New Variants of Nitroxide Mediated Polymerization

. 2020 Jul 02 ; 12 (7) : . [epub] 20200702

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32630664

Grantová podpora
14.W03.31.0034 Ministry of Education and Science of the Russian Federation

Nitroxide-mediated polymerization is now a mature technique, at 35 years of age. During this time, several variants have been developed: electron spin capture polymerization (ESCP), photoNMP (NMP2), chemically initiated NMP (CI-NMP), spin label NMP (SL-NMP), and plasmon-initiated NMP (PI-NMP). This mini-review is devoted to the features and applications of these variants.

Zobrazit více v PubMed

Jones L.W., Major R.T. Substituted O-alkyl hydroxylamines chemically related to medicinally valuable amines. J. Am. Chem. Soc. 1927;49:1527–1540. doi: 10.1021/ja01405a021. DOI

Kovtun G.A., Aleksandrov A.L., Golubev V.A. Interaction of Peroxide Radicals with Esters of Hydroxylamines. Russ. Chem. Bull. 1974;23:2115–2121. doi: 10.1007/BF00921266. Izv. Akad. Nauk SSSR, Ser. Khim.1974, 2197–2203. DOI

Solomon D.H., Rizzardo E., Cacioli P. Polymerization Process and Polymers Produced Thereby. 4,581,429. U.S. Patent. 1986 Aug 4

Bertin D., Gigmes D., Marque S.R.A., Tordo P. Kinetic Subtleties of Nitroxide Mediated Polymerization. Chem. Soc. Rev. 2011;40:2189–2198. doi: 10.1039/c0cs00110d. PubMed DOI

Matyjaszewski K. Controlled Radical Polymerization. Current Opin. Solid State Materials Sci. 1996;1996. 1:769–776. doi: 10.1016/S1359-0286(96)80101-X. DOI

Bagryanskaya E.G., Marque S.R.A. Kinetic Aspects of Nitroxide-Mediated Polymerization. In: Gigmes D., editor. RSC Polymer Chemistry Series, n°=19, Nitroxide Mediated Polymerization: From Fundamentals to Applications in Materials Sciences. Royal Society of Chemistry; London, UK: 2016. pp. 45–113. Chapter 2.

Greszta D., Mardare D., Matyjaszewski K. “Living” Radical Polymerization. 1. Possibilities and Limitations. Macromolecules. 1994;27:638–644. doi: 10.1021/ma00081a002. DOI

Kreutzer J., Yagci Y. Metal Free Reversible-Deactivation Radical Polymerizations: Advances, Challenges, and Opportunities. Polymers. 2018;10:35. doi: 10.3390/polym10010035. PubMed DOI PMC

Grubbs R.B. Nitroxide-Mediated Radical Polymerization: Limitations and Versatility. Polymer Rev. 2011;51:104–137. doi: 10.1080/15583724.2011.566405. DOI

Tebben L., Studer A. Nitroxides: Applications in Synthesis and in Polymer Chemistry. Angew. Chem. Int. Ed. 2011;50:5034–5068. doi: 10.1002/anie.201002547. PubMed DOI

Fischer H. The Persistent Radical Effect: A Principle for Selective Radical Reactions and Living Radical Polymerizations. Chem. Rev. 2001;101:3581–3610. doi: 10.1021/cr990124y. PubMed DOI

Fischer H., Souaille M. The Persistent Radical Effect in Living Radical Polymerization - Borderline Cases and Side-Reactions. Macromol. Symp. 2001;174:231–240. doi: 10.1002/1521-3900(200109)174:1<231::AID-MASY231>3.0.CO;2-7. DOI

Fortunatti C., Sarmoria C., Brandolin A., Asteasuain M. Theoretical Analysis of Nitroxide-Mediated Copolymerization of Styrene and A-Methyl-Styrene Under Different Operating Policies and Reactor Designs. Macromol. React. Engineer. 2013;8:260–281. doi: 10.1002/mren.201200084. DOI

Fukuda T., Goto A., Ohno K. Mechanisms and Kinetics of Living Radical Polymerizations. Macromol. Rapid Commun. 2000;21:151–165. doi: 10.1002/(SICI)1521-3927(200003)21:4<151::AID-MARC151>3.0.CO;2-3. DOI

Goto A., Fukuda T. Kinetics of Living Radical Polymerization. Progr. Polym. Sci. 2004;29:329–385. doi: 10.1016/j.progpolymsci.2004.01.002. DOI

Braunecker W.A., Matyjaszewski K. Controlled/Living Radical Polymerization: Features, Developments, and Perspectives. Progr. Polym. Sci. 2007;32:93–146. doi: 10.1016/j.progpolymsci.2006.11.002. DOI

Gao H., Matyjaszewski K. Synthesis of Functional Polymers with Controlled Architecture by CRP of Monomers in the Presence of Cross-Linkers: From Stars to Gels. Progr. Polym. Sci. 2009;34:317–350. doi: 10.1016/j.progpolymsci.2009.01.001. DOI

Grishin D.F., Grishin I.D. Controlled Radical Polymerization: Prospects for Application for Industrial Synthesis of Polymers. Russ. J. Appl. Chem. 2012;84:2021–2028. doi: 10.1134/S1070427211120019. DOI

Kermagoret A., Gigmes D. Combined Nitroxide Mediated Radical Polymerization Techniques for Block Copolymer Synthesis. Tetrahedron. 2016;72:7672–7685. doi: 10.1016/j.tet.2016.07.002. DOI

Destarac M. Industrial Development of Reversible-Deactivation Radical Polymerization: Is the Induction Period Over? Polym. Chem. 2018;9:4947–4967. doi: 10.1039/C8PY00970H. DOI

Destarac M. Controlled Radical Polymerization: Industrial Stakes, Obstacles and Achievements. Macromol. React. Engineer. 2010;4:165–179. doi: 10.1002/mren.200900087. DOI

Sciannamea V., Jérôme R., Detrembleur C. In-Situ Nitroxide-Mediated Radical Polymerization (NMP) Processes: Their Understanding and Optimization. Chem. Rev. 2008;108:1104–1126. doi: 10.1021/cr0680540. PubMed DOI

Kolyakina E.V., Grishin D.F. Nitroxide Radicals Formed in Situ as Polymer Chain Growth Regulators. Russ. Chem. Rev. 2009;78:535–568. doi: 10.1070/RC2009v078n06ABEH004026. DOI

Zoppe J.O., Ataman N.C., Mocny P., Wang J., Moraes J., Klok H.A. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem. Rev. 2017;117:1105–1318. doi: 10.1021/acs.chemrev.6b00314. PubMed DOI

Charleux B., Nicolas J. Water-Soluble SG1-Based Alkoxyamines: A Breakthrough in Controlled/Living Free-Radical Polymerization in Aqueous Dispersed Media. Polymer. 2007;48:5813–5833. doi: 10.1016/j.polymer.2007.07.031. DOI

Zetterlund P.B., Thickett S.C., Perrier S., Bourgeat-Lami E., Lansalot M. Controlled/Living Radical Polymerization in Dispersed Systems: An Update. Chem. Rev. 2015;115:9745–9800. doi: 10.1021/cr500625k. PubMed DOI

Cunningham M.F. Controlled/Living Radical Polymerization in Aqueous Dispersed Systems. Progr. Polym. Sci. 2008;33:365–398. doi: 10.1016/j.progpolymsci.2007.11.002. DOI

Moad G., Rizzardo E. Alkoxyamine-Initiated Living Radical Polymerization: Factors Affecting Alkoxyamine Homolysis Rates. Macromolecules. 1995;28:8722–8728. doi: 10.1021/ma00130a003. DOI

Johnson C., Moad G., Solomon D.H. The Application of Supercomputers in Modeling Chemical Reaction Kinetics: Kinetic Simulation of“Quasi-Living”Radical Polymerization. Aust. J. Chem. 1990;43:1215–1230. doi: 10.1071/CH9901215. DOI

Gigmes D., Marque S.R.A. Nitroxide Mediated Polymerization and its Applications. In: Chatgilialoglu C., Studer A., editors. Encyclopedia of Radicals in Chemistry, Biology, and Materials. Wiley; Chichester, UK: 2012. pp. 1813–1850.

This term has been coined by Daikh B.E., Finke R.G. The Persistent Radical Effect: A Prototype Example of Extreme, 105 to 1, Product Selectivity in a Free-Radical Reaction Involving Persistent. CoII[Macrocycle] and Alkyl Free Radicals. J. Am. Chem. Soc. 1992;114:2938–2943.

Fischer H. Unusual Selectivities of Radical Reactions by Internal Suppression of Fast Modes. J. Am. Chem. Soc. 1986;108:3925–3927. doi: 10.1021/ja00274a012. DOI

Kothe T., Marque S., Martschke R., Popov M., Fischer H. Radical Reaction Kinetics During Homolysis of N-alkoxyamines: Verification of the Persistent Radical Effect. J. Chem. Soc., Perkin Trans. 1998;2:1553–1559. doi: 10.1039/a802773k. DOI

Yoshikawa C., Goto A., Fukuda T. Quantitative Comparison of Theory and Experiment on Living Radical Polymerization Kinetics. 1. Nitroxide-Mediated Polymerization. Macromolecules. 2002;35:5801–5807. doi: 10.1021/ma012203t. DOI

Tang W., Fukuda T., Matyjaszewski K. Reevaluation of Persistent Radical Effect in NMP. Macromolecules. 2006;39:4332–4337. doi: 10.1021/ma060465v. DOI

Ohno K., Tsujii Y., Miyamoto T., Fukuda T., Goto M., Kobayashi K., Akaike T. Synthesis of a Well-Defined Glycopolymer by Nitroxide-Controlled Free Radical Polymerization. Macromolecules. 1998;31:1064–1069. doi: 10.1021/ma971329g. DOI

Lutz J.F., Desmazes P.L. The Persistent Radical Effect in Nitroxide Mediated Polymerization: Experimental Validity. Macromol. Rapid Commun. 2001;22:189–193. doi: 10.1002/1521-3927(200102)22:3<189::AID-MARC189>3.0.CO;2-X. DOI

Nicolas J., Guillaneuf Y., Lefay C., Bertin D., Gigmes D., Charleux B. Nitroxide-Mediated Polymerization. Progr. Polym. Sci. 2013;38:63–235. doi: 10.1016/j.progpolymsci.2012.06.002. DOI

Garcia-Valdez O., Champagne P., Cunningham M.F. Graft Modification of Natural Polysaccharides via Reversible Deactivation Radical Polymerization. Progr. Polym. Sci. 2018;76:151–173. doi: 10.1016/j.progpolymsci.2017.08.001. DOI

Darabi A., Jessop P.G., Cunningham M.F. CO2-Responsive Polymeric Materials: Synthesis, Self-Assembly, and Functional Applications. Chem. Soc. Rev. 2016;45:4391–4436. doi: 10.1039/C5CS00873E. PubMed DOI

Wong E.H.H., Junkers T., Barner-Kowollik C. Enhanced Spin Capturing Polymerization: An Efficient and Versatile Protocol for Controlling Molecular Weight Distributions. J. Polym. Sci. A Polym. Chem. 2008;46:7273–7279. doi: 10.1002/pola.23025. DOI

Wong E.H.H., Stenzel M.H., Junkers T., Barner-Kowollik C. The Kinetics of Enhanced Spin Capturing Polymerization: Influence of the Nitrone Structure. J. Polym. Sci. A Polym. Chem. 2009;47:1098–1107. doi: 10.1002/pola.23221. DOI

Wong E.H.H., Boyer C., Stenzel M.H., Barner-Kowollik C., Junkers T. Spin Capturing with Nitrones: Radical Coupling Reactions with Concurrent Introduction of Mid-Chain Functionality. Chem. Commun. 2010;46:1959–1961. doi: 10.1039/b925390d. PubMed DOI

Junkers T., Wong E.H.H., Stenzel M.H., Barner-Kowollik C. Formation Efficiency of ABA Blockcopolymers via Enhanced Spin Capturing Polymerization (ESCP): Locating the Alkoxyamine Function. Macromolecules. 2009;42:5027–5035. doi: 10.1021/ma900356p. DOI

Wong E.H.H., Junkers T., Barner-Kowollik C. Nitrones in Synthetic Polymer Chemistry. Polym. Chem. 2011;2:1008–1010. doi: 10.1039/c0py00377h. DOI

Dommanget C., Boisson C., Charleux B., D’Agosto F., Monteil V., Boisson F., Junkers T., Barner-Kowollik C., Guillaneuf Y., Gigmes D. Enhanced Spin Capturing Polymerization of Ethylene. Macromolecules. 2013;46:29–36. doi: 10.1021/ma3014806. DOI

Wong E.H.H., Stenzel M.H., Junkers T., Barner-Kowollik C. Spin Capturing with “Clickable” Nitrones: Generation of Miktoarmed Star Polymers. Macromolecules. 2010;43:3785–3793. doi: 10.1021/ma100263k. DOI

Nikitin S.V., Parkhomenko D.A., Edeleva M.V., Bagryanskaya E.G. Enhanced spin capturing polymerization: Numerical investigation of mechanism. J. Polym. Sci.: Part. A: Polym. Chem. 2015;53:2546–2556. doi: 10.1002/pola.27723. DOI

Scaiano J.C., Connolly T.J., Mohtat N., Pliva C.N. Exploratory Study of the Quenching of Photosensitizers by Initiators of Free Radical “Living” Polymerization. Can. J. Chem. 1997;75:92–97. doi: 10.1139/v97-014. DOI

Yoshida E. Photo-Living Radical Polymerization of Methyl Methacrylate by a Nitroxide Mediator. Colloid. Polym. Sci. 2008;286:1663–1666. doi: 10.1007/s00396-008-1930-y. DOI

Yoshida E. Nitroxide-Mediated Photo-Living Radical Polymerization of Methyl Methacrylate in Solution. Colloid. Polym. Sci. 2010;288:1639–1643. doi: 10.1007/s00396-010-2287-6. DOI

Guillaneuf Y., Bertin D., Gigmes D., Versace D.-L., Lalevée J., Fouassier J.P. Toward Nitroxide-Mediated Photopolymerization. Macromolecules. 2010;43:2204–2212. doi: 10.1021/ma902774s. DOI

Guillaneuf Y., Versace D.-L., Bertin D., Lalevée J., Gigmes D., Fouassier J.P. Importance of the Position of the Chromophore Group on the Dissociation Process of Light Sensitive Alkoxyamines. Macromol. Rapid Commun. 2010;31:1909–1913. doi: 10.1002/marc.201000316. PubMed DOI

Huix-Rotllant M., Ferré N. Theoretical Study of the Photochemical Initiation in Nitroxide-Mediated Photopolymerization. J. Phys. Chem. A. 2014;118:4464–4470. doi: 10.1021/jp501773n. PubMed DOI

Pan X., Tasdelen M.A., Laun J., Junkers T., Yagci Y., Matyjaszewski K. Photomediated Controlled Radical Polymerization. Progr. Polym. Sci. 2016;62:73–125. doi: 10.1016/j.progpolymsci.2016.06.005. DOI

Morris J., Telitel S., Fairfull-Smith K.E., Bottle S.E., Lalevée J., Clément J.-L., Guillaneuf Y., Gigmes D. Novel Polymer Synthesis Methodologies Using Combinations of Thermally- and Photochemically-Induced Nitroxide Mediated Polymerization. Polym. Chem. 2015;6:754–763. doi: 10.1039/C4PY01270D. DOI

Garra P., Dietlin C., Morlet-Savary F., Dumur F., Gigmes D., Fouassier J.P., Lalevée J. Photopolymerization Processes of Thick Films and in Shadow Areas: A Review for the Access to Composites. Polym. Chem. 2017;8:7088–7101. doi: 10.1039/C7PY01778B. DOI

Brémond P., Marque S.R.A. First Proton Triggered C—ON Bond Homolysis in Alkoxyamines. Chem. Commun. 2011;47:4291–4293. doi: 10.1039/c0cc05637e. PubMed DOI

Edeleva M.V., Kirilyuk I.A., Zhurko I.F., Parkhomenko D.A., Tsentalovich Y.P., Bagryanskaya E.G. pH-Sensitive C–ON Bond Homolysis of Alkoxyamines of Imidazoline Series with Multiple Ionizable Groups as an Approach for Control of Nitroxide Mediated Polymerization. J. Org. Chem. 2011;76:5558–5573. doi: 10.1021/jo200341m. PubMed DOI

Brémond P., Koïta A., Marque S.R.A., Pesce V., Roubaud V., Siri D. Chemically Trigerred C—ON Bond Homolysis of Alkoxyamines. Quaternization of the Alkyl Fragments. Org. Lett. 2012;14:358–361. doi: 10.1021/ol2031075. PubMed DOI

Audran G., Bagryanskaya E., Bagryanskaya I., Brémond P., Edeleva M., Marque S.R.A., Parkhomenko D., Tretyakov E., Zhivetyeva S. C—ON Bond Homolysis of Alkoxyamines Triggered by Paramagnetic Copper(II) Salts. Inorg. Chem. Frontier. 2016;3:1464–1472. doi: 10.1039/C6QI00277C. DOI

Audran G., Bagryanskaya E., Bagryanskaya I., Edeleva M., Marque S.R.A., Parkhomenko D., Tretyakov E., Zhivetyeva S. Zinc(II) Hexafluoroacetylacetonate Complexes of Alkoxyamines: NMR and Kinetic Investigations. First Step for a New Way to Prepare Hybrid Materials. ChemistrySelect. 2017;2:3584–3593. doi: 10.1002/slct.201700678. DOI

Edeleva M.V., Bagryanskaya E.G., Marque S.R.A. Imidazoline and Imidazolidine Nitroxides as Controlling Agents in Nitroxide-Mediated Pseudo-living Radical Polymerization. Russ. Chem. Rev. 2018;87:328–349.

Bagryanskaya E., Brémond P., Edeleva M., Marque S.R.A., Parkhomenko D., Roubaud V., Siri D. Chemically Triggered C—ON Bond Homolysis in Alkoxyamines. Part 2: DFT Investigation and Application of the pH Effect on NMP. Macromol. Rapid Commun. 2012;33:152–157. doi: 10.1002/marc.201100590. PubMed DOI

Audran G., Bagryanskaya E., Edeleva M., Marque S.R.A., Parkhomenko D., Tretyakov E., Zhivetyeva S. Coordination-Initiated Nitroxide-Mediated Polymerization (CI-NMP) Aust. J. Chem. 2018;71:334–340. doi: 10.1071/CH17570. DOI

Edeleva M., Morozov D., Parkhomenko D., Polienko Y., Iurchenkova A., Kirilyuk I., Bagryanskaya E. Versatile approach to activation of alkoxyamine homolysis by 1, 3-dipolar cycloaddition for efficient and safe nitroxide mediated polymerization. Chemical Communications. 2019;55:190–193. doi: 10.1039/C8CC08541B. PubMed DOI

Bagryanskaya E.G., Krumkacheva O., Fedin M.V., Marque S.R.A. Development and Application of Spin Traps, Spin Probes, and Spin Labels. Methods Enzym. 2015;563:365–396. PubMed

Gentilini C., Franchi P., Mileo E., Polizzi S., Lucarini M., Pasquato L. Formation of Patches on 3D SAMs Driven by Thiols with Immiscible Chains Observed by ESR Spectroscopy. Angew. Chem. Int. Ed. 2009;48:3060–3064. doi: 10.1002/anie.200805321. PubMed DOI

Ong Q., Luo Z., Stellacci F. Characterization of Ligand Shell for Mixed-Ligand Coated Gold Nanoparticles. Acc. Chem. Res. 2017;50:1911–1919. doi: 10.1021/acs.accounts.7b00165. PubMed DOI

Naveed K.-U.-R., Wang L., Yu H., Ullah R.S., Haroon M., Fahad S., Li J., Elshaarani T., Khan R.U., Nazir A. Recent Progress in the Electron Paramagnetic Resonance Study of Polymers. Polym. Chem. 2018;9:3306–3335. doi: 10.1039/C8PY00689J. DOI

Ebdon J.R., Huckerby T.N., Hunt B.J., Rimmer S. Radical Polymerizations of Methyl Methacrylate Initiated by Methyl 2-[(4-Diphenylmethylene)-2, 5-Cyclohexadienyl]-2-Methyl-Propanoate: A Model System for So-Called “quasi-living” polymerization of methyl methacrylate initiated by phenylazotriphenylmethane. Polymer. 1998;39:4943–4948. doi: 10.1016/S0032-3861(98)00082-2. DOI

Otsu T., Yoshida M., Tazaki T. A Model for Living Radical Polymerization. Makromol. Chem. Rapid Commun. 1982;3:133–140. doi: 10.1002/marc.1982.030030209. DOI

Acar M.H., Yagci Y. Studies on the Block Copolymerization of Methacrylo-Nitrile and Hexafluorobutylmethacrlate Using Phenylazo-Triphenylmethane as Thermal Iniferter. J. Macromol. Sci.: Part. A – Chem. 1991;28:177–183. doi: 10.1080/00222339108054398. DOI

Chernikova E.V., Garina E.S., Zeremskii M.Y., Olenin A.V., Lachinov M.B., Golubev V.B. Quasiliving radical polymerization of methyl methacrylate in the presence of phenylazotriphenylmethane. Polym. Sci. Ser. A. 1995;37:988–993.

Audran G., Bagryanskaya E., Bagryanskaya I., Brémond P., Edeleva M., Marque S.R.A., Parkhomenko D., Rogozhnikova O.Y., Tormyshev V.M., Tretyakov E.V., et al. Trityl-based Alkoxyamines as NMP Controlers and Spin-labels. Polym. Chem. 2016;7:6490–6499. doi: 10.1039/C6PY01303A. PubMed DOI PMC

Zhang K., Monteiro M.J., Jia Z. Stable Organic Radical Polymers: Synthesis and Applications. Polym. Chem. 2016;7:5589–5614. doi: 10.1039/C6PY00996D. DOI

Hansen K.-A., Blinco J.P. Nitroxide Radical Polymers – a Versatile Material Class for High-Tech Applications. Polym. Chem. 2018;9:1479–1516. doi: 10.1039/C7PY02001E. DOI

Edeleva M.V., Marque S.R.A., Rogozhnikova O.Y., Tormyshev V.M., Troitskaya T.I., Bagryanskaya E.G. Radical Polymerization of Radical-labelled Monomers: The Triarylmethyl-based Radical Monomer as an Example. J. Polym. Sci.: Part. A: Polym. Chem. 2018;56:2656–2664. doi: 10.1002/pola.29249. DOI

Nam J.-M., Liz-Marzán L., Halas N. Chemical Nanoplasmonics: Emerging Interdisciplinary Research Field at Crossroads Between Nanoscale Chemistry and Plasmonics. Acc. Chem. Res. 2019;52:2995–2996. doi: 10.1021/acs.accounts.9b00504. PubMed DOI

Wang P., Nasir M.E., Krasavin A.V., Dickson W., Jiang Y., Zayats A.V. Plasmonic Metamaterials for Nanochemistry and Sensing. Acc. Chem. Res. 2019;52:3018–3028. doi: 10.1021/acs.accounts.9b00325. PubMed DOI

Zhan C., Chen X.-J., Huang Y.-F., Wu D.-Y., Tian Z.-Q. Plasmon-Mediated Chemical Reactions on Nanostructures Unveiled by Surface-Enhanced Raman Spectroscopy. Acc. Chem. Res. 2019;52:2784–2792. doi: 10.1021/acs.accounts.9b00280. PubMed DOI

Gargiulo J., Berté R., Li Y., Maier S.A., Cortés E. From Optical to Chemical Hot Spots in Plasmonics. Acc. Chem. Res. 2019;52:2525–2535. doi: 10.1021/acs.accounts.9b00234. PubMed DOI

Murphy C.J., Chang H.-H., Falagan-Lotsch P., Gole M.T., Hofmann D.M., Hoang K.N.L., McClain S.M., Meyer S.M., Turner J.G., Unnikrishnan M., et al. Virus-Sized Gold Nanorods: Plasmonic Particles for Biology. Acc. Chem. Res. 2019;52:2124–2135. doi: 10.1021/acs.accounts.9b00288. PubMed DOI PMC

Phan-Quang G.C., Han X., Koh C.S.L., Sim H.Y.F., Lay C.L., Leong S.X., Lee Y.H., Pazos-Perez N., Alvarez-Puebla R.A., Ling X.Y. Three-Dimensional Surface-Enhanced Raman Scattering Platforms: Large-Scale Plasmonic Hotspots for New Applications in Sensing, Microreaction, and Data Storage. Acc. Chem. Res. 2019;52:1844–1854. doi: 10.1021/acs.accounts.9b00163. PubMed DOI

Zhang X., Yao X.K.J. Recent development of plasmon-mediated photocatalysts and their potential in selectivity regulation. J. Mater. Chem. A. 2018;6:1941–1946. doi: 10.1039/C7TA10375A. DOI

Zhang Y., He S., Guo W., Hu Y., Huang J., Mulcahy J.R., Wei W.D. Surface-Plasmon-Driven Hot Electron Photochemistry. Chem. Rev. 2018;118:2927–2954. doi: 10.1021/acs.chemrev.7b00430. PubMed DOI

Kazuma E., Kim Y. Mechanistic Studies of Plasmon Chemistry on Metal Catalysts. Angew. Chem. Int. Ed. 2019;58:4800–4808. doi: 10.1002/anie.201811234. PubMed DOI

Zhan C., Chen X.-J., Yi J., Li J.-F., Wu D.-Y., Tian Z.-Q. From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat. Rev. Chem. 2018;2:216–230. doi: 10.1038/s41570-018-0031-9. DOI

Wang F., Li C., Chen H., Jiang R., Sun L.-D., Li Q., Wang J., Yu J.C., Yan C.-H. Plasmonic Harvesting of Light Energy for Suzuki Coupling Reactions. J. Am. Chem. Soc. 2013;135:5588–5601. doi: 10.1021/ja310501y. PubMed DOI

Xiao Q., Sarina S., Bo A., Jia J., Liu H., Arnold D.P., Huang Y., Wu H., Zhu H. Visible Light-Driven Cross-Coupling Reactions at Lower Temperatures Using a Photocatalyst of Palladium and Gold Alloy Nanoparticles. ACS Catalysis. 2014;4:1725–1734. doi: 10.1021/cs5000284. DOI

Guselnikova O., Olshtrem A., Kalachyova Y., Panov I., Postnikov P., Svorcik V., Lyutakov O. Plasmon Catalysis on Bimetallic Surface—Selective Hydrogenation of Alkynes to Alkanes or Alkenes. The J. Phys. Chem. C. 2018;122:26613–26622. doi: 10.1021/acs.jpcc.8b07398. DOI

Landry M.J., Gellé A., Meng B.Y., Barrett C.J., Moores A. Surface-Plasmon-Mediated Hydrogenation of Carbonyls Catalyzed by Silver Nanocubes under Visible Light. ACS Catalysis. 2017;7:6128–6133. doi: 10.1021/acscatal.7b02128. DOI

Yin Z., Wang Y., Song C., Zheng L., Ma N., Liu X., Li S., Lin L., Li M., Xu Y., et al. Hybrid Au–Ag Nanostructures for Enhanced Plasmon-Driven Catalytic Selective Hydrogenation through Visible Light Irradiation and Surface-Enhanced Raman Scattering. J. Am. Chem. Soc. 2018;140:864–867. doi: 10.1021/jacs.7b11293. PubMed DOI

Chuang C.-C., Chu H.-C., Huang S.-B., Chang W.-S., Tuan H.-Y. Laser-induced plasmonic heating in copper nanowire fabric as a photothermal catalytic reactor. Chem. Engineer. J. 2020;379:122285. doi: 10.1016/j.cej.2019.122285. DOI

Guselnikova O., Postnikov P., Chehimi M.M., Kalachyovaa Y., Svorcik V., Lyutakov O. Surface Plasmon-Polariton: A Novel Way To Initiate Azide–Alkyne Cycloaddition. Langmuir. 2019;35:2023–2032. doi: 10.1021/acs.langmuir.8b03041. PubMed DOI

Xiao Q., Connell T.U., Cadusch J.J., Roberts A., Chesman A.S.R., Gómez D.E. Hot-Carrier Organic Synthesis via the Near-Perfect Absorption of Light. ACS Catalysis. 2018;8:10331–10339. doi: 10.1021/acscatal.8b03486. DOI

Li H., Qin F., Yang Z., Cui X., Wang J., Zhangu L. New Reaction Pathway Induced by Plasmon for Selective Benzyl Alcohol Oxidation on BiOCl Possessing Oxygen Vacancies. J. Am. Chem. Soc. 2017;139:3513–3521. doi: 10.1021/jacs.6b12850. PubMed DOI

Ding T., Mertens J., Lombardi A., Scherman O.A., Baumberg J.J. Light-Directed Tuning of Plasmon Resonances via Plasmon-Induced Polymerization Using Hot Electrons. ACS Photonics. 2017;4:1453–1458. doi: 10.1021/acsphotonics.7b00206. PubMed DOI PMC

Wang Y., Wang S., Zhang S., Scherman O.A., Baumberg J.J., Ding T., Xu H. Plasmon-directed polymerization: Regulating polymer growth with light. Nano Res. 2018;11:6384–6390. doi: 10.1007/s12274-018-2163-0. DOI

Erzina M., Guselnikova O., Postnikov P., Elashnikov R., Kolska Z., Miliutina E., Svorcik V., Lyutakov O. Plasmon-Polariton Induced, “From Surface” RAFT Polymerization, as a Way Toward Creation of Grafted Polymer Films with Thickness Precisely Controlled by Self-Limiting Mechanism. Adv. Mater. Interfaces. 2018;5:1801042. doi: 10.1002/admi.201801042. DOI

Guselnikova O., Marque S.R.A., Tretyakov E., Mares D., Jerabek V., Audran G., Joly J.-P., Trusova M., Švorčik V., Lyutakov O., et al. Unprecedented Plasmon-Induced Nitroxide-Mediated Polymerization (PI-NMP): A Method for Preparation of Functional Surfaces. J. Mat. Chem. A. 2019;7:12414–12419. doi: 10.1039/C9TA01630A. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...