The Genetic Landscape and Epidemiology of Phenylketonuria
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
L60 MD003721
NIMHD NIH HHS - United States
R01 DK117916
NIDDK NIH HHS - United States
R01 NR016991
NINR NIH HHS - United States
PubMed
32668217
PubMed Central
PMC7413859
DOI
10.1016/j.ajhg.2020.06.006
PII: S0002-9297(20)30194-4
Knihovny.cz E-zdroje
- Klíčová slova
- BH4, PAH deficiency, PKU, hyperphenylalaninemia, phenylalanine, tetrahydrobiopterin,
- MeSH
- alely MeSH
- biopteriny analogy a deriváty genetika MeSH
- fenotyp MeSH
- fenylalanin krev MeSH
- fenylalaninhydroxylasa genetika MeSH
- fenylketonurie krev epidemiologie genetika MeSH
- frekvence genu genetika MeSH
- genetická predispozice k nemoci genetika MeSH
- genetické asociační studie metody MeSH
- genotyp MeSH
- homozygot MeSH
- lidé MeSH
- mutace genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- biopteriny MeSH
- fenylalanin MeSH
- fenylalaninhydroxylasa MeSH
- sapropterin MeSH Prohlížeč
Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066-11G>A (IVS10-11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G>A];[1066-11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.
Ann and Robert H Lurie Children's Hospital of Chicago Chicago IL 60611 USA
Centre of Molecular Biology and Gene Therapy University Hospital Brno 62500 Brno Czech Republic
Department of Experimental Medicine Sapienza University of Rome 00185 Rome Italy
Department of Human Neuroscience Sapienza University of Rome 00185 Rome Italy
Department of Pediatrics AOU Citta' della Salute e della Scienza di Torino 10126 Torino Italy
Department of Screening and Metabolic Diagnostics Institute of Mother and Child 01 211 Warsaw Poland
Division of Metabolism University Children's Hospital 8032 Zürich Switzerland
Fundación de Endocrinología Infantil C1425 Buenos Aires Argentina
Institute of Child Health 11526 Athens Greece
Institute of Human Genetics Medical University Innsbruck 6020 Innsbruck Austria
Institute of Molecular Genetics and Genetic Engineering University of Belgrade 11000 Belgrade Serbia
Institute of Mother and Child Healthcare Dr Vukan Čupić 11000 Belgrade Serbia
Research Centre for Medical Genetics 115522 Moscow Russia
Unidad de Enfermedades Metabolicas Servicio de Pediatria Hospital Ramon y Cajal 28034 Madrid Spain
Unidad de Metabolismo Hospital de Niños Sor Ludovica de La Plata 1904 Buenos Aires Argentina
University Children's Hospital University Medical Center Hamburg Eppendorf 20246 Hamburg Germany
UPMC Children's Hospital of Pittsburgh Pittsburgh PA 15224 USA
Zobrazit více v PubMed
Blau N., van Spronsen F.J., Levy H.L. Phenylketonuria. Lancet. 2010;376:1417–1427. PubMed
Flydal M.I., Martinez A. Phenylalanine hydroxylase: function, structure, and regulation. IUBMB Life. 2013;65:341–349. PubMed
Himmelreich N., Shen N., Okun J.G., Thiel C., Hoffmann G.F., Blau N. Relationship between genotype, phenylalanine hydroxylase expression and in vitro activity and metabolic phenotype in phenylketonuria. Mol. Genet. Metab. 2018;125:86–95. PubMed
Güttler F. Hyperphenylalaninemia: diagnosis and classification of the various types of phenylalanine hydroxylase deficiency in childhood. Acta Paediatr. Scand. Suppl. 1980;280:1–80. PubMed
Camp K.M., Parisi M.A., Acosta P.B., Berry G.T., Bilder D.A., Blau N., Bodamer O.A., Brosco J.P., Brown C.S., Burlina A.B. Phenylketonuria Scientific Review Conference: state of the science and future research needs. Mol. Genet. Metab. 2014;112:87–122. PubMed
van Spronsen F.J., van Wegberg A.M., Ahring K., Bélanger-Quintana A., Blau N., Bosch A.M., Burlina A., Campistol J., Feillet F., Giżewska M. Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes Endocrinol. 2017;5:743–756. PubMed
Vockley J., Andersson H.C., Antshel K.M., Braverman N.E., Burton B.K., Frazier D.M., Mitchell J., Smith W.E., Thompson B.H., Berry S.A., American College of Medical Genetics and Genomics Therapeutics Committee Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet. Med. 2014;16:188–200. PubMed
Blau N., Longo N. Alternative therapies to address the unmet medical needs of patients with phenylketonuria. Expert Opin. Pharmacother. 2015;16:791–800. PubMed
Scriver C.R. The PAH gene, phenylketonuria, and a paradigm shift. Hum. Mutat. 2007;28:831–845. PubMed
Gundorova P., Zinchenko R.A., Kuznetsova I.A., Bliznetz E.A., Stepanova A.A., Polyakov A.V. Molecular-genetic causes for the high frequency of phenylketonuria in the population from the North Caucasus. PLoS ONE. 2018;13:e0201489. PubMed PMC
Guldberg P., Henriksen K.F., Sipilä I., Güttler F., de la Chapelle A. Phenylketonuria in a low incidence population: molecular characterisation of mutations in Finland. J. Med. Genet. 1995;32:976–978. PubMed PMC
Okano Y., Kudo S., Nishi Y., Sakaguchi T., Aso K. Molecular characterization of phenylketonuria and tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency in Japan. J. Hum. Genet. 2011;56:306–312. PubMed
Güttler F., Guldberg P., Henriksen K.F., Mikkelsen I., Olsen B., Lou H. Molecular basis for the phenotypical diversity of phenylketonuria and related hyperphenylalaninaemias. J. Inherit. Metab. Dis. 1993;16:602–604. PubMed
Blau N., Shen N., Carducci C. Molecular genetics and diagnosis of phenylketonuria: state of the art. Expert Rev. Mol. Diagn. 2014;14:655–671. PubMed
Garbade S.F., Shen N., Himmelreich N., Haas D., Trefz F.K., Hoffmann G.F., Burgard P., Blau N. Allelic phenotype values: a model for genotype-based phenotype prediction in phenylketonuria. Genet. Med. 2019;21:580–590. PubMed
Zschocke J. Dominant versus recessive: molecular mechanisms in metabolic disease. J. Inherit. Metab. Dis. 2008;31:599–618. PubMed
Scriver C.R., Waters P.J. Monogenic traits are not simple: lessons from phenylketonuria. Trends Genet. 1999;15:267–272. PubMed
Shen N., Heintz C., Thiel C., Okun J.G., Hoffmann G.F., Blau N. Co-expression of phenylalanine hydroxylase variants and effects of interallelic complementation on in vitro enzyme activity and genotype-phenotype correlation. Mol. Genet. Metab. 2016;117:328–335. PubMed
Evers R.A.F., van Wegberg A.M.J., Anjema K., Lubout C.M.A., van Dam E., van Vliet D., Blau N., van Spronsen F.J. The first European guidelines on phenylketonuria: Usefulness and implications for BH4 responsiveness testing. J. Inherit. Metab. Dis. 2020;43:244–250. PubMed
Muntau A.C., Adams D.J., Bélanger-Quintana A., Bushueva T.V., Cerone R., Chien Y.H., Chiesa A., Coşkun T., de Las Heras J., Feillet F. International best practice for the evaluation of responsiveness to sapropterin dihydrochloride in patients with phenylketonuria. Mol. Genet. Metab. 2019;127:1–11. PubMed
Konecki D.S., Schlotter M., Trefz F.K., Lichter-Konecki U. The identification of two mis-sense mutations at the PAH gene locus in a Turkish patient with phenylketonuria. Hum. Genet. 1991;87:389–393. PubMed
Ellingsen S., Knappskog P.M., Eiken H.G. Phenylketonuria splice mutation (EXON6nt-96A-->g) masquerading as missense mutation (Y204C) Hum. Mutat. 1997;9:88–90. PubMed
Matalon R., Michals K. Phenylketonuria: screening, treatment and maternal PKU. Clin. Biochem. 1991;24:337–342. PubMed
El-Metwally A., Yousef Al-Ahaidib L., Ayman Sunqurah A., Al-Surimi K., Househ M., Alshehri A., Da’ar O.B., Abdul Razzak H., AlOdaib A.N. The prevalence of phenylketonuria in Arab countries, Turkey, and Iran: A systematic review. BioMed Res. Int. 2018;2018:7697210. 10.1155/2018/7697210. PubMed PMC
Shoraka H.R., Haghdoost A.A., Baneshi M.R., Bagherinezhad Z., Zolala F. Global prevalence of classic phenylketonuria based on Neonatal Screening Program Data: systematic review and meta-analysis. Clin Exp Pediatr. 2020;63:34–43. PubMed PMC
Saadallah A.A., Rashed M.S. Newborn screening: experiences in the Middle East and North Africa. J. Inherit. Metab. Dis. 2007;30:482–489. PubMed
Zschocke J. Phenylketonuria mutations in Europe. Hum. Mutat. 2003;21:345–356. PubMed
Danecka M.K., Woidy M., Zschocke J., Feillet F., Muntau A.C., Gersting S.W. Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria. J. Med. Genet. 2015;52:175–185. PubMed
Gundorova P., Stepanova A.A., Kuznetsova I.A., Kutsev S.I., Polyakov A.V. Genotypes of 2579 patients with phenylketonuria reveal a high rate of BH4 non-responders in Russia. PLoS ONE. 2019;14:e0211048. PubMed PMC
Lillevali H., Reinson K., Muru K., Simenson K., Murumets U., Mols T., Ounap K. Hyperphenylalaninaemias in Estonia: Genotype-Phenotype Correlation and Comparative Overview of the Patient Cohort Before and After Nation-Wide Neonatal Screening. JIMD Rep. 2018;40:39–45. PubMed PMC
Bik-Multanowski M., Kaluzny L., Mozrzymas R., Oltarzewski M., Starostecka E., Lange A., Didycz B., Gizewska M., Ulewicz-Filipowicz J., Chrobot A. Molecular genetics of PKU in Poland and potential impact of mutations on BH4 responsiveness. Acta Biochim. Pol. 2013;60:613–616. PubMed
Kádasi L., Poláková H., Feráková E., Hudecová S., Bohusová T., Szomolayová I., Strnová J., Hruskovic I., Moschonas N.K., Ferák V. PKU in Slovakia: mutation screening and haplotype analysis. Hum. Genet. 1995;95:112–114. PubMed
Réblová K., Hrubá Z., Procházková D., Pazdírková R., Pouchlá S., Zeman J., Fajkusová L. Hyperphenylalaninemia in the Czech Republic: genotype-phenotype correlations and in silico analysis of novel missense mutations. Clin. Chim. Acta. 2013;419:1–10. PubMed
Sterl E., Paul K., Paschke E., Zschocke J., Brunner-Krainz M., Windisch E., Konstantopoulou V., Möslinger D., Karall D., Scholl-Bürgi S. Prevalence of tetrahydrobiopterine (BH4)-responsive alleles among Austrian patients with PAH deficiency: comprehensive results from molecular analysis in 147 patients. J. Inherit. Metab. Dis. 2013;36:7–13. PubMed
Zschocke J., Hoffmann G.F. Phenylketonuria mutations in Germany. Hum. Genet. 1999;104:390–398. PubMed
Zschocke J., Mallory J.P., Eiken H.G., Nevin N.C. Phenylketonuria and the peoples of Northern Ireland. Hum. Genet. 1997;100:189–194. PubMed
Krawczak M., Zschocke J. A role for overdominant selection in phenylketonuria? Evidence from molecular data. Hum. Mutat. 2003;21:394–397. PubMed
Eisensmith R.C., Okano Y., Dasovich M., Wang T., Güttler F., Lou H., Guldberg P., Lichter-Konecki U., Konecki D.S., Svensson E. Multiple origins for phenylketonuria in Europe. Am. J. Hum. Genet. 1992;51:1355–1365. PubMed PMC
Okano Y., Wang T., Eisensmith R.C., Longhi R., Riva E., Giovannini M., Cerone R., Romano C., Woo S.L. Phenylketonuria missense mutations in the Mediterranean. Genomics. 1991;9:96–103. PubMed
Kleiman S., Avigad S., Vanagaite L., Shmuelevitz A., David M., Eisensmith R.C., Brand N., Schwartz G., Rey F., Munnich A. Origins of hyperphenylalaninemia in Israel. Eur. J. Hum. Genet. 1994;2:24–34. PubMed
Desviat L.R., Pérez B., De Lucca M., Cornejo V., Schmidt B., Ugarte M. Evidence in Latin America of recurrence of V388M, a phenylketonuria mutation with high in vitro residual activity. Am. J. Hum. Genet. 1995;57:337–342. PubMed PMC
Vela-Amieva M., Abreu-González M., González-del Angel A., Ibarra-González I., Fernández-Lainez C., Barrientos-Ríos R., Monroy-Santoyo S., Guillén-López S., Alcántara-Ortigoza M.A. Phenylalanine hydroxylase deficiency in Mexico: genotype-phenotype correlations, BH4 responsiveness and evidence of a founder effect. Clin. Genet. 2015;88:62–67. PubMed
Rajabi F., Rohr F., Wessel A., Martell L., Dobrowolski S.F., Guldberg P., Güttler F., Levy H.L. Phenylalanine hydroxylase genotype-phenotype associations in the United States: A single center study. Mol. Genet. Metab. 2019;128:415–421. PubMed
Hofman K.J., Steel G., Kazazian H.H., Valle D. Phenylketonuria in U.S. blacks: molecular analysis of the phenylalanine hydroxylase gene. Am. J. Hum. Genet. 1991;48:791–798. PubMed PMC
Xiang L., Tao J., Deng K., Li X., Li Q., Yuan X., Liang J., Yu E., Wang M., Wang H. Phenylketonuria incidence in China between 2013 and 2017 based on data from the Chinese newborn screening information system: a descriptive study. BMJ Open. 2019;9:e031474. PubMed PMC
Li N., Jia H., Liu Z., Tao J., Chen S., Li X., Deng Y., Jin X., Song J., Zhang L. Molecular characterisation of phenylketonuria in a Chinese mainland population using next-generation sequencing. Sci. Rep. 2015;5:15769. PubMed PMC
Hennermann J.B., Vetter B., Kulozik A.E., Mönch E. Partial und total tetrahydrobiopterin-responsiveness in classical and mild phenylketonuria (PKU) J. Inherit. Metab. Dis. 2002;25:21.