: 10.1039/C6PY00996D. DOI
Hansen K.-A., Blinco J.P. Nitroxide Radical Polymers – a Versatile Material Class for High-Tech Applications. Polym. Chem. 2018;9:1479–1516. doi: 10.1039/C7PY02001E. DOI
Edeleva M.V., Marque S.R.A., Rogozhnikova O.Y., Tormyshev V.M., Troitskaya T.I., Bagryanskaya E.G. Radical Polymerization of Radical-labelled Monomers: The Triarylmethyl-based Radical Monomer as an Example. J. Polym. Sci.: Part. A: Polym. Chem. 2018;56:2656–2664. doi: 10.1002/pola.29249. DOI
Nam J.-M., Liz-Marzán L., Halas N. Chemical Nanoplasmonics: Emerging Interdisciplinary Research Field at Crossroads Between Nanoscale Chemistry and Plasmonics. Acc. Chem. Res. 2019;52:2995–2996. doi: 10.1021/acs.accounts.9b00504. PubMed DOI
Wang P., Nasir M.E., Krasavin A.V., Dickson W., Jiang Y., Zayats A.V. Plasmonic Metamaterials for Nanochemistry and Sensing. Acc. Chem. Res. 2019;52:3018–3028. doi: 10.1021/acs.accounts.9b00325. PubMed DOI
Zhan C., Chen X.-J., Huang Y.-F., Wu D.-Y., Tian Z.-Q. Plasmon-Mediated Chemical Reactions on Nanostructures Unveiled by Surface-Enhanced Raman Spectroscopy. Acc. Chem. Res. 2019;52:2784–2792. doi: 10.1021/acs.accounts.9b00280. PubMed DOI
Gargiulo J., Berté R., Li Y., Maier S.A., Cortés E. From Optical to Chemical Hot Spots in Plasmonics. Acc. Chem. Res. 2019;52:2525–2535. doi: 10.1021/acs.accounts.9b00234. PubMed DOI
Murphy C.J., Chang H.-H., Falagan-Lotsch P., Gole M.T., Hofmann D.M., Hoang K.N.L., McClain S.M., Meyer S.M., Turner J.G., Unnikrishnan M., et al. Virus-Sized Gold Nanorods: Plasmonic Particles for Biology. Acc. Chem. Res. 2019;52:2124–2135. doi: 10.1021/acs.accounts.9b00288. PubMed DOI PMC
Phan-Quang G.C., Han X., Koh C.S.L., Sim H.Y.F., Lay C.L., Leong S.X., Lee Y.H., Pazos-Perez N., Alvarez-Puebla R.A., Ling X.Y. Three-Dimensional Surface-Enhanced Raman Scattering Platforms: Large-Scale Plasmonic Hotspots for New Applications in Sensing, Microreaction, and Data Storage. Acc. Chem. Res. 2019;52:1844–1854. doi: 10.1021/acs.accounts.9b00163. PubMed DOI
Zhang X., Yao X.K.J. Recent development of plasmon-mediated photocatalysts and their potential in selectivity regulation. J. Mater. Chem. A. 2018;6:1941–1946. doi: 10.1039/C7TA10375A. DOI
Zhang Y., He S., Guo W., Hu Y., Huang J., Mulcahy J.R., Wei W.D. Surface-Plasmon-Driven Hot Electron Photochemistry. Chem. Rev. 2018;118:2927–2954. doi: 10.1021/acs.chemrev.7b00430. PubMed DOI
Kazuma E., Kim Y. Mechanistic Studies of Plasmon Chemistry on Metal Catalysts. Angew. Chem. Int. Ed. 2019;58:4800–4808. doi: 10.1002/anie.201811234. PubMed DOI
Zhan C., Chen X.-J., Yi J., Li J.-F., Wu D.-Y., Tian Z.-Q. From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat. Rev. Chem. 2018;2:216–230. doi: 10.1038/s41570-018-0031-9. DOI
Wang F., Li C., Chen H., Jiang R., Sun L.-D., Li Q., Wang J., Yu J.C., Yan C.-H. Plasmonic Harvesting of Light Energy for Suzuki Coupling Reactions. J. Am. Chem. Soc. 2013;135:5588–5601. doi: 10.1021/ja310501y. PubMed DOI
Xiao Q., Sarina S., Bo A., Jia J., Liu H., Arnold D.P., Huang Y., Wu H., Zhu H. Visible Light-Driven Cross-Coupling Reactions at Lower Temperatures Using a Photocatalyst of Palladium and Gold Alloy Nanoparticles. ACS Catalysis. 2014;4:1725–1734. doi: 10.1021/cs5000284. DOI
Guselnikova O., Olshtrem A., Kalachyova Y., Panov I., Postnikov P., Svorcik V., Lyutakov O. Plasmon Catalysis on Bimetallic Surface—Selective Hydrogenation of Alkynes to Alkanes or Alkenes. The J. Phys. Chem. C. 2018;122:26613–26622. doi: 10.1021/acs.jpcc.8b07398. DOI
Landry M.J., Gellé A., Meng B.Y., Barrett C.J., Moores A. Surface-Plasmon-Mediated Hydrogenation of Carbonyls Catalyzed by Silver Nanocubes under Visible Light. ACS Catalysis. 2017;7:6128–6133. doi: 10.1021/acscatal.7b02128. DOI
Yin Z., Wang Y., Song C., Zheng L., Ma N., Liu X., Li S., Lin L., Li M., Xu Y., et al. Hybrid Au–Ag Nanostructures for Enhanced Plasmon-Driven Catalytic Selective Hydrogenation through Visible Light Irradiation and Surface-Enhanced Raman Scattering. J. Am. Chem. Soc. 2018;140:864–867. doi: 10.1021/jacs.7b11293. PubMed DOI
Chuang C.-C., Chu H.-C., Huang S.-B., Chang W.-S., Tuan H.-Y. Laser-induced plasmonic heating in copper nanowire fabric as a photothermal catalytic reactor. Chem. Engineer. J. 2020;379:122285. doi: 10.1016/j.cej.2019.122285. DOI
Guselnikova O., Postnikov P., Chehimi M.M., Kalachyovaa Y., Svorcik V., Lyutakov O. Surface Plasmon-Polariton: A Novel Way To Initiate Azide–Alkyne Cycloaddition. Langmuir. 2019;35:2023–2032. doi: 10.1021/acs.langmuir.8b03041. PubMed DOI
Xiao Q., Connell T.U., Cadusch J.J., Roberts A., Chesman A.S.R., Gómez D.E. Hot-Carrier Organic Synthesis via the Near-Perfect Absorption of Light. ACS Catalysis. 2018;8:10331–10339. doi: 10.1021/acscatal.8b03486. DOI
Li H., Qin F., Yang Z., Cui X., Wang J., Zhangu L. New Reaction Pathway Induced by Plasmon for Selective Benzyl Alcohol Oxidation on BiOCl Possessing Oxygen Vacancies. J. Am. Chem. Soc. 2017;139:3513–3521. doi: 10.1021/jacs.6b12850. PubMed DOI
Ding T., Mertens J., Lombardi A., Scherman O.A., Baumberg J.J. Light-Directed Tuning of Plasmon Resonances via Plasmon-Induced Polymerization Using Hot Electrons. ACS Photonics. 2017;4:1453–1458. doi: 10.1021/acsphotonics.7b00206. PubMed DOI PMC
Wang Y., Wang S., Zhang S., Scherman O.A., Baumberg J.J., Ding T., Xu H. Plasmon-directed polymerization: Regulating polymer growth with light. Nano Res. 2018;11:6384–6390. doi: 10.1007/s12274-018-2163-0. DOI
Erzina M., Guselnikova O., Postnikov P., Elashnikov R., Kolska Z., Miliutina E., Svorcik V., Lyutakov O. Plasmon-Polariton Induced, “From Surface” RAFT Polymerization, as a Way Toward Creation of Grafted Polymer Films with Thickness Precisely Controlled by Self-Limiting Mechanism. Adv. Mater. Interfaces. 2018;5:1801042. doi: 10.1002/admi.201801042. DOI
Guselnikova O., Marque S.R.A., Tretyakov E., Mares D., Jerabek V., Audran G., Joly J.-P., Trusova M., Švorčik V., Lyutakov O., et al. Unprecedented Plasmon-Induced Nitroxide-Mediated Polymerization (PI-NMP): A Method for Preparation of Functional Surfaces. J. Mat. Chem. A. 2019;7:12414–12419. doi: 10.1039/C9TA01630A. DOI