Mechanical properties of a biodegradable self-expandable polydioxanone monofilament stent: In vitro force relaxation and its clinical relevance
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32639989
PubMed Central
PMC7343154
DOI
10.1371/journal.pone.0235842
PII: PONE-D-20-05436
Knihovny.cz E-zdroje
- MeSH
- biokompatibilní materiály chemie MeSH
- lidé MeSH
- mechanické jevy MeSH
- modul pružnosti MeSH
- polydioxanon chemie MeSH
- protézy - design MeSH
- stenty * MeSH
- testování materiálů MeSH
- vstřebatelné implantáty * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- polydioxanon MeSH
Biodegradable stents are promising treatments for many diseases, e.g., coronary artery disease, urethral diseases, tracheal diseases, and esophageal strictures. The mechanical properties of biodegradable stent materials play a key role in the safety and efficacy of treatment. In particular, insufficient creep resistance of the stent material could result in premature stent collapse or narrowing. Commercially available biodegradable self-expandable SX-ELLA stents made of polydioxanone monofilament were tested. A new, simple, and affordable method to measure the shear modulus of tiny viscoelastic wires is presented. The important mechanical parameters of the polydioxanone filament were obtained: the median Young's modulus was [Formula: see text] = 958 (922, 974) MPa and the shear modulus was [Formula: see text] = 357 (185, 387) MPa, resulting in a Poisson's ratio of ν = 0.34. The SX-ELLA stents exhibited significant force relaxation due to the stress relaxation of the polydioxanone monofilament, approximately 19% and 36% 10 min and 48 h after stent application, respectively. However, these results were expected, and the manufacturer and implanting clinician should be aware of the known behavior of these biodegradable materials. If possible, a biodegradable stent should be designed considering therapeutic force rather than initial force. Additionally, new and more advanced biodegradable shape-memory polymers should be considered for future study and use.
Central European Institute of Technology Brno University of Technology Brno Czech Republic
Department of Neurosurgery University Hospital Hradec Kralove Hradec Kralove Czech Republic
Zobrazit více v PubMed
Puranik AS, Dawson ER, Peppas NA. Recent advances in drug eluting stents. Int J Pharm. 2013;441: 665–679. 10.1016/j.ijpharm.2012.10.029 PubMed DOI PMC
Tamai H, Igaki K, Kyo E, Kosuga K, Kawashima A, Matsui S, et al. Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation. 2000;102: 399–404. 10.1161/01.cir.102.4.399 PubMed DOI
Wiebe J, Nef HM, Hamm CW. Current status of bioresorbable scaffolds in the treatment of coronary artery disease. J Am Coll Cardiol. 2014;64: 2541–2551. 10.1016/j.jacc.2014.09.041 PubMed DOI
Cwikiel W, Willén R, Stridbeck H, Lillo-Gil R, von Holstein CS. Self-expanding stent in the treatment of benign esophageal strictures: experimental study in pigs and presentation of clinical cases. Radiology. 1993;187: 667–671. 10.1148/radiology.187.3.8497612 PubMed DOI
Siersema PD. Treatment options for esophageal strictures. Nat Clin Pract Gastroenterol Hepatol. 2008;5: 142–152. 10.1038/ncpgasthep1053 PubMed DOI
Stivaros SM, Williams LR, Senger C, Wilbraham L, Laasch H-U. Woven polydioxanone biodegradable stents: a new treatment option for benign and malignant oesophageal strictures. Eur Radiol. 2010;20: 1069–1072. 10.1007/s00330-009-1662-5 PubMed DOI
Duterloo D, Lohle PNM, Lampmann LEH. Subintimal Double-Barrel Restenting of an Occluded Primary Stented Superficial Femoral Artery. Cardiovasc Intervent Radiol. 2007;30: 474–476. 10.1007/s00270-006-0032-9 PubMed DOI PMC
Laçin NT, Utkan GG. Role of biomaterials in prevention of in-stent restenosis. J Biomed Mater Res B Appl Biomater. 2014;102: 1113–1120. 10.1002/jbm.b.33083 PubMed DOI
Cerná M, Köcher M, Válek V, Aujeský R, Neoral C, Andrasina T, et al. Covered Biodegradable Stent: New Therapeutic Option for the Management of Esophageal Perforation or Anastomotic Leak. Cardiovasc Intervent Radiol. 2011;34: 1267–71. 10.1007/s00270-010-0059-9 PubMed DOI
Repici A, Vleggaar FP, Hassan C, van Boeckel PG, Romeo F, Pagano N, et al. Efficacy and safety of biodegradable stents for refractory benign esophageal strictures: the BEST (Biodegradable Esophageal Stent) study. Gastrointest Endosc. 2010;72: 927–934. 10.1016/j.gie.2010.07.031 PubMed DOI
Vandenplas Y, Hauser B, Devreker T, Urbain D, Reynaert H. A Biodegradable Esophageal Stent in the Treatment of a Corrosive Esophageal Stenosis in a Child: J Pediatr Gastroenterol Nutr. 2009;49: 254–257. 10.1097/MPG.0b013e31819de871 PubMed DOI
Zilberman M, Nelson KD, Eberhart RC. Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents. J Biomed Mater Res B Appl Biomater. 2005;74B: 792–799. 10.1002/jbm.b.30319 PubMed DOI
Bartkowiak-Jowsa M, Będziński R, Szaraniec B, Chłopek J. Mechanical, biological, and microstructural properties of biodegradable models of polymeric stents made of PLLA and alginate fibers. Acta Bioeng Biomech Wroc Univ Technol. 2011;13: 21–28. PubMed
Xue L, Dai S, Li Z. Biodegradable shape-memory block co-polymers for fast self-expandable stents. Biomaterials. 2010;31: 8132–8140. 10.1016/j.biomaterials.2010.07.043 PubMed DOI
Sabino MA, González S, Márquez L, Feijoo JL. Study of the hydrolytic degradation of polydioxanone PPDX. Polym Degrad Stab. 2000;69: 209–216. 10.1016/S0141-3910(00)00062-8 DOI
Yu X, Wang L, Huang M, Gong T, Li W, Cao Y, et al. A shape memory stent of poly(ε-caprolactone-co-DL-lactide) copolymer for potential treatment of esophageal stenosis. J Mater Sci Mater Med. 2012;23: 581–589. 10.1007/s10856-011-4475-4 PubMed DOI
Daniels AU, Chang MKO, Andriano KP, Heller J. Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater. 1990;1: 57–78. 10.1002/jab.770010109 PubMed DOI
Li G, Li Y, Lan P, Li J, Zhao Z, He X, et al. Biodegradable weft-knitted intestinal stents: fabrication and physical changes investigation in vitro degradation. J Biomed Mater Res A. 2014;102: 982–990. 10.1002/jbm.a.34759 PubMed DOI
Torres J, Cotelo J, Karl J, Gordon AP. Mechanical Property Optimization of FDM PLA in Shear with Multiple Objectives. JOM—J Miner Met Mater Soc. 2015;67: 1183–1193. 10.1007/s11837-015-1367-y DOI
Välimaa T, Laaksovirta S, Tammela TLJ, Laippala P, Talja M, Isotalo T, et al. Viscoelastic memory and self-expansion of self-reinforced bioabsorbable stents. Biomaterials. 2002;23: 3575–3582. 10.1016/s0142-9612(02)00076-5 PubMed DOI
Venkatraman SS, Tan LP, Joso JFD, Boey YCF, Wang X. Biodegradable stents with elastic memory. Biomaterials. 2006;27: 1573–1578. 10.1016/j.biomaterials.2005.09.002 PubMed DOI
Hyun Kim J, Jin Kang T, Yu W-R. Simulation of mechanical behavior of temperature-responsive braided stents made of shape memory polyurethanes. J Biomech. 2010;43: 632–643. 10.1016/j.jbiomech.2009.10.032 PubMed DOI
Kimble LD, Bhattacharyya D, Fakirov S. Biodegradable microfibrillar polymer-polymer composites from poly(L-lactic acid)/poly(glycolic acid). Express Polym Lett. 2015;9: 300–307. 10.3144/expresspolymlett.2015.27 DOI
Kimble LD, Bhattacharyya D. In Vitro Degradation Effects on Strength, Stiffness, and Creep of PLLA/PBS: A Potential Stent Material. Int J Polym Mater Polym Biomater. 2015;64: 299–310. 10.1080/00914037.2014.945203 DOI
Grabow N, Bünger CM, Schultze C, Schmohl K, Martin DP, Williams SF, et al. A biodegradable slotted tube stent based on poly(L-lactide) and poly(4-hydroxybutyrate) for rapid balloon-expansion. Ann Biomed Eng. 2007;35: 2031–2038. 10.1007/s10439-007-9376-9 PubMed DOI
Martins C, Pinto V, Guedes RM, Marques AT. Creep and Stress Relaxation Behaviour of PLA-PCL Fibres–A Linear Modelling Approach. Procedia Eng. 2015;114: 768–775. 10.1016/j.proeng.2015.08.024 DOI
Venkatraman S, Poh TL, Vinalia T, Mak KH, Boey F. Collapse pressures of biodegradable stents. Biomaterials. 2003;24: 2105–2111. 10.1016/s0142-9612(02)00640-3 PubMed DOI
Zahora J, Bezrouk A, Hanus J. Models of stents—Comparison and applications. Physiol Res. 2007;56: S115–S121. PubMed
Greenwald D, Shumway S, Albear P, Gottlieb L. Mechanical Comparison of 10 Suture Materials before and after in Vivo Incubation. J Surg Res. 1994;56: 372–377. 10.1006/jsre.1994.1058 PubMed DOI
Kreszinger M, Toholj B, Ačanski A, Baloš S, Cincović M, Pećin M, et al. Tensile strength retention of resorptive suture materials applied in the stomach wall—an in vitro study. Vet Arh. 2018;88: 235–243. 10.24099/vet.arhiv.170130 DOI
Lee J, Huprich J, Kujath C, Ravi K, Enders F, Smyrk TC, et al. Esophageal Diameter Is Decreased in Some Patients With Eosinophilic Esophagitis and Might Increase With Topical Corticosteroid Therapy. Clin Gastroenterol Hepatol. 2012;10: 481–486. 10.1016/j.cgh.2011.12.042 PubMed DOI
Wang C, Ge X-G, Yang K-K, Chen S-C, Wang Y-Z. PREPARATION AND CHARACTERIZATION OF BIODEGRADABLE POLY(p‐DIOXANONE)/HYDROXYAPATITE COMPOSITES. Soft Mater. 2009;7: 116–131. 10.1080/15394450903163391 DOI
Huang F-Y, Wang Y-Z, Wang X-L, Yang K-K, Zhou Q, Ding S-D. Preparation and characterization of a novel biodegradable poly(p-dioxanone)/montmorillonite nanocomposite. J Polym Sci Part Polym Chem. 2005;43: 2298–2303. 10.1002/pola.20707 DOI
Ahlinder A, Fuoco T, Finne-Wistrand A. Medical grade polylactide, copolyesters and polydioxanone: Rheological properties and melt stability. Polym Test. 2018;72: 214–222. 10.1016/j.polymertesting.2018.10.007 DOI
Hong J-T, Cho N-S, Yoon H-S, Kim T-H, Lee D-H, Kim W-G. Preparation and characterization of biodegradable poly(trimethylenecarbonate-ε-caprolactone)-block-poly(p-dioxanone) copolymers. J Polym Sci Part Polym Chem. 2005;43: 2790–2799. 10.1002/pola.20752 DOI