The Genetic Landscape and Epidemiology of Phenylketonuria

. 2020 Aug 06 ; 107 (2) : 234-250. [epub] 20200714

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32668217

Grantová podpora
L60 MD003721 NIMHD NIH HHS - United States
R01 DK117916 NIDDK NIH HHS - United States
R01 NR016991 NINR NIH HHS - United States

Odkazy

PubMed 32668217
PubMed Central PMC7413859
DOI 10.1016/j.ajhg.2020.06.006
PII: S0002-9297(20)30194-4
Knihovny.cz E-zdroje

Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066-11G>A (IVS10-11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G>A];[1066-11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.

Ann and Robert H Lurie Children's Hospital of Chicago Chicago IL 60611 USA

Centre of Molecular Biology and Gene Therapy University Hospital Brno 62500 Brno Czech Republic

Centro de Diagnóstico de Enfermedades Moleculares Centro de Biología Molecular CSIC UAM Universidad Autónoma de Madrid CIBERER IdiPAz 28049 Madrid Spain

Centro Screening Neonatale Regione Marche Azienda Ospedaliera Ospedali Riuniti Marche Nord 61032 Fano Italy

Clinic of Pediatrics Division of Inherited Metabolic Disorders Medical University of Innsbruck 6020 Innsbruck Austria

Comenius University Faculty of Natural Sciences Department of Molecular Biology 84215 Bratislava 4 Slovak Republic

Department of Experimental Medicine Sapienza University of Rome 00185 Rome Italy

Department of Human Neuroscience Sapienza University of Rome 00185 Rome Italy

Department of Infectious Diseases Shanghai Children's Medical Center Shanghai Jiao Tong University School of Medicine 2000025 Shanghai China

Department of Pediatric Endocrinology Genetics Xinhua Hospital Shanghai Jiao Tong University School of Medicine Shanghai Institute for Pediatric Research 2000025 Shanghai China

Department of Pediatrics AOU Citta' della Salute e della Scienza di Torino 10126 Torino Italy

Department of Pediatrics Endocrinology Diabetology Metabolic Diseases and Cardiology Pomeranian Medical University 71 252 Szczecin Poland

Department of Screening and Metabolic Diagnostics Institute of Mother and Child 01 211 Warsaw Poland

Division of Child Neurology and Metabolic Medicine Centre for Child and Adolescent Medicine Clinic 1 University Hospital Heidelberg 69120 Heidelberg Germany

Division of Child Neurology and Metabolic Medicine Centre for Child and Adolescent Medicine Clinic 1 University Hospital Heidelberg 69120 Heidelberg Germany; Division of Metabolism University Children's Hospital 8032 Zürich Switzerland

Division of Genetics and Genomics Boston Children's Hospital Harvard Medical School Boston MA 02115 USA

Division of Inherited Metabolic Diseases Department of Woman's and Child's Health University Hospital 35129 Padua Italy

Division of Metabolism University Children's Hospital 8032 Zürich Switzerland

Fundación de Endocrinología Infantil C1425 Buenos Aires Argentina

Institute of Child Health 11526 Athens Greece

Institute of Human Genetics Medical University Innsbruck 6020 Innsbruck Austria

Institute of Molecular Genetics and Genetic Engineering University of Belgrade 11000 Belgrade Serbia

Institute of Mother and Child Healthcare Dr Vukan Čupić 11000 Belgrade Serbia

Laboratory of Inborn Errors of Metabolism Institute of Biological Sciences Federal University of Pará Belém 66075 110 Brazil

Metabolic Disease Unit Edmond and Lily Safra Children's Hospital Sheba Medical Center Tel Aviv University 52621 Tel Aviv Israel

Murdoch Children's Research Institute and Department of Pediatrics University of Melbourne Melbourne VIC 3052 Australia

Reference Center for Inherited Metabolic Diseases University Hospital of Nancy 54511 Vandoeuvre lès Nancy France

Research Centre for Medical Genetics 115522 Moscow Russia

Unidad de Enfermedades Metabolicas Servicio de Pediatria Hospital Ramon y Cajal 28034 Madrid Spain

Unidad de Metabolismo Hospital de Niños Sor Ludovica de La Plata 1904 Buenos Aires Argentina

University Children's Hospital University Medical Center Hamburg Eppendorf 20246 Hamburg Germany

University of Groningen University Medical Center Groningen Beatrix Children's Hospital Section of Metabolic Diseases 9712 CP Groningen the Netherlands

UPMC Children's Hospital of Pittsburgh Pittsburgh PA 15224 USA

Zobrazit více v PubMed

Blau N., van Spronsen F.J., Levy H.L. Phenylketonuria. Lancet. 2010;376:1417–1427. PubMed

Flydal M.I., Martinez A. Phenylalanine hydroxylase: function, structure, and regulation. IUBMB Life. 2013;65:341–349. PubMed

Himmelreich N., Shen N., Okun J.G., Thiel C., Hoffmann G.F., Blau N. Relationship between genotype, phenylalanine hydroxylase expression and in vitro activity and metabolic phenotype in phenylketonuria. Mol. Genet. Metab. 2018;125:86–95. PubMed

Güttler F. Hyperphenylalaninemia: diagnosis and classification of the various types of phenylalanine hydroxylase deficiency in childhood. Acta Paediatr. Scand. Suppl. 1980;280:1–80. PubMed

Camp K.M., Parisi M.A., Acosta P.B., Berry G.T., Bilder D.A., Blau N., Bodamer O.A., Brosco J.P., Brown C.S., Burlina A.B. Phenylketonuria Scientific Review Conference: state of the science and future research needs. Mol. Genet. Metab. 2014;112:87–122. PubMed

van Spronsen F.J., van Wegberg A.M., Ahring K., Bélanger-Quintana A., Blau N., Bosch A.M., Burlina A., Campistol J., Feillet F., Giżewska M. Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes Endocrinol. 2017;5:743–756. PubMed

Vockley J., Andersson H.C., Antshel K.M., Braverman N.E., Burton B.K., Frazier D.M., Mitchell J., Smith W.E., Thompson B.H., Berry S.A., American College of Medical Genetics and Genomics Therapeutics Committee Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet. Med. 2014;16:188–200. PubMed

Blau N., Longo N. Alternative therapies to address the unmet medical needs of patients with phenylketonuria. Expert Opin. Pharmacother. 2015;16:791–800. PubMed

Scriver C.R. The PAH gene, phenylketonuria, and a paradigm shift. Hum. Mutat. 2007;28:831–845. PubMed

Gundorova P., Zinchenko R.A., Kuznetsova I.A., Bliznetz E.A., Stepanova A.A., Polyakov A.V. Molecular-genetic causes for the high frequency of phenylketonuria in the population from the North Caucasus. PLoS ONE. 2018;13:e0201489. PubMed PMC

Guldberg P., Henriksen K.F., Sipilä I., Güttler F., de la Chapelle A. Phenylketonuria in a low incidence population: molecular characterisation of mutations in Finland. J. Med. Genet. 1995;32:976–978. PubMed PMC

Okano Y., Kudo S., Nishi Y., Sakaguchi T., Aso K. Molecular characterization of phenylketonuria and tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency in Japan. J. Hum. Genet. 2011;56:306–312. PubMed

Güttler F., Guldberg P., Henriksen K.F., Mikkelsen I., Olsen B., Lou H. Molecular basis for the phenotypical diversity of phenylketonuria and related hyperphenylalaninaemias. J. Inherit. Metab. Dis. 1993;16:602–604. PubMed

Blau N., Shen N., Carducci C. Molecular genetics and diagnosis of phenylketonuria: state of the art. Expert Rev. Mol. Diagn. 2014;14:655–671. PubMed

Garbade S.F., Shen N., Himmelreich N., Haas D., Trefz F.K., Hoffmann G.F., Burgard P., Blau N. Allelic phenotype values: a model for genotype-based phenotype prediction in phenylketonuria. Genet. Med. 2019;21:580–590. PubMed

Zschocke J. Dominant versus recessive: molecular mechanisms in metabolic disease. J. Inherit. Metab. Dis. 2008;31:599–618. PubMed

Scriver C.R., Waters P.J. Monogenic traits are not simple: lessons from phenylketonuria. Trends Genet. 1999;15:267–272. PubMed

Shen N., Heintz C., Thiel C., Okun J.G., Hoffmann G.F., Blau N. Co-expression of phenylalanine hydroxylase variants and effects of interallelic complementation on in vitro enzyme activity and genotype-phenotype correlation. Mol. Genet. Metab. 2016;117:328–335. PubMed

Evers R.A.F., van Wegberg A.M.J., Anjema K., Lubout C.M.A., van Dam E., van Vliet D., Blau N., van Spronsen F.J. The first European guidelines on phenylketonuria: Usefulness and implications for BH4 responsiveness testing. J. Inherit. Metab. Dis. 2020;43:244–250. PubMed

Muntau A.C., Adams D.J., Bélanger-Quintana A., Bushueva T.V., Cerone R., Chien Y.H., Chiesa A., Coşkun T., de Las Heras J., Feillet F. International best practice for the evaluation of responsiveness to sapropterin dihydrochloride in patients with phenylketonuria. Mol. Genet. Metab. 2019;127:1–11. PubMed

Konecki D.S., Schlotter M., Trefz F.K., Lichter-Konecki U. The identification of two mis-sense mutations at the PAH gene locus in a Turkish patient with phenylketonuria. Hum. Genet. 1991;87:389–393. PubMed

Ellingsen S., Knappskog P.M., Eiken H.G. Phenylketonuria splice mutation (EXON6nt-96A-->g) masquerading as missense mutation (Y204C) Hum. Mutat. 1997;9:88–90. PubMed

Matalon R., Michals K. Phenylketonuria: screening, treatment and maternal PKU. Clin. Biochem. 1991;24:337–342. PubMed

El-Metwally A., Yousef Al-Ahaidib L., Ayman Sunqurah A., Al-Surimi K., Househ M., Alshehri A., Da’ar O.B., Abdul Razzak H., AlOdaib A.N. The prevalence of phenylketonuria in Arab countries, Turkey, and Iran: A systematic review. BioMed Res. Int. 2018;2018:7697210. 10.1155/2018/7697210. PubMed PMC

Shoraka H.R., Haghdoost A.A., Baneshi M.R., Bagherinezhad Z., Zolala F. Global prevalence of classic phenylketonuria based on Neonatal Screening Program Data: systematic review and meta-analysis. Clin Exp Pediatr. 2020;63:34–43. PubMed PMC

Saadallah A.A., Rashed M.S. Newborn screening: experiences in the Middle East and North Africa. J. Inherit. Metab. Dis. 2007;30:482–489. PubMed

Zschocke J. Phenylketonuria mutations in Europe. Hum. Mutat. 2003;21:345–356. PubMed

Danecka M.K., Woidy M., Zschocke J., Feillet F., Muntau A.C., Gersting S.W. Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria. J. Med. Genet. 2015;52:175–185. PubMed

Gundorova P., Stepanova A.A., Kuznetsova I.A., Kutsev S.I., Polyakov A.V. Genotypes of 2579 patients with phenylketonuria reveal a high rate of BH4 non-responders in Russia. PLoS ONE. 2019;14:e0211048. PubMed PMC

Lillevali H., Reinson K., Muru K., Simenson K., Murumets U., Mols T., Ounap K. Hyperphenylalaninaemias in Estonia: Genotype-Phenotype Correlation and Comparative Overview of the Patient Cohort Before and After Nation-Wide Neonatal Screening. JIMD Rep. 2018;40:39–45. PubMed PMC

Bik-Multanowski M., Kaluzny L., Mozrzymas R., Oltarzewski M., Starostecka E., Lange A., Didycz B., Gizewska M., Ulewicz-Filipowicz J., Chrobot A. Molecular genetics of PKU in Poland and potential impact of mutations on BH4 responsiveness. Acta Biochim. Pol. 2013;60:613–616. PubMed

Kádasi L., Poláková H., Feráková E., Hudecová S., Bohusová T., Szomolayová I., Strnová J., Hruskovic I., Moschonas N.K., Ferák V. PKU in Slovakia: mutation screening and haplotype analysis. Hum. Genet. 1995;95:112–114. PubMed

Réblová K., Hrubá Z., Procházková D., Pazdírková R., Pouchlá S., Zeman J., Fajkusová L. Hyperphenylalaninemia in the Czech Republic: genotype-phenotype correlations and in silico analysis of novel missense mutations. Clin. Chim. Acta. 2013;419:1–10. PubMed

Sterl E., Paul K., Paschke E., Zschocke J., Brunner-Krainz M., Windisch E., Konstantopoulou V., Möslinger D., Karall D., Scholl-Bürgi S. Prevalence of tetrahydrobiopterine (BH4)-responsive alleles among Austrian patients with PAH deficiency: comprehensive results from molecular analysis in 147 patients. J. Inherit. Metab. Dis. 2013;36:7–13. PubMed

Zschocke J., Hoffmann G.F. Phenylketonuria mutations in Germany. Hum. Genet. 1999;104:390–398. PubMed

Zschocke J., Mallory J.P., Eiken H.G., Nevin N.C. Phenylketonuria and the peoples of Northern Ireland. Hum. Genet. 1997;100:189–194. PubMed

Krawczak M., Zschocke J. A role for overdominant selection in phenylketonuria? Evidence from molecular data. Hum. Mutat. 2003;21:394–397. PubMed

Eisensmith R.C., Okano Y., Dasovich M., Wang T., Güttler F., Lou H., Guldberg P., Lichter-Konecki U., Konecki D.S., Svensson E. Multiple origins for phenylketonuria in Europe. Am. J. Hum. Genet. 1992;51:1355–1365. PubMed PMC

Okano Y., Wang T., Eisensmith R.C., Longhi R., Riva E., Giovannini M., Cerone R., Romano C., Woo S.L. Phenylketonuria missense mutations in the Mediterranean. Genomics. 1991;9:96–103. PubMed

Kleiman S., Avigad S., Vanagaite L., Shmuelevitz A., David M., Eisensmith R.C., Brand N., Schwartz G., Rey F., Munnich A. Origins of hyperphenylalaninemia in Israel. Eur. J. Hum. Genet. 1994;2:24–34. PubMed

Desviat L.R., Pérez B., De Lucca M., Cornejo V., Schmidt B., Ugarte M. Evidence in Latin America of recurrence of V388M, a phenylketonuria mutation with high in vitro residual activity. Am. J. Hum. Genet. 1995;57:337–342. PubMed PMC

Vela-Amieva M., Abreu-González M., González-del Angel A., Ibarra-González I., Fernández-Lainez C., Barrientos-Ríos R., Monroy-Santoyo S., Guillén-López S., Alcántara-Ortigoza M.A. Phenylalanine hydroxylase deficiency in Mexico: genotype-phenotype correlations, BH4 responsiveness and evidence of a founder effect. Clin. Genet. 2015;88:62–67. PubMed

Rajabi F., Rohr F., Wessel A., Martell L., Dobrowolski S.F., Guldberg P., Güttler F., Levy H.L. Phenylalanine hydroxylase genotype-phenotype associations in the United States: A single center study. Mol. Genet. Metab. 2019;128:415–421. PubMed

Hofman K.J., Steel G., Kazazian H.H., Valle D. Phenylketonuria in U.S. blacks: molecular analysis of the phenylalanine hydroxylase gene. Am. J. Hum. Genet. 1991;48:791–798. PubMed PMC

Xiang L., Tao J., Deng K., Li X., Li Q., Yuan X., Liang J., Yu E., Wang M., Wang H. Phenylketonuria incidence in China between 2013 and 2017 based on data from the Chinese newborn screening information system: a descriptive study. BMJ Open. 2019;9:e031474. PubMed PMC

Li N., Jia H., Liu Z., Tao J., Chen S., Li X., Deng Y., Jin X., Song J., Zhang L. Molecular characterisation of phenylketonuria in a Chinese mainland population using next-generation sequencing. Sci. Rep. 2015;5:15769. PubMed PMC

Hennermann J.B., Vetter B., Kulozik A.E., Mönch E. Partial und total tetrahydrobiopterin-responsiveness in classical and mild phenylketonuria (PKU) J. Inherit. Metab. Dis. 2002;25:21.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...