Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
32672048
PubMed Central
PMC8549894
DOI
10.33549/physiolres.934371
PII: 934371
Knihovny.cz E-zdroje
- MeSH
- bolest etiologie metabolismus patologie MeSH
- cvičení fyziologie MeSH
- kosterní svaly zranění metabolismus patofyziologie MeSH
- lidé MeSH
- svalová kontrakce fyziologie MeSH
- zánět etiologie metabolismus patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Extreme or unaccustomed eccentric exercise can cause exercise-induced muscle damage, characterized by structural changes involving sarcomere, cytoskeletal, and membrane damage, with an increased permeability of sarcolemma for proteins. From a functional point of view, disrupted force transmission, altered calcium homeostasis, disruption of excitation-contraction coupling, as well as metabolic changes bring about loss of strength. Importantly, the trauma also invokes an inflammatory response and clinically presents itself by swelling, decreased range of motion, increased passive tension, soreness, and a transient decrease in insulin sensitivity. While being damaging and influencing heavily the ability to perform repeated bouts of exercise, changes produced by exercise-induced muscle damage seem to play a crucial role in myofibrillar adaptation. Additionally, eccentric exercise yields greater hypertrophy than isometric or concentric contractions and requires less in terms of metabolic energy and cardiovascular stress, making it especially suitable for the elderly and people with chronic diseases. This review focuses on our current knowledge of the mechanisms underlying exercise-induced muscle damage, their dependence on genetic background, as well as their consequences at the structural, functional, metabolic, and clinical level. A comprehensive understanding of these is a prerequisite for proper inclusion of eccentric training in health promotion, rehabilitation, and performance enhancement.
Zobrazit více v PubMed
AGUIAR AF, VECHETTI-JÚNIOR IJ, SOUZA RW, PIEDADE WP, PACAGNELLI FL, LEOPOLDO AS, CASONATTO J, DAL-PAI-SILVA M. Nitric oxide synthase inhibition impairs muscle regrowth following immobilization. 2017;69:22–27. doi: 10.1016/j.niox.2017.07.006. PubMed DOI
AHLBORG G, FELIG P, HAGENFELDT L, HENDLER R, WAHREN J. Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids. J Clin Invest. 1974;53:1080–1090. doi: 10.1172/JCI107645. PubMed DOI PMC
AKIMOTO AK, MIRANDA-VILELA AL, ALVES PCZ, PEREIRA LCDS, LORDELO GS, HIRAGI CDO, DA SILVA ICR, GRISOLIA CK, KLAUTAU-GUIMARÃES MDN. Evaluation of gene polymorphisms in exercise-induced oxidative stress and damage. Free Radic Res. 2010;44:322–331. doi: 10.3109/10715760903494176. PubMed DOI
ALLEN D. Skeletal muscle function: Role of ionic changes in fatigue, damage and disease. Clin Exp Pharmacol Physiol. 2004;31:485–493. doi: 10.1111/j.1440-1681.2004.04032.x. PubMed DOI
ALLEN DG. Eccentric muscle damage: mechanisms of early reduction of force. Acta Physiol Scand. 2001;171:311–319. doi: 10.1046/j.1365-201x.2001.00833.x. PubMed DOI
ALLEN DG, GERVASIO OL, YEUNG EW, WHITEHEAD NP. Calcium and the damage pathways in muscular dystrophy. Can J Physiol Pharmacol. 2010;88:83–91. doi: 10.1139/Y09-058. PubMed DOI
ALLEN DG, WHITEHEAD NP, YEUNG EW. Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: Role of ionic changes. J Physiol. 2005;567:723–735. doi: 10.1113/jphysiol.2005.091694. PubMed DOI PMC
ANDERSEN OE, NIELSEN OB, OVERGAARD K. Early effects of eccentric contractions on muscle glucose uptake. J Appl Physiol. 2019;126:376–385. doi: 10.1152/japplphysiol.00388.2018. PubMed DOI
ANDERSON EJ, NEUFER PD. Type II skeletal myofibers possess unique properties that potentiate mitochondrial H2O2 generation. Am J Physiol Physiol. 2006;290:C844–C851. doi: 10.1152/ajpcell.00402.2005. PubMed DOI
AOI W, NAITO Y, TOKUDA H, TANIMURA Y, OYA-ITO T, YOSHIKAWA T. Exercise-induced muscle damage impairs insulin signaling pathway associated with IRS-1 oxidative modification. Physiol Res. 2012;61:81–88. doi: 10.33549/physiolres.932239. PubMed DOI
AOI W, NAITO Y, YOSHIKAWA T. Role of oxidative stress in impaired insulin signaling associated with exercise-induced muscle damage. Free Radic Biol Med. 2013;65:1265–1272. doi: 10.1016/j.freeradbiomed.2013.09.014. PubMed DOI
ARMSTRONG RB. Muscle Damage and Endurance Events. Sport Med. 1986;3:370–381. doi: 10.2165/00007256-198603050-00006. PubMed DOI
ARMSTRONG RB, WARREN GL, WARREN JA. Mechanisms of exercise-induced muscle fibre injury. Sport Med. 1991;12:184–207. doi: 10.2165/00007256-199112030-00004. PubMed DOI
ASP S, ROHDE T, RICHTER EA. Impaired muscle glycogen resynthesis after a marathon is not caused by decreased muscle GLUT-4 content. J Appl Physiol. 1997;83:1482–1485. doi: 10.1152/jappl.1997.83.5.1482. PubMed DOI
BALNAVE CD, ALLEN DG. Intracellular calcium and force in single mouse muscle fibres following repeated contractions with stretch. J Physiol. 1995;488:25–36. doi: 10.1113/jphysiol.1995.sp020943. PubMed DOI PMC
BALNAVE CD, ALLEN DG. The effect of muscle length on intracellular calcium and force in single fibres from mouse skeletal muscle. J Physiol. 1996;492:705–713. doi: 10.1113/jphysiol.1996.sp021339. PubMed DOI PMC
BALON TW, NADLER JL. Evidence that nitric oxide increases glucose transport in skeletal muscle. J Appl Physiol. 1997;82:359–363. doi: 10.1152/jappl.1997.82.1.359. PubMed DOI
BARASH IA, PETERS D, FRIDÉN J, LUTZ GJ, LIEBER RL. Desmin cytoskeletal modifications after a bout of eccentric exercise in the rat. Am J Physiol Integr Comp Physiol. 2002;283:R958–R963. doi: 10.1152/ajpregu.00185.2002. PubMed DOI
BAUMERT P, LAKE MJ, DRUST B, STEWART CE, ERSKINE RM, ADAMS B, CABOT JA, EDWARDS V, JOHNSON KO. TRIM63 (MuRF-1) gene polymorphism is associated with biomarkers of exercise-induced muscle damage. Physiol Genomics. 2018a;50:142–143. doi: 10.1152/physiolgenomics.00103.2017. PubMed DOI PMC
BAUMERT P, LAKE MJ, STEWART CE, DRUST B, ERSKINE RM. Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. Eur J Appl Physiol. 2016;116:1595–1625. doi: 10.1007/s00421-016-3411-1. PubMed DOI PMC
BAUMERT P, STEWART CE, LAKE MJ, DRUST B, ERSKINE RM. Variations of collagen-encoding genes are associated with exercise-induced muscle damage. Physiol Genomics. 2018b;50:691–693. doi: 10.1152/physiolgenomics.00145.2017. PubMed DOI PMC
BEDAIR HS, KARTHIKEYAN T, QUINTERO A, LI Y, HUARD J. Angiotensin II receptor blockade administered after injury improves muscle regeneration and decreases fibrosis in normal skeletal muscle. Am J Sports Med. 2008;36:1548–1554. doi: 10.1177/0363546508315470. PubMed DOI
BEHRENS M, MAU-MOELLER A, BRUHN S. Effect of exercise-induced muscle damage on neuromuscular function of the quadriceps muscle. Int J Sports Med. 2012;33:600–606. doi: 10.1055/s-0032-1304642. PubMed DOI
BELCASTRO AN, SHEWCHUK LD, RAJ DA. Exercise-induced muscle injury: A calpain hypothesis. Mol Cell Biochem. 1998;179:135–145. doi: 10.1023/A:1006816123601. PubMed DOI
BELLINGER P. Functional overreaching in endurance athletes: a necessity or cause for concern? Sport Med. 2020;50:1059–1073. doi: 10.1007/s40279-020-01269-w. PubMed DOI
BRANCA D, GUGLIUCCI A, BANO D, BRINI M, CARAFOLI E. Expression, partial purification and functional properties of themuscle-specific calpain isoform p94. Eur J Biochem. 1999;265:839–846. doi: 10.1046/j.1432-1327.1999.00817.x. PubMed DOI
BRENTANO MA, MARTINS KRUEL LF. A review on strength exercise-induced muscle damage: Applications, adaptation mechanisms and limitations. J Sports Med Phys Fitness. 2011;51:1–10. PubMed
BROOS S, MALISOUX L, THEISEN D, FRANCAUX M, DELDICQUE L, THOMIS MA. Role of Alpha-actinin-3 in contractile properties of human single muscle fibers: a case series study in paraplegics. PLoS One. 2012;7:e49281. doi: 10.1371/journal.pone.0049281. PubMed DOI PMC
BURESH R, BERG K. Exercise for the management of type 2 diabetes mellitus: Factors to consider with current guidelines. J Sports Med Phys Fitness. 2018;58:510–524. PubMed
BURT D, LAMB K, NICHOLAS C, TWIST C. Lower-volume muscle-damaging exercise protects against high-volume muscle-damaging exercise and the detrimental effects on endurance performance. Eur J Appl Physiol. 2015;115:1523–1532. doi: 10.1007/s00421-015-3131-y. PubMed DOI
CAUCI S, Di SANTOLO M, RYCKMAN KK, WILLIAMS SM, BANFI G. Variable number of tandem repeat polymorphisms of the interleukin-1 receptor antagonist gene IL-1RN: A novel association with the athlete status. BMC Med Genet. 2010:11. doi: 10.1186/1471-2350-11-29. PubMed DOI PMC
CHAZAUD B. Inflammation during skeletal muscle regeneration and tissue remodeling: application to exercise-induced muscle damage management. Immunol Cell Biol. 2016;94:140–145. doi: 10.1038/icb.2015.97. PubMed DOI
CHEN B. Association between SLC30A8 rs13266634 polymorphism and type 2 diabetes risk: a meta-analysis. Med Sci Monit. 2015;21:2178–2189. doi: 10.12659/MSM.894052. PubMed DOI PMC
CHEN TC, CHEN HL, LIU YC, NOSAKA K. Eccentric exercise-induced muscle damage of pre-adolescent and adolescent boys in comparison to young men. Eur J Appl Physiol. 2014;114:1183–1195. doi: 10.1007/s00421-014-2848-3. PubMed DOI
CHEN TC, LIN K-Y, CHEN H-L, LIN M-J, NOSAKA K. Comparison in eccentric exercise-induced muscle damage among four limb muscles. Eur J Appl Physiol. 2011;111:211–223. doi: 10.1007/s00421-010-1648-7. PubMed DOI
CHEN TC, LIN M-J, LAI J-H, CHEN H-L, YU H-I, NOSAKA K. Low-intensity elbow flexion eccentric contractions attenuate maximal eccentric exercise-induced muscle damage of the contralateral arm. J Sci Med Sport. 2018;21:1068–1072. doi: 10.1016/j.jsams.2017.12.012. PubMed DOI
CHEN TC, NOSAKA K. Effects of number of eccentric muscle actions on first and second bouts of eccentric exercise of the elbow flexors. J Sci Med Sport. 2006;9:57–66. doi: 10.1016/j.jsams.2006.03.012. PubMed DOI
CLARKSON P. Eccentric exercise and muscle damage. Int J Sports Med. 1997;18:S314–S317. doi: 10.1055/s-2007-972741. PubMed DOI
CLARKSON PM, HOFFMAN EP, ZAMBRASKI E, GORDISH-DRESSMAN H, KEARNS A, HUBAL M, HARMON B, DEVANEY JM. ACTN3 and MLCK genotype associations with exertional muscle damage. J Appl Physiol. 2005;99:564–569. doi: 10.1152/japplphysiol.00130.2005. PubMed DOI
CLARKSON PM, HUBAL MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil. 2002;81:S52–S69. doi: 10.1097/00002060-200211001-00007. PubMed DOI
CLARKSON PM, NOSAKA K, BRAUN B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc. 1992;24:512–520. doi: 10.1249/00005768-199205000-00004. PubMed DOI
CLARKSON PM, SAYERS SP. Etiology of Exercise-Induced Muscle Damage. Can J Appl Physiol. 1999;24:234–248. doi: 10.1139/h99-020. PubMed DOI
CLOSE GL, ASHTON T, CABLE T, DORAN D, MacLAREN DPM. Eccentric exercise, isokinetic muscle torque and delayed onset muscle soreness: the role of reactive oxygen species. Eur J Appl Physiol. 2004;91:615–621. doi: 10.1007/s00421-003-1012-2. PubMed DOI
CODELLA R, TERRUZZI I, LUZI L. Why should people with type 1 diabetes exercise regularly? Acta Diabetol. 2017;54:615–630. doi: 10.1007/s00592-017-0978-x. PubMed DOI
COLBERG SR, SIGAL RJ, FERNHALL B, REGENSTEINER JG, BLISSMER BJ, RUBIN RR, CHASAN-TABER L, ALBRIGHT AL, BRAUN B AMERICAN COLLEGE OF SPORTS MEDICINE, AMERICAN DIABETES ASSOCIATION. Exercise and type 2 diabetes: The American college of sports medicine and the American diabetes association: joint position statement. Diabetes Care. 2010;33:2692–2696. doi: 10.2337/dc10-1548. PubMed DOI PMC
COOK MD, MYERS SD, KELLY JSM, WILLEMS MET. Acute postexercise effects of concentric and eccentric exercise on glucose tolerance. Int J Sport Nutr Exerc Metab. 2015;25:14–19. doi: 10.1123/ijsnem.2013-0261. PubMed DOI
CORONA BT, BALOG EM, DOYLE JA, RUPP JC, LUKE RC, INGALLS CP. Junctophilin damage contributes to early strength deficits and EC coupling failure after eccentric contractions. Am J Physiol Physiol. 2010;298:C365–C376. doi: 10.1152/ajpcell.00365.2009. PubMed DOI
COUNTS BR, BUCKNER SL, MOUSER JG, DANKEL SJ, JESSEE MB, MATTOCKS KT, LOENNEKE JP. Muscle growth: To infinity and beyond? Muscle Nerve. 2017;56:1022–1030. doi: 10.1002/mus.25696. PubMed DOI
CRAMERI RM, AAGAARD P, QVORTRUP K, LANGBERG H, OLESEN J, KJÆR M. Myofibre damage in human skeletal muscle: Effects of electrical stimulation versus voluntary contraction. J Physiol. 2007;583:365–380. doi: 10.1113/jphysiol.2007.128827. PubMed DOI PMC
CRAMERI RM, LANGBERG H, MAGNUSSON P, JENSEN CH, SCHRØODER HD, OLESEN JL, SUETTA C, TEISNER B, KJAER M. Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise. J Physiol. 2004;558:333–340. doi: 10.1113/jphysiol.2004.061846. PubMed DOI PMC
CRANE JD, ABADI A, HETTINGA BP, OGBORN DI, MacNEIL LG, STEINBERG GR, TARNOPOLSKY MA. Elevated mitochondrial oxidative stress impairs metabolic adaptations to exercise in skeletal muscle. PLoS One. 2013:8. doi: 10.1371/journal.pone.0081879. PubMed DOI PMC
da ROCHA AL, PEREIRA BC, PAULI JR, De SOUZA CT, TEIXEIRA GR, LIRA FS, CINTRA DE, ROPELLE ER, JÚNIOR CRB, DA SILVA ASR. Downhill running excessive training inhibits hypertrophy in mice skeletal muscles with different fiber type composition. J Cell Physiol. 2016;231:1045–1056. doi: 10.1002/jcp.25197. PubMed DOI
da ROCHA AL, PEREIRA BC, TEIXEIRA GR, PINTO AP, FRANTZ FG, ELIAS LLK, LIRA FS, PAULI JR, CINTRA DE, ROPELLE ER, de MOURA LP, MEKARY RA, de FREITAS EC, da SILVA ASR. Treadmill slope modulates inflammation, fiber type composition, androgen, and glucocorticoid receptors in the skeletal muscle of overtrained mice. Front Immunol. 2017:8. doi: 10.3389/fimmu.2017.01378. PubMed DOI PMC
da ROCHA AL, PINTO AP, PEREIRA BC, KOHAMA EB, MORAIS GP, de VICENTE LG, PAULI JR, CINTRA DE, ROPELLE ER, de MOURA LP, FILHO HT, da SILVA ASR. Positive effects of total recovery period on anti- and pro-inflammatory cytokines are not linked to performance re-establishment in overtrained mice. Cytokine. 2018;103:69–76. doi: 10.1016/j.cyto.2018.01.005. PubMed DOI
da SILVA W, MACHADO ÁS, SOUZA MA, KUNZLER MR, PRIEGO-QUESADA JI, CARPES FP. Can exercise-induced muscle damage be related to changes in skin temperature? Physiol Meas. 2018;39:104007. doi: 10.1088/1361-6579/aae6df. PubMed DOI
DAMAS F, LIBARDI CA, UGRINOWITSCH C. The development of skeletal muscle hypertrophy through resistance training: the role of muscle damage and muscle protein synthesis. Eur J Appl Physiol. 2018;118:485–500. doi: 10.1007/s00421-017-3792-9. PubMed DOI
DAMAS F, NOSAKA K, LIBARDI C, CHEN T, UGRINOWITSCH C. Susceptibility to exercise-induced muscle damage: a cluster analysis with a large sample. Int J Sports Med. 2016;37:633–640. doi: 10.1055/s-0042-100281. PubMed DOI
DARTNALL TJ, NORDSTROM MA, SEMMLER JG. Motor unit synchronization is increased in biceps brachii after exercise-induced damage to elbow flexor muscles. J Neurophysiol. 2008;99:1008–1019. doi: 10.1152/jn.00686.2007. PubMed DOI
DARTNALL TJ, NORDSTROM MA, SEMMLER JG. Adaptations in biceps brachii motor unit activity after repeated bouts of eccentric exercise in elbow flexor muscles. J Neurophysiol. 2011;105:1225–1235. doi: 10.1152/jn.00854.2010. PubMed DOI
De FRONZO RA, FERRANNINI E, GROOP L, HENRY RR, HERMAN WH, HOLST JJ, HU FB, KAHN CR, RAZ I, SHULMAN GI, SIMONSON DC, TESTA MA, WEISS R. Type 2 diabetes mellitus. Nat Rev Dis Prim. 2015;1:15019. doi: 10.1038/nrdp.2015.19. PubMed DOI
De FRONZO RA, JACOT E, JEQUIER E, MAEDER E, WAHREN J, FELBER JP. The effect of insulin on the disposal of intravenous glucose: results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981;30:1000–1007. doi: 10.2337/diab.30.12.1000. PubMed DOI
DELI CK, FATOUROS IG, PASCHALIS V, GEORGAKOULI K, ZALAVRAS A, AVLONITI A, KOUTEDAKIS Y, JAMURTAS AZ. A comparison of exercise-induced muscle damage following maximal eccentric contractions in men and boys. Pediatr Exerc Sci. 2017;29:316–325. doi: 10.1123/pes.2016-0185. PubMed DOI
DOBROWOLNY G, GIACINTI C, PELOSI L, NICOLETTI C, WINN N, BARBERI L, MOLINARO M, ROSENTHAL N, MUSARÒ A. Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. J Cell Biol. 2005;168:193–199. doi: 10.1083/jcb.200407021. PubMed DOI PMC
DOUGLAS J, PEARSON S, ROSS A, McGUIGAN M. Eccentric exercise: physiological characteristics and acute responses. Sport Med. 2017a;47:663–675. doi: 10.1007/s40279-016-0624-8. PubMed DOI
DOUGLAS J, PEARSON S, ROSS A, McGUIGAN M. Chronic adaptations to eccentric training: a systematic review. Sport Med. 2017b;47:917–941. doi: 10.1007/s40279-016-0628-4. PubMed DOI
DUAN C, DELP MD, HAYES DA, DELP PD, ARMSTRONG RB. Rat skeletal muscle mitochondrial [Ca2+] and injury from downhill walking. J Appl Physiol. 1990;68:1241–1251. doi: 10.1152/jappl.1990.68.3.1241. PubMed DOI
DUAN C, REN H, GAO S. Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: Roles in skeletal muscle growth and differentiation. Gen Comp Endocrinol. 2010;167:344–351. doi: 10.1016/j.ygcen.2010.04.009. PubMed DOI
DUNCAN CJ. Role of intracellular calcium in promoting muscle damage: A strategy for controlling the dystrophic condition. Experientia. 1978;34:1531–1535. doi: 10.1007/BF02034655. PubMed DOI
DUNDON JM, CIRILLO J, SEMMLER JG. Low-frequency fatigue and neuromuscular performance after exercise-induced damage to elbow flexor muscles. J Appl Physiol. 2008;105:1146–1155. doi: 10.1152/japplphysiol.01339.2007. PubMed DOI
DUPLAIN H, SARTORI C, DESSEN P, JAYET P-Y, SCHWAB M, BLOCH J, NICOD P, SCHERRER U. Stimulation of peroxynitrite catalysis improves insulin sensitivity in high fat diet-fed mice. J Physiol. 2008;586:4011–4016. doi: 10.1113/jphysiol.2008.154302. PubMed DOI PMC
EGAN B, ZIERATH JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17:162–184. doi: 10.1016/j.cmet.2012.12.012. PubMed DOI
ENNS DL, TIIDUS PM. The influence of estrogen on skeletal muscle. Sport Med. 2010;40:41–58. doi: 10.2165/11319760-000000000-00000. PubMed DOI
ERSKINE RM, WILLIAMS AG, JONES DA, STEWART CE, DEGENS H. The individual and combined influence of ACE and ACTN3 genotypes on muscle phenotypes before and after strength training. Scand J Med Sci Sport. 2014;24:642–648. doi: 10.1111/sms.12055. PubMed DOI
EVANS PL, McMILLIN SL, WEYRAUCH LA, WITCZAK CA. Regulation of skeletal muscle glucose transport and glucose metabolism by exercise training. Nutrients. 2019;11:2432. doi: 10.3390/nu11102432. PubMed DOI PMC
EVANS WJ, CANNON JG. The metabolic effects of exercise-induced muscle damage. Exerc Sport Sci Rev. 1991;19:99–125. doi: 10.1249/00003677-199101000-00003. PubMed DOI
FABIATO BYA, FABIATO F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiace and skeletal muscles. J Physiol. 1978;276:233–255. doi: 10.1113/jphysiol.1978.sp012231. PubMed DOI PMC
FATOUROS IG, JAMURTAS AZ G-REX CONSORTIUM G-R. Insights into the molecular etiology of exercise-induced inflammation: Opportunities for optimizing performance. Dovepress; 2016. pp. 175–186. PubMed DOI PMC
FAULKNER JA. Terminology for contractions of muscles during shortening, while isometric, and during lengthening. J Appl Physiol. 2003;95:455–459. doi: 10.1152/japplphysiol.00280.2003. PubMed DOI
FINOCCHIETTO PV, FRANCO MC, HOLOD S, GONZALEZ AS, CONVERSO DP, ARCIUCH VGA, SERRA MP, PODEROSO JJ, CARRERAS MC. Mitochondrial nitric oxide synthase: a masterpiece of metabolic adaptation, cell growth, transformation, and death. Exp Biol Med. 2009;234:1020–1028. doi: 10.3181/0902-MR-81. PubMed DOI
FINSTERER J, DRORY VE. Wet, volatile, and dry biomarkers of exercise-induced muscle fatigue. BMC Musculoskelet Disord. 2016;17:40. doi: 10.1186/s12891-016-0869-2. PubMed DOI PMC
FISCHER SM, STAVRES J, McDANIEL J. Metabolic differences between a bout of eccentric, concentric and traditional resistance exercise. Med Sci Sport Exerc. 2017;49:272–273. doi: 10.1249/01.mss.0000517603.70626.5a. DOI
FOLEY JM, JAYARAMAN RC, PRIOR BM, PIVARNIK JM, MEYER RA. MR measurements of muscle damage and adaptation after eccentric exercise. J Appl Physiol. 1999;87:2311–2318. doi: 10.1152/jappl.1999.87.6.2311. PubMed DOI
FOLKESSON M, MACKEY AL, LANGBERG H, OSKARSSON E, PIEHL-AULIN K, HENRIKSSON J, KADI F. The expression of heat shock protein in human skeletal muscle: Effects of muscle fibre phenotype and training background. Acta Physiol. 2013;209:26–33. doi: 10.1111/apha.12124. PubMed DOI
FRANCAUX M, DelDICQUE L. Exercise and the control of muscle mass in human. Pflügers Arch - Eur J Physiol. 2019;471:397–411. doi: 10.1007/s00424-018-2217-x. PubMed DOI
FRANCHI MV, MITCHELL KW, HOPPELER H, NARICI MV. Editorial: Physiology and clinical potential of eccentric exercise. Front Physiol. 2017a:8. doi: 10.3389/fphys.2017.00891. PubMed DOI PMC
FRANCHI MV, REEVES ND, NARICI MV. Skeletal muscle remodeling in response to eccentric vs. concentric loading: morphological, molecular, and metabolic adaptations. Front Physiol. 2017b;8:447. doi: 10.3389/fphys.2017.00447. PubMed DOI PMC
FRANZ A, BEHRINGER M, NOSAKA K, BUHREN BA, SCHRUMPF H, MAYER C, ZILKENS C, SCHUMANN M. Mechanisms underpinning protection against eccentric exercise-induced muscle damage by ischemic preconditioning. Med Hypotheses. 2017;98:21–27. doi: 10.1016/j.mehy.2016.11.008. PubMed DOI
FRIDÉN J, SJÖSTRÖM M, EKBLOM B. A morphological study of delayed muscle soreness. Experientia. 1981;37:506–507. doi: 10.1007/BF01986165. PubMed DOI
GAILLY P. TRP channels in normal and dystrophic skeletal muscle. Curr Opin Pharmacol. 2012;12:326–334. doi: 10.1016/j.coph.2012.01.018. PubMed DOI
GAO QQ, McNALLY EM. The dystrophin complex: Structure, function, and implications for therapy. Compr Physiol. 2015;5:1223–1239. doi: 10.1002/cphy.c140048. PubMed DOI PMC
GAVIN JP, MYERS SD, WILLEMS ME. Cardiorespiratory and metabolic responses after exercise-induced muscle damage: The influence of lowered glycogen. J Sports Med Phys Fitness. 2018;58:332–340. PubMed
GIBALA MJ, MacDOUGALL JD, TARNOPOLSKY MA, STAUBER WT, ELORRIAGA A. Changes in human skeletal muscle ultrastructure and force production after acute resistance exercise. J Appl Physiol. 1995;78:702–708. doi: 10.1152/jappl.1995.78.2.702. PubMed DOI
GOLL DE, THOMPSON VF, LI H, WEI W, CONG J. The calpain system. Physiol Rev. 2003;83:731–801. doi: 10.1152/physrev.00029.2002. PubMed DOI
GONZALEZ JT, BARWOOD MJ, GOODALL S, THOMAS K, HOWATSON G. Alterations in whole-body insulin sensitivity resulting from repeated eccentric exercise of a single muscle group: A pilot investigation. Int J Sport Nutr Exerc Metab. 2015;25:405–410. doi: 10.1123/ijsnem.2014-0211. PubMed DOI
GOODYEAR, PHD LJ, KAHN, MD BB. Exercise, glucose transport, and insulin sensitivity. Annu Rev Med. 1998;49:235–261. doi: 10.1146/annurev.med.49.1.235. PubMed DOI
GRANDOU C, WALLACE L, IMPELLIZZERI FM, ALLEN NG, COUTTS AJ. Overtraining in resistance exercise: an exploratory systematic review and methodological appraisal of the literature. Sport Med. 2020;50:815–828. doi: 10.1007/s40279-019-01242-2. PubMed DOI
GREEN MS, DOYLE JA, INGALLS CP, BENARDOT D, RUPP JC, CORONA BT. Adaptation of insulin-resistance indicators to a repeated bout of eccentric exercise in human skeletal muscle. Int J Sport Nutr Exerc Metab. 2010;20:181–190. doi: 10.1123/ijsnem.20.3.181. PubMed DOI
GUHARAY F, SACHS F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol. 1984;352:685–701. doi: 10.1113/jphysiol.1984.sp015317. PubMed DOI PMC
GUILHEM G, CORNU C, GUÉVEL A. Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise Adaptations neuromusculaires et musculo-tendineuses à l’exercice excentrique isotonique et isocinétique. Ann Phys Rehabil Med. 2010a;53:319–341. doi: 10.1016/j.rehab.2010.04.003. PubMed DOI
GUILHEM G, CORNU C, GUÉVEL A. Adaptations neuromusculaires et musculo-tendineuses à l’exercice excentrique isotonique et isocinétique. Ann Phys Rehabil Med. 2010b;53:319–341. doi: 10.1016/j.rehab.2010.04.003. PubMed DOI
HAMER PW, McGEACHIE JM, DAVIES MJ, GROUNDS MD. Evans Blue Dye as an in vivo marker of myofibre damage: optimising parameters for detecting initial myofibre membrane permeability. J Anat. 2002;200:69–79. doi: 10.1046/j.0021-8782.2001.00008.x. PubMed DOI PMC
HANSEN M, BOESEN A, HOLM L, FLYVBJERG A, LANGBERG H, KJAER M. Local administration of insulin-like growth factor-I (IGF-I) stimulates tendon collagen synthesis in humans. Scand J Med Sci Sport. 2013;23:614–619. doi: 10.1111/j.1600-0838.2011.01431.x. PubMed DOI
HARTY PS, COTTET ML, MALLOY JK, KERKSICK CM. Nutritional and supplementation strategies to prevent and attenuate exercise-induced muscle damage: a brief review. Sport Med - Open. 2019;5:1–17. doi: 10.1186/s40798-018-0176-6. PubMed DOI PMC
HAYASHI T, WOJTASZEWSKI JF, GOODYEAR LJ. Exercise regulation of glucose transport in skeletal muscle. Am J Physiol. 1997;273:E1039–51. doi: 10.1152/ajpendo.1997.273.6.E1039. PubMed DOI
HEDAYATPOUR N, FALLA D, ARENDT-NIELSEN L, VILA-CHÃ C, FARINA D. Motor unit conduction velocity during sustained contraction after eccentric exercise. Med Sci Sports Exerc. 2009;41:1927–1933. doi: 10.1249/MSS.0b013e3181a3a505. PubMed DOI
HEINEMEIER KM, BJERRUM SS, SCHJERLING P, KJAER M. Expression of extracellular matrix components and related growth factors in human tendon and muscle after acute exercise. Scand J Med Sci Sport. 2013;23:150–161. doi: 10.1111/j.1600-0838.2011.01414.x. PubMed DOI
HENNIGAR SR, McCLUNG JP, PASIAKOS SM. Nutritional interventions and the IL-6 response to exercise. FASEB J. 2017;31:3719–3728. doi: 10.1096/fj.201700080R. PubMed DOI
HICKS KM, ONAMBÉLÉ GL, WINWOOD K, MORSE CI. Muscle Damage following Maximal Eccentric Knee Extensions in Males and Females. PLoS One. 2016;11:e0150848. doi: 10.1371/journal.pone.0150848. PubMed DOI PMC
HIGAKI Y, HIRSHMAN MF, FUJII N, GOODYEAR LJ. Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle. Diabetes. 2001;50:241–7. doi: 10.2337/diabetes.50.2.241. PubMed DOI
HIGAKI Y, MIKAMI T, FUJII N, HIRSHMAN MF, KOYAMA K, SEINO T, TANAKA K, GOODYEAR LJ. Oxidative stress stimulates skeletal muscle glucose uptake through a phosphatidylinositol 3-kinase-dependent pathway. Am J Physiol Endocrinol Metab. 2008;294:889–897. doi: 10.1152/ajpendo.00150.2007. PubMed DOI PMC
HILDEBRANDT C, RASCHNER C, AMMER K. An overview of recent application of medical infrared thermography in sports medicine in Austria. 2010;10:4700–4715. doi: 10.3390/s100504700. PubMed DOI PMC
HODY S, CROISIER JL, BURY T, ROGISTER B, LEPRINCE P. Eccentric muscle contractions: Risks and benefits. Front Physiol. 2019:10. doi: 10.3389/fphys.2019.00536. PubMed DOI PMC
HOPPELER H. Moderate load eccentric exercise, a distinct novel training modality. Front Physiol. 2016;7:483. doi: 10.3389/fphys.2016.00483. PubMed DOI PMC
HORTOBÁGYI T, BARRIER J, BEARD D, BRASPENNINCX J, KOENS P, DEVITA P, DEMPSEY L, LAMBERT J. Greater initial adaptations to submaximal muscle lengthening than maximal shortening. J Appl Physiol. 1996;81:1677–82. doi: 10.1152/jappl.1996.81.4.1677. PubMed DOI
HOUGH T. Ergographic Studies in Muscular Soreness. Am J Physiol. 1902;7:76–92. doi: 10.1152/ajplegacy.1902.7.1.76. DOI
HOWATSON G, van SOMEREN KA. Repeated bout effect after maximal eccentric contractions. Eur J Appl Physiol. 2007;101:207–214. doi: 10.1007/s00421-007-0489-5. PubMed DOI
HOWATSON G, van SOMEREN KA. The prevention and treatment of exercise-induced muscle damage. Sport Med. 2008;38:483–503. doi: 10.2165/00007256-200838060-00004. PubMed DOI
HOWELL JN, CHLEBOUN G, CONATSER R. Muscle stiffness, strength loss, swelling and soreness following exercise-induced injury in humans. J Physiol. 1993 doi: 10.1113/jphysiol.1993.sp019629. PubMed DOI PMC
HSU M-F, PAN K-T, CHANG F-Y, KHOO K-H, URLAUB H, CHENG C-F, CHANG G-D, HAJ FG, MENG T-C. S-nitrosylation of endogenous protein tyrosine phosphatases in endothelial insulin signaling. Free Radic Biol Med. 2016;99:199–213. doi: 10.1016/j.freeradbiomed.2016.08.012. PubMed DOI PMC
HUANG J, ZHU X. The molecular mechanisms of calpains action on skeletal muscle atrophy. Physiol Res. 2016;65:547–560. doi: 10.33549/physiolres.933087. PubMed DOI
HUBAL MJ, DEVANEY JM, HOFFMAN EP, ZAMBRASKI EJ, GORDISH-DRESSMAN H, KEARNS AK, LARKIN JS, ADHAM K, PATEL RR, CLARKSON PM. CCL2 and CCR2 polymorphisms are associated with markers of exercise-induced skeletal muscle damage. J Appl Physiol. 2010;108:1651–1658. doi: 10.1152/japplphysiol.00361.2009. PubMed DOI
HUGHES J, CHAPMAN P, BROWN S, JOHNSON N, STANNARD S. Indirect measures of substrate utilisation following exercise-induced muscle damage. Eur J Sport Sci. 2013;13:509–517. doi: 10.1080/17461391.2012.755570. PubMed DOI
HYLDAHL RD, CHEN TC, NOSAKA K. Mechanisms and mediators of the skeletal muscle repeated bout effect. Exerc Sport Sci Rev. 2017;45:24–33. doi: 10.1249/JES.0000000000000095. PubMed DOI
HYLDAHL RD, HUBAL MJ. Lengthening our perspective: Morphological, cellular, and molecular responses to eccentric exercise. 2014;49:155–170. doi: 10.1002/mus.24077. PubMed DOI
HYLDAHL RD, SCHWARTZ LM, CLARKSON PM. NF-KB activity functions in primary pericytes in a cell- and non-cell-autonomous manner to affect myotube formation. 2013;47:522–531. doi: 10.1002/mus.23640. PubMed DOI
HYLDAHL RD, XIN L, HUBAL MJ, MOECKEL-COLE S, CHIPKIN S, CLARKSON PM. Activation of nuclear factor-κB following muscle eccentric contractions in humans is localized primarily to skeletal muscle-residing pericytes. FASEB J. 2011;25:2956–2966. doi: 10.1096/fj.10-177105. PubMed DOI
JANG H-J, LEE JD, JEON H-S, KIM A-R, KIM S, LEE H-S, KIM K-B. Metabolic profiling of eccentric exercise-induced muscle damage in human urine. Toxicol Res. 2018;34:199–210. doi: 10.5487/TR.2018.34.3.199. PubMed DOI PMC
JENSEN TE, SYLOW L, ROSE AJ, MADSEN AB, ANGIN Y, MAARBJERG SJ, RICHTER EA. Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca 2+ release. Mol Metab. 2014;3:742–753. doi: 10.1016/j.molmet.2014.07.005. PubMed DOI PMC
JENTJENS R, JEUKENDRUP AE. Determinants of post-exercise glycogen synthesis during short-term recovery. Sport Med. 2003;33:117–144. doi: 10.2165/00007256-200333020-00004. PubMed DOI
JIAO S, REN H, LI Y, ZHOU J, DUAN C, LU L. Differential regulation of IGF-I and IGF-II gene expression in skeletal muscle cells. Mol Cell Biochem. 2013;373:107–113. doi: 10.1007/s11010-012-1479-4. PubMed DOI
JONES DA, NEWHAM DJ, CLARKSON PM. Skeletal muscle stiffness and pain following eccentric exercise of the elbow flexors. Pain. 1987;30:233–242. doi: 10.1016/0304-3959(87)91079-7. PubMed DOI
JONES DA, NEWHAM DJ, ROUND JM, TOLFREE SE. Experimental human muscle damage: morphological changes in relation to other indices of damage. J Physiol. 1986;375:435–448. doi: 10.1113/jphysiol.1986.sp016126. PubMed DOI PMC
KANDA K, SAKUMA J, AKIMOTO T, KAWAKAMI Y, SUZUKI K. Detection of titin fragments in urine in response to exercise-induced muscle damage. PLoS One. 2017;12:e0181623. doi: 10.1371/journal.pone.0181623. PubMed DOI PMC
KANO Y, PADILLA DJ, BEHNKE BJ, HAGEMAN KS, MUSCH TI, POOLE DC. Effects of eccentric exercise on microcirculation and microvascular oxygen pressures in rat spinotrapezius muscle. J Appl Physiol. 2005;99:1516–1522. doi: 10.1152/japplphysiol.00069.2005. PubMed DOI
KATZ B. The relation between force and speed in muscular contraction. J Physiol. 1939;96:45–64. doi: 10.1113/jphysiol.1939.sp003756. PubMed DOI PMC
KJAER M. Role of Extracellular Matrix in Adaptation of Tendon and Skeletal Muscle to Mechanical Loading. Physiol Rev. 2004;84:649–698. doi: 10.1152/physrev.00031.2003. PubMed DOI
KLARLUND PEDERSEN B, STEENSBERG A, SCHJERLING P. Topical review muscle-derived interleukin-6: possible biological effects. J Physiol. 2001;536:329–337. doi: 10.1111/j.1469-7793.2001.0329c.xd. PubMed DOI PMC
KOH TJ. Do small heat shock proteins protect skeletal muscle from injury? Exerc Sport Sci Rev. 2002;30:117–121. doi: 10.1097/00003677-200207000-00005. PubMed DOI
KORBECKI J, BARANOWSKA-BOSIACKA I, GUTOWSKA I, CHLUBEK D. The effect of reactive oxygen species on the synthesis of prostanoids from arachidonic acid. J Physiol Pharmacol. 2013;64:409–421. PubMed
KRISTIANSEN S, JONES J, HANDBERG A, DOHM GL, RICHTER EA. Eccentric contractions decrease glucose transporter transcription rate, mRNA, and protein in skeletal muscle. Am J Physiol Physiol. 1997;272:C1734–C1738. doi: 10.1152/ajpcell.1997.272.5.C1734. PubMed DOI
LAAKSONEN MS, KIVELÄ R, KYRÖLÄINEN H, SIPILÄ S, SELÄNNE H, LAUTAMÄKI R, NUUTILA P, KNUUTI J, KALLIOKOSKI KK, KOMI PV. Effects of exhaustive stretch-shortening cycle exercise on muscle blood flow during exercise. Acta Physiol. 2006;186:261–270. doi: 10.1111/j.1748-1716.2006.01532.x. PubMed DOI
LASTAYO P, MARCUS R, DIBBLE L, FRAJACOMO F, LINDSTEDT S. Eccentric exercise in rehabilitation: safety, feasibility, and application. J Appl Physiol. 2014;116:1426–1434. doi: 10.1152/japplphysiol.00008.2013. PubMed DOI
LASTAYO PC, REICH TE, URQUHART M, HOPPELER H, LINDSTEDT SL. Chronic eccentric exercise: improvements in muscle strength can occur with little demand for oxygen. Am J Physiol. 1999;276:R611–5. doi: 10.1152/ajpregu.1999.276.2.R611. PubMed DOI
LAURITZEN F, PAULSEN G, RAASTAD T, BERGERSEN LH, OWE SG. Gross ultrastructural changes and necrotic fiber segments in elbow flexor muscles after maximal voluntary eccentric action in humans. J Appl Physiol. 2009;107:1923–1934. doi: 10.1152/japplphysiol.00148.2009. PubMed DOI
LAVENDER AP, NOSAKA K. Changes in markers of muscle damage of middle-aged and young men following eccentric exercise of the elbow flexors. J Sci Med Sport. 2008;11:124–131. doi: 10.1016/j.jsams.2006.11.004. PubMed DOI
LEMAIRE K, RAVIER MA, SCHRAENEN A, CREEMERS JWM, van de PLAS R, GRANVIK M, van LOMMEL L, WAELKENS E, CHIMIENTI F, RUTTER GA, GILON P, IN’T VELD PA, SCHUIT FC. Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci USA. 2009;106:14872–14877. doi: 10.1073/pnas.0906587106. PubMed DOI PMC
LEON BM, MADDOX TM. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes. 2015;6:1246–58. doi: 10.4239/wjd.v6.i13.1246. PubMed DOI PMC
LIMA-CABELLO E, CUEVAS MJ, GARATACHEA N, BALDINI M, ALMAR M, GONZÁLEZ-GALLEGO J. Eccentric exercise induces nitric oxide synthase expression through nuclear factor-B modulation in rat skeletal muscle. J Appl Physiol. 2010;108:575–583. doi: 10.1152/japplphysiol.00816.2009. PubMed DOI
LINDSAY A, COSTELLO JT. Realising the potential of urine and saliva as diagnostic tools in sport and exercise medicine. Sports Med. 2017;47:11–31. doi: 10.1007/s40279-016-0558-1. PubMed DOI
LIU Y, GAMPERT L, NETHING K, STEINACKER JM. Response and function of skeletal muscle heat shock protein 70. Front Biosci. 2006;11:2802–2827. doi: 10.2741/2011. PubMed DOI
LYNCH GS, FARY CJ, WILLIAMS DA. Quantitative measurement of resting skeletal muscle [Ca2+]i following acute and long-term downhill running exercise in mice. Cell Calcium. 1997;22:373–383. doi: 10.1016/S0143-4160(97)90022-1. PubMed DOI
MACALUSO F, ISAACS AW, MYBURGH KH. Preferential type II muscle fiber damage from plyometric exercise. J Athl Train. 2012;47:414–420. doi: 10.4085/1062-6050-47.4.13. PubMed DOI PMC
Mac INTYRE DL, REID WD, LYSTER DM, SZASZ IJ, McKENZIE DC. Presence of WBC, decreased strength, and delayed soreness in muscle after eccentric exercise. J Appl Physiol. 1996;80:1006–13. doi: 10.1152/jappl.1996.80.3.1006. PubMed DOI
Mac INTYRE DL, REID WD, McKENZIE DC. Delayed Muscle Soreness. Sport Med. 1995;20:24–40. doi: 10.2165/00007256-199520010-00003. PubMed DOI
MACKEY AL, BRANDSTETTER S, SCHJERLING P, BOJSEN-MOLLER J, QVORTRUP K, PEDERSEN MM, DOESSING S, KJAER M, MAGNUSSON SP, LANGBERG H. Sequenced response of extracellular matrix deadhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle. FASEB J. 2011;25:1943–1959. doi: 10.1096/fj.10-176487. PubMed DOI PMC
Mac PHERSON PCD, SCHORK MA, FAULKNER JA. Contraction-induced injury to single fiber segments from fast and slow muscles of rats by single stretches. Am J Physiol. 1996;271:C1438–46. doi: 10.1152/ajpcell.1996.271.5.C1438. PubMed DOI
MALM C, NYBERG P, ENGSTRÖM M, SJÖDIN B, LENKEI R, EKBLOM B, LUNDBERG I. Immunological changes in human skeletal muscle and blood after eccentric exercise and multiple biopsies. J Physiol. 2000;529:243–262. doi: 10.1111/j.1469-7793.2000.00243.x. PubMed DOI PMC
MALM C. Exercise-induced muscle damage and inflammation: fact or fiction? Acta Physiol Scand. 2001;171:233–239. doi: 10.1046/j.1365-201x.2001.00825.x. PubMed DOI
MATHENY W, MERRITT E, ZANNIKOS SV, FARRAR RP, ADAMO ML. Serum IGF-I-deficiency does not prevent compensatory skeletal muscle hypertrophy in resistance exercise. Exp Biol Med. 2009;234:164–170. doi: 10.3181/0808-RM-251. PubMed DOI
McBRIDE T. Increased depolarization, prolonged recovery and reduced adaptation of the resting membrane potential in aged rat skeletal muscles following eccentric contractions. Mech Ageing Dev. 2000;115:127–138. doi: 10.1016/S0047-6374(00)00111-1. PubMed DOI
McBRIDE TA, STOCKERT BW, GORIN FA, CARLSEN RC. Stretch-activated ion channels contribute to membrane depolarization after eccentric contractions. J Appl Physiol. 2000;88:91–101. doi: 10.1152/jappl.2000.88.1.91. PubMed DOI
McGINLEY C, SHAFAT A, DONNELLY AE. Does antioxidant vitamin supplementation protect against muscle damage? Sport Med. 2009;39:1011–1032. doi: 10.2165/11317890-000000000-00000. PubMed DOI
McHUGH MP. Recent advances in the understanding of the repeated bout effect: The protective effect against muscle damage from a single bout of eccentric exercise. Scand J Med Sci Sport. 2003;13:88–97. doi: 10.1034/j.1600-0838.2003.02477.x. PubMed DOI
McKUNE AJ, SEMPLE SJ, PETERS-FUTRE EM. Acute exercise-induced muscle injury. Biol Sport. 2012;29:3–10. doi: 10.5604/20831862.978976. DOI
McNEIL PL, KHAKEE R. Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage. Am J Pathol. 1992;140:1097–109. PubMed PMC
MERRY TL, STEINBERG GR, LYNCH GS, McCONELL GK. Skeletal muscle glucose uptake during contraction is regulated by nitric oxide and ROS independently of AMPK. Am J Physiol Endocrinol Metab. 2010;298:577–585. doi: 10.1152/ajpendo.00239.2009. PubMed DOI
MICHAILIDIS Y, KARAGOUNIS LG, TERZIS G, JAMURTAS AZ, SPENGOS K, TSOUKAS D, CHATZINIKOLAOU A, MANDALIDIS D, STEFANETTI RJ, PAPASSOTIRIOU I, ATHANASOPOULOS S, HAWLEY JA, RUSSELL AP, FATOUROS IG. Thiol-based antioxidant supplementation alters human skeletal muscle signaling and attenuates its inflammatory response and recovery after intense eccentric exercise. Am J Clin Nutr. 2013;98:233–245. doi: 10.3945/ajcn.112.049163. PubMed DOI
MILANOVIĆ Z, SPORIŠ G, WESTON M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: A systematic review and meta-analysis of controlled trials. Sport Med. 2015;45:1469–1481. doi: 10.1007/s40279-015-0365-0. PubMed DOI
MILLS M. Differential expression of the actin-binding proteins, alpha-actinin-2 and -3, in different species: implications for the evolution of functional redundancy. Hum Mol Genet. 2001;10:1335–1346. doi: 10.1093/hmg/10.13.1335. PubMed DOI
MINAHAN C, JOYCE S, BULMER AC, CRONIN N, SABAPATHY S. The influence of estradiol on muscle damage and leg strength after intense eccentric exercise. Eur J Appl Physiol. 2015;115:1493–1500. doi: 10.1007/s00421-015-3133-9. PubMed DOI
MORAIS GP, da ROCHA A, PINTO AP, OLIVEIRA LDC, de VICENTE LG, FERREIRA GN, De FREITAS EC, da SILVA ASR. Uphill running excessive training increases gastrocnemius glycogen content in C57BL/6 mice. Physiol Res. 2018;67:107–115. doi: 10.33549/physiolres.933614. PubMed DOI
MORAIS GP, da ROCHA AL, NEAVE LM, de LUCAS GA, LEONARD TR, CARVALHO A, da SILVA ASR, HERZOG W. Chronic uphill and downhill exercise protocols do not lead to sarcomerogenesis in mouse skeletal muscle. J Biomech. 2020;98:109469. doi: 10.1016/j.jbiomech.2019.109469. PubMed DOI
MORGAN DL. New insights into the behavior of muscle during active lengthening. Biophys J. 1990;57:209–221. doi: 10.1016/S0006-3495(90)82524-8. PubMed DOI PMC
MORGAN DL, ALLEN DG. Early events in stretch-induced muscle damage. J Appl Physiol. 1999;87:2007–2015. doi: 10.1152/jappl.1999.87.6.2007. PubMed DOI
MORTON JP, KAYANI AC, MCARDLE A, DRUST B. The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sport Med. 2009;39:643–662. doi: 10.2165/00007256-200939080-00003. PubMed DOI
MURPHY RM, DUTKA TL, HORVATH D, BELL JR, DELBRIDGE LM, LAMB GD. Ca2+-dependent proteolysis of junctophilin-1 and junctophilin-2 in skeletal and cardiac muscle. J Physiol. 2013;591:719. doi: 10.1113/jphysiol.2012.243279. PubMed DOI PMC
MURTON AJ, CONSTANTIN D, GREENHAFF PL. The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochim Biophys Acta - Mol Basis Dis. 2008;1782:730–743. doi: 10.1016/j.bbadis.2008.10.011. PubMed DOI
NAKAMOTO I, ISHIHARA A. Effects of voluntary running exercise on skeletal muscle properties in nonobese rats with type 2 diabetes. Physiol Res. 2020;69:73–84. doi: 10.33549/physiolres.934178. PubMed DOI PMC
NOMIYAMA T, IGARASHI Y, TAKA H, MINEKI R, UCHIDA T, OGIHARA T, CHOI JB, UCHINO H, TANAKA Y, MAEGAWA H, KASHIWAGI A, MURAYAMA K, KAWAMORI R, WATADA H. Reduction of insulin-stimulated glucose uptake by peroxynitrite is concurrent with tyrosine nitration of insulin receptor substrate-1. Biochem Biophys Res Commun. 2004;320:639–647. doi: 10.1016/j.bbrc.2004.06.019. PubMed DOI
NOSAKA K, CLARKSON PM. Muscle damage following repeated bouts of high force eccentric exercise. Med Sci Sports Exerc. 1995;27:1263–1269. doi: 10.1249/00005768-199509000-00005. PubMed DOI
NOSAKA K, NEWTON M. Difference in the magnitude of muscle damage between maximal and submaximal eccentric loading. J strength Cond Res. 2002;16:202–208. doi: 10.1519/00124278-200205000-00006. PubMed DOI
NOSAKA K, NEWTON M, SACCO P. Delayed-onset muscle soreness does not reflect the magnitude of eccentric exercise-induced muscle damage. Scand J Med Sci Sport. 2002;12:337–346. doi: 10.1034/j.1600-0838.2002.10178.x. PubMed DOI
OWENS DJ, TWIST C, COBLEY JN, HOWATSON G, CLOSE GL. Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions? Eur J Sport Sci. 2019;19:71–85. doi: 10.1080/17461391.2018.1505957. PubMed DOI
PALACIO J, GALDIZ JB, ALVAREZ FJ, OROZCO-LEVI M, LLORETA J, GEA JG. Procion orange tracer dye technique vs. identification of intrafibrillar fibronectin in the assessment of sarcolemmal damage. Eur J Clin Invest. 2002;32:443–447. doi: 10.1046/j.1365-2362.2002.01005.x. PubMed DOI
PAPACOSTA E, NASSIS GP. Saliva as a tool for monitoring steroid, peptide and immune markers in sport and exercise science. J Sci Med Sport. 2011 doi: 10.1016/j.jsams.2011.03.004. PubMed DOI
PASCHALIS V, NIKOLAIDIS MG, THEODOROU AA, DELI CK, RASO V, JAMURTAS AZ, GIAKAS G, KOUTEDAKIS Y. The effects of eccentric exercise on muscle function and proprioception of individuals being overweight and underweight. J Strength Cond Res. 2013;27:2542–2551. doi: 10.1519/JSC.0b013e31827fc9a6. PubMed DOI
PASCHALIS V, NIKOLAIDIS MG, THEODOROU AA, PANAYIOTOU G, FATOUROS IG, KOUTEDAKIS Y, JAMURTAS AZ. A weekly bout of eccentric exercise is sufficient to induce health-promoting effects. Med Sci Sports Exerc. 2011;43:64–73. doi: 10.1249/MSS.0b013e3181e91d90. PubMed DOI
PATEL HP, AL-SHANTI N, DAVIES LC, BARTON SJ, GROUNDS MD, TELLAM RL, STEWART CE, COOPER C, SAYER AA. Lean mass, muscle strength and gene expression in community dwelling older men: findings from the Hertfordshire Sarcopenia Study (HSS) Calcif Tissue Int. 2014;95:308–316. doi: 10.1007/s00223-014-9894-z. PubMed DOI
PAUL AC, ROSENTHAL N. Different modes of hypertrophy in skeletal muscle fibers. J Cell Biol. 2002;156:751–760. doi: 10.1083/jcb.200105147. PubMed DOI PMC
PAULSEN G, EGNER IM, DRANGE M, LANGBERG H, BENESTAD HB, FJELD JG, HALLÉN J, RAASTAD T. A COX-2 inhibitor reduces muscle soreness, but does not influence recovery and adaptation after eccentric exercise. Scand J Med Sci Sports. 2010;20:e195–e207. doi: 10.1111/j.1600-0838.2009.00947.x. PubMed DOI
PAULSEN G, MIKKELSEN UR, RAASTAD T, PEAKE JM. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev. 2012;18:42–97. PubMed
PEAKE J, NOSAKA K, SUZUKI K. Characterization of inflammatory responses to eccentric exercise in humans. Exerc Immunol Rev. 2005a;11:64–85. PubMed
PEAKE JM, Della GATTA P, SUZUKI K, NIEMAN DC. Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects. Exerc Immunol Rev. 2015;21:8–25. PubMed
PEAKE JM, NEUBAUER O, DellA GATTA PA, NOSAKA K. Muscle damage and inflammation during recovery from exercise. J Appl Physiol. 2017a;122:559–570. doi: 10.1152/japplphysiol.00971.2016. PubMed DOI
PEAKE JM, NEUBAUER O, WALSH NP, SIMPSON RJ. Recovery of the immune system after exercise. J Appl Physiol. 2017b;122:1077–1087. doi: 10.1152/japplphysiol.00622.2016. PubMed DOI
PEAKE JM, SUZUKI K, HORDERN M, WILSON G, NOSAKA K, COOMBES JS. Plasma cytokine changes in relation to exercise intensity and muscle damage. Eur J Appl Physiol. 2005b;95:514–521. doi: 10.1007/s00421-005-0035-2. PubMed DOI
PEDERSEN BK. Muscles and their myokines. J Exp Biol. 2011a;214:337–346. doi: 10.1242/jeb.048074. PubMed DOI
PEDERSEN BK. Exercise-induced myokines and their role in chronic diseases. Brain Behav Immun. 2011b;25:811–816. doi: 10.1016/j.bbi.2011.02.010. PubMed DOI
PEDERSEN BK, ÅKERSTRÖM TCA, NIELSEN AR, FISCHER CP. Role of myokines in exercise and metabolism. J Appl Physiol. 2007;103:1093–1098. doi: 10.1152/japplphysiol.00080.2007. PubMed DOI
PEDERSEN BK, FEBBRAIO MA. Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6. Physiol Rev. 2008;88:1379–1406. doi: 10.1152/physrev.90100.2007. PubMed DOI
PEÑAILILLO L, BLAZEVICH A, NUMAZAWA H, NOSAKA K. Rate of force development as a measure of muscle damage. Scand J Med Sci Sports. 2015;25:417–427. doi: 10.1111/sms.12241. PubMed DOI
PEÑAILILLO L, GUZMÁN N, CANGAS J, REYES A, ZBINDEN-FONCEA H. Metabolic demand and muscle damage induced by eccentric cycling of knee extensor and flexor muscles. Eur J Sport Sci. 2017;17:179–187. doi: 10.1080/17461391.2016.1217278. PubMed DOI
PEREIRA BC, DA ROCHA AL, PINTO AP, PAULI JR, De MOURA LP, MEKARY RA, De FREITAS EC, DA SILVA ASR. Excessive training impairs the insulin signal transduction in mice skeletal muscles. J Endocrinol. 2016a;230:93–104. doi: 10.1530/JOE-16-0063. PubMed DOI
PEREIRA BC, DA ROCHA AL, PINTO AP, PAULI JR, De SOUZA CT, CINTRA DE, ROPELLE ER, De FREITAS EC, ZAGATTO AM, DA SILVA ASR. Excessive eccentric exercise-induced overtraining model leads to endoplasmic reticulum stress in mice skeletal muscles. Life Sci. 2016b;145:144–151. doi: 10.1016/j.lfs.2015.12.037. PubMed DOI
PEREIRA BC, FILHO LAL, ALVES GF, PAULI JR, ROPELLE ER, SOUZA CT, CINTRA DE, SAAD MJA, SILVA ASR. A new overtraining protocol for mice based on downhill running sessions. Clin Exp Pharmacol Physiol. 2012;39:793–798. doi: 10.1111/j.1440-1681.2012.05728.x. PubMed DOI
PETROF BJ, SHRAGER JB, STEDMAN HH, KELLY AM, SWEENEY HL. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci. 1993;90:3710–3714. doi: 10.1073/pnas.90.8.3710. PubMed DOI PMC
PHILIPPE M, GATTERER H, EDER EM, DZIEN A, SOMAVILLA M, MELMER A, EBENBICHLER C, MÜLLER T, BURTSCHER M. The effects of 3 weeks of uphill and downhill walking on blood lipids and glucose metabolism in pre-diabetic men: A pilot study. J Sport Sci Med. 2017;16:35–43. PubMed PMC
PHILIPPE M, JUNKER G, GATTERER H, MELMER A, BURTSCHER M. Acute effects of concentric and eccentric exercise matched for energy expenditure on glucose metabolism in healthy females: a randomized crossover trial. Springerplus. 2016a:5. doi: 10.1186/s40064-016-3062-z. PubMed DOI PMC
PHILIPPE M, KRÜSMANN PJ, MERSA L, EDER EM, GATTERER H, MELMER A, EBENBICHLER C, BURTSCHER M. Acute effects of concentric and eccentric exercise on glucose metabolism and Interleukin-6 concentration in healthy males. Biol Sport. 2016b;33:153–158. doi: 10.5604/20831862.1198634. PubMed DOI PMC
PIITULAINEN H, BOTTER A, MERLETTI R, AVELA J. Muscle fiber conduction velocity is more affected after eccentric than concentric exercise. Eur J Appl Physiol. 2011;111:261–273. doi: 10.1007/s00421-010-1652-y. PubMed DOI
PIRKMAJER S, CHIBALIN AV. Na,K-ATPase regulation in skeletal muscle. Am J Physiol Endocrinol Metab. 2016;311:1–31. doi: 10.1152/ajpendo.00539.2015. PubMed DOI
PIZZA FX, KOH TJ, MCGREGOR SJ, BROOKS SV. Muscle inflammatory cells after passive stretches, isometric contractions, and lengthening contractions. J Appl Physiol. 2002;92:1873–1878. doi: 10.1152/japplphysiol.01055.2001. PubMed DOI
PLOUTZ-SNYDER LL, NYREN S, COOPER TG, POTCHEN EJ, MEYER RA. Different effects of exercise and edema onT2 relaxation in skeletal muscle. Magn Reson Med. 1997;37:676–682. doi: 10.1002/mrm.1910370509. PubMed DOI
POWERS SK, NELSON WB, HUDSON MB. Exercise-induced oxidative stress in humans: Cause and consequences. Free Radic Biol Med. 2011;51:942–950. doi: 10.1016/j.freeradbiomed.2010.12.009. PubMed DOI
PROSKE U, ALLEN TJ. Damage to skeletal muscle form eccentric exercise. Exerc Sport Sci Rev. 2005;33:98–105. doi: 10.1097/00003677-200504000-00007. PubMed DOI
PROSKE U, MORGAN DL. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol. 2001;537:333–45. doi: 10.1111/j.1469-7793.2001.00333.x. PubMed DOI PMC
QAISAR R, BHASKARAN S, Van REMMEN H. Muscle fiber type diversification during exercise and regeneration. Free Radic Biol Med. 2016;98:56–67. doi: 10.1016/j.freeradbiomed.2016.03.025. PubMed DOI
QAMAR MM, JAVED MS, DOGAR MZUH, BASHARAT A, RASUL A. The mystery behind the exercise-induced muscle damage. Rawal Med J. 2019;44:888–891. doi: 10.5455/JPMA.301636. DOI
RAASTAD T, OWE SG, PAULSEN G, ENNS D, OVERGAARD K, CRAMERI R, KIIL S, BELCASTRO A, BERGERSEN L, HALLÉN J. Changes in calpain activity, muscle structure, and function after eccentric exercise. Med Sci Sport Exerc. 2010;42:86–95. doi: 10.1249/MSS.0b013e3181ac7afa. PubMed DOI
RADAK Z, NAITO H, TAYLOR AW, GOTO S. Nitric oxide: Is it the cause of muscle soreness? 2012;26:89–94. doi: 10.1016/j.niox.2011.12.005. PubMed DOI
RENNIE MJ, WACKERHAGE H, SPANGENBURG EE, BOOTH FW. Control of the Size of the Human Muscle Mass. Annu Rev Physiol. 2004;66:799–828. doi: 10.1146/annurev.physiol.66.052102.134444. PubMed DOI
RICHTER EA, HARGREAVES M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93:993–1017. doi: 10.1152/physrev.00038.2012. PubMed DOI
ROBERTS CK, BARNARD RJ, JASMAN A, BALON TW. Acute exercise increases nitric oxide synthase activity in skeletal muscle. Am J Physiol Metab. 1999;277:E390–E394. doi: 10.1152/ajpendo.1999.277.2.E390. PubMed DOI
ROIG M, O’BRIEN K, KIRK G, MURRAY R, McKINNON P, SHADGAN B, REID WD. The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: A systematic review with meta-analysis. Br J Sports Med. 2009;43:556–568. doi: 10.1136/bjsm.2008.051417. PubMed DOI
RYDER JW, CHIBALIN AV, ZIERATH JR. Intracellular mechanisms underlying increases in glucose uptake in response to insulin or exercise in skeletal muscle. Acta Physiol Scand. 2001;171:249–257. doi: 10.1046/j.1365-201x.2001.00827.x. PubMed DOI
SCHOENFELD BJ. Does exercise-induced muscle damage play a role in skeletal muscle hypertrophy? J Strength Cond Res. 2012;26:1441–1453. doi: 10.1519/JSC.0b013e31824f207e. PubMed DOI
SCHRAUWEN P, HESSELINK MKC. Oxidative Capacity, Lipotoxicity, and Mitochondrial Damage in Type 2 Diabetes. Diabetes. 2004;53:1412–1417. doi: 10.2337/diabetes.53.6.1412. PubMed DOI
SELLMAN JE, DERUISSEAU KC, BETTERS JL, LIRA VA, SOLTOW QA, SELSBY JT, CRISWELL DS. In vivo inhibition of nitric oxide synthase impairs upregulation of contractile protein mRNA in overloaded plantaris muscle. J Appl Physiol. 2006;100:258–265. doi: 10.1152/japplphysiol.00936.2005. PubMed DOI
SEMMLER JG. Motor unit activity after eccentric exercise and muscle damage in humans. Acta Physiol. 2014;210:754–767. doi: 10.1111/apha.12232. PubMed DOI
SEMMLER JG, TUCKER KJ, ALLEN TJ, PROSKE U. Eccentric exercise increases EMG amplitude and force fluctuations during submaximal contractions of elbow flexor muscles. J Appl Physiol. 2007;103:979–989. doi: 10.1152/japplphysiol.01310.2006. PubMed DOI
SERRAVITE DH, PERRY A, JACOBS KA, ADAMS JA, HARRIELL K, SIGNORILE JF. Effect of whole-body periodic acceleration on exercise-induced muscle damage after eccentric exercise. Int J Sports Physiol Perform. 2014;9:985–992. doi: 10.1123/ijspp.2013-0512. PubMed DOI
SHARPLES AP, STEWART CE. Myoblast models of skeletal muscle hypertrophy and atrophy. Curr Opin Clin Nutr Metab Care. 2011;14:230–236. doi: 10.1097/MCO.0b013e3283457ade. PubMed DOI
SHIMODA-MATSUBAYASHI S, MATSUMINE H, KOBAYASHI T, NAKAGAWA-HATTORI Y, SHIMIZU Y, MIZUNO Y. Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson’s disease. Biochem Biophys Res Commun. 1996;226:561–565. doi: 10.1006/bbrc.1996.1806. PubMed DOI
SIM MK, WONG YC, XU XG, LOKE WK. Des-aspartate-angiotensin I attenuates ICAM-1 formation in hydrogen peroxide-treated L6 skeletal muscle cells and soleus muscle of mice subjected to eccentric exercise. Regul Pept. 2013;188:40–45. doi: 10.1016/j.regpep.2013.12.003. PubMed DOI
SIRIGULENG, KOIKE T, NATSUME Y, IWAMA S, OSHIDA Y. Effect of prior chronic aerobic exercise on overload-induced skeletal muscle hypertrophy in mice. Physiol Res. 2018;67:765–775. doi: 10.33549/physiolres.933786. PubMed DOI
SOMBOONWONG J, TRAISAENG S, SAGUANRUNGSIRIKUL S. Moderate-intensity exercise training elevates serum and pancreatic zinc levels and pancreatic ZnT8 expression in streptozotocin-induced diabetic rats. Life Sci. 2015;139:46–51. doi: 10.1016/j.lfs.2015.08.008. PubMed DOI
SORICHTER S, KOLLER A, HAID C, WICKE K, JUDMAIER W, WERNER P, RAAS E. Light concentric exercise and heavy eccentric muscle loading: effects on CK, MRI and markers of inflammation. Int J Sports Med. 1995;16:288–292. doi: 10.1055/s-2007-973007. PubMed DOI
SORICHTER S, MAIR J, KOLLER A, GEBERT W, RAMA D, CALZOLARI C, ARTNER-DWORZAK E, PUSCHENDORF B. Skeletal troponin I as a marker of exercise-induced muscle damage. J Appl Physiol. 1997;83:1076–1082. doi: 10.1152/jappl.1997.83.4.1076. PubMed DOI
SORICHTER S, MAIR J, KOLLER A, PELSERS MM, PUSCHENDORF B, GLATZ JF. Early assessment of exercise induced skeletal muscle injury using plasma fatty acid binding protein. Br J Sports Med. 1998;32:121–124. doi: 10.1136/bjsm.32.2.121. PubMed DOI PMC
SORICHTER S, PUSCHENDORF B, MAIR J. Skeletal muscle injury induced by eccentric muscle action: Muscle proteins as markers of muscle fiber injury. Exerc Immunol Rev. 1999;5:5–21. PubMed
SPANGENBURG EE, McBRIDE TA. Inhibition of stretch-activated channels during eccentric muscle contraction attenuates p70 S6K activation. J Appl Physiol. 2006;100:129–135. doi: 10.1152/japplphysiol.00619.2005. PubMed DOI
SPROUSE C, GORDISH-DRESSMAN H, ORKUNOGLU-SUER EF, LIPOF JS, MOECKEL-COLE S, PATEL RR, ADHAM K, LARKIN JS, HUBAL MJ, KEARNS AK, CLARKSON PM, THOMPSON PD, ANGELOPOULOS TJ, GORDON PM, MOYNA NM, PESCATELLO LS, VISICH PS, ZOELLER RF, HOFFMAN EP, TOSI LL, DEVANEY JM. SLC30A8 nonsynonymous Variant is associated with recovery following exercise and skeletal muscle size and strength. Diabetes. 2014;63:363–368. doi: 10.2337/db14-0030. PubMed DOI
STANFORD KI, GOODYEAR LJ. Exercise and type 2 diabetes: Molecular mechanisms regulating glucose uptake in skeletal muscle. Adv Physiol Educ. 2014;38:308–314. doi: 10.1152/advan.00080.2014. PubMed DOI PMC
STARBUCK C, ESTON RG. Exercise-induced muscle damage and the repeated bout effect: evidence for cross transfer. Eur J Appl Physiol. 2012;112:1005–1013. doi: 10.1007/s00421-011-2053-6. PubMed DOI
STAUBER WT, CLARKSON PM, FRITZ VK, EVANS WJ. Extracellular matrix disruption and pain after eccentric muscle action. J Appl Physiol. 1990;69:868–874. doi: 10.1152/jappl.1990.69.3.868. PubMed DOI
STEENSBERG A, KELLER C, HILLIG T, FRØSIG C, WOJTASZEWSKI JFP, PEDERSEN BK, PILEGAARD H, SANDER M. Nitric oxide production is a proximal signaling event controlling exercise-induced mRNA expression in human skeletal muscle. FASEB J. 2007;21:2683–2694. doi: 10.1096/fj.06-7477com. PubMed DOI
STUPKA N, TARNOPOLSKY MA, YARDLEY NJ, PHILLIPS SM. Cellular adaptation to repeated eccentric exercise-induced muscle damage. J Appl Physiol. 2001;91:1669–1678. doi: 10.1152/jappl.2001.91.4.1669. PubMed DOI
SYLOW L, KLEINERT M, PEHMØLLER C, PRATS C, CHIU TT, KLIP A, RICHTER EA, JENSEN TE. Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cell Signal. 2014a;26:323–331. doi: 10.1016/j.cellsig.2013.11.007. PubMed DOI
SYLOW L, MØLLER LLV, KLEINERT M, RICHTER EA, JENSEN TE. Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1. J Physiol. 2015;593:645–656. doi: 10.1113/jphysiol.2014.284281. PubMed DOI PMC
SYLOW L, MØLLER LLV, KLEINERT M, RICHTER EA, JENSEN TE. Rac1 - a novel regulator of contraction-stimulated glucose uptake in skeletal muscle. Exp Physiol. 2014b;99:1574–1580. doi: 10.1113/expphysiol.2014.079194. PubMed DOI
SYLOW L, NIELSEN IL, KLEINERT M, MØLLER LLV, PLOUG T, SCHJERLING P, BILAN PJ, KLIP A, JENSEN TE, RICHTER EA. Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice. J Physiol. 2016;594:4997–5008. doi: 10.1113/JP272039. PubMed DOI PMC
SZCZYGLOWSKI MK, ADE CJ, CAMPBELL JA, BLACK CD. The effects of exercise-induced muscle damage on critical torque. Eur J Appl Physiol. 2017;117:2225–2236. doi: 10.1007/s00421-017-3710-1. PubMed DOI
TALBOT JA, MORGAN DL. Quantitative analysis of sarcomere non-uniformities in active muscle following a stretch. J Muscle Res Cell Motil. 1996;17:261–268. doi: 10.1007/BF00124247. PubMed DOI
TEE JC, BOSCH AN, LAMBERT MI. Metabolic consequences of exercise-induced muscle damage. Sports Med. 2007;37:827–836. doi: 10.2165/00007256-200737100-00001. PubMed DOI
TIDBALL JG. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol. 2005;288:345–353. doi: 10.1152/ajpregu.00454.2004. PubMed DOI
TIDBALL JG, VILLALTA SA. Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Integr Comp Physiol. 2010;298:R1173–R1187. doi: 10.1152/ajpregu.00735.2009. PubMed DOI PMC
TIIDUS PM. Estrogen and HRT promote a proanabolic skeletal muscle environment in older women. J Appl Physiol. 2009;107:1367–1368. doi: 10.1152/japplphysiol.00991.2009. PubMed DOI
TIIDUS PM, ENNS DL. Point:Counterpoint: Estrogen and sex do/do not influence post-exercise indexes of muscle damage, inflammation, and repair. J Appl Physiol. 2009;106:1010–1012. doi: 10.1152/japplphysiol.90848.2008. PubMed DOI
TORRES R, VASQUES J, DUARTE JA, CABRI JMH. Knee proprioception after exercise-induced muscle damage. Int J Sports Med. 2010;31:410–415. doi: 10.1055/s-0030-1248285. PubMed DOI
TORRES SH, De SANCTIS JB, de L, BRICEÑO M, HERNÁNDEZ N, FINOL HJ. Inflammation and nitric oxide production in skeletal muscle of type 2 diabetic patients. J Endocrinol. 2004;181:419–27. doi: 10.1677/joe.0.1810419. PubMed DOI
TUMOVA J, ANDEL M, TRNKA J. Excess of free fatty acids as a cause of metabolic dysfunction in skeletal muscle. Physiol Res. 2016;65:193–207. doi: 10.33549/physiolres.932993. PubMed DOI
VAUGHAN D, BROGIOLI M, MAIER T, WHITE A, WALDRON S, RITTWEGER J, TOIGO M, WETTSTEIN J, LACZKO E, FLÜCK M. The Angiotensin Converting Enzyme Insertion/Deletion Polymorphism Modifies Exercise-Induced Muscle Metabolism. PLoS One. 2016;11:e0149046. doi: 10.1371/journal.pone.0149046. PubMed DOI PMC
VAUGHAN D, HUBER-ABEL FA, GRABER F, HOPPELER H, FLÜCK M. The angiotensin converting enzyme insertion/deletion polymorphism alters the response of muscle energy supply lines to exercise. Eur J Appl Physiol. 2013;113:1719–1729. doi: 10.1007/s00421-012-2583-6. PubMed DOI PMC
VELDERS M, DIEL P. How Sex Hormones Promote Skeletal Muscle Regeneration. Sport Med. 2013;43:1089–1100. doi: 10.1007/s40279-013-0081-6. PubMed DOI
VENCKUNAS T, SKURVYDAS A, BRAZAITIS M, KAMANDULIS S, SNIECKUS A, MORAN CN. Human alpha-actinin-3 genotype association with exercise-induced muscle damage and the repeated-bout effect. Appl Physiol Nutr Metab. 2012;37:1038–1046. doi: 10.1139/h2012-087. PubMed DOI
VERBURG E, MURPHY RM, STEPHENSON DG, LAMB GD. Disruption of excitation-contraction coupling and titin by endogenous Ca 2+-activated proteases in toad muscle fibres. J Physiol. 2005;564:775–790. doi: 10.1113/jphysiol.2004.082180. PubMed DOI PMC
VERMAAS K, RUNHAAR J. Health-Promoting Effects of Eccentric Exercise. Med Sci Sport Exerc. 2011;43:1808. doi: 10.1249/MSS.0b013e318221beb1. PubMed DOI
VINCENT HK, PERCIVAL S, CREASY R, ALEXIS D, SEAY AN, ANN ZL, MacMILLAN M, VINCENT KR. Acute effects of enhanced eccentric and concentric resistance exercise on metabolism and inflammation. J Nov Physiother. 2014;4:200. doi: 10.4172/2165-7025.1000200. PubMed DOI PMC
WACKERHAGE H, SCHOENFELD BJ, HAMILTON DL, LEHTI M, HULMI JJ. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol. 2019;126:30–43. doi: 10.1152/japplphysiol.00685.2018. PubMed DOI
WALLBERG-HENRIKSSON H, CONSTABLE SH, YOUNG DA, HOLLOSZY JO. Glucose transport into rat skeletal muscle: Interaction between exercise and insulin. J Appl Physiol. 1988;65:909–913. doi: 10.1152/jappl.1988.65.2.909. PubMed DOI
WALSH LD, HESSE CW, MORGAN DL, PROSKE U. Human forearm position sense after fatigue of elbow flexor muscles. J Physiol. 2004;558:705–715. doi: 10.1113/jphysiol.2004.062703. PubMed DOI PMC
WARHOL MJ, SIEGEL AJ, EVANS WJ, SILVERMAN LM. Skeletal muscle injury and repair in marathon runners after competition. Am J Pathol. 1985;118:331–339. PubMed PMC
WARREN GL, INGALLS CP, LOWE DA, ARMSTRONG RB. What mechanisms contribute to the strength loss that occurs during and in the recovery from skeletal muscle injury? J Orthop Sport Phys Ther. 2002;32:58–64. doi: 10.2519/jospt.2002.32.2.58. PubMed DOI
WARREN GL, LOWE DA, ARMSTRONG RB. Measurement tools used in the study of eccentric contraction-induced injury. Sport Med. 1999;27:43–59. doi: 10.2165/00007256-199927010-00004. PubMed DOI
WARREN GL, LOWE DA, HAYES DA, KARWOSKI CJ, PRIOR BM, ARMSTRONG RB. Excitation failure in eccentric contraction-induced injury of mouse soleus muscle. J Physiol. 1993;468:487–499. doi: 10.1113/jphysiol.1993.sp019783. PubMed DOI PMC
WEI Y, CHEN K, WHALEY-CONNELL AT, STUMP CS, IBDAH JA, SOWERS JR. Skeletal muscle insulin resistance: role of inflammatory cytokines and reactive oxygen species. Am J Physiol Integr Comp Physiol. 2008;294:R673–R680. doi: 10.1152/ajpregu.00561.2007. PubMed DOI
WESTERBLAD H, BRUTON JD, ALLEN DG, LÄNNERGREN J. Functional significance of Ca2+ in long-lasting fatigue of skeletal muscle. Eur J Appl Physiol. 2000;83:166–174. doi: 10.1007/s004210000275. PubMed DOI
WHITEHEAD NP, WEERAKKODY NS, GREGORY JE, MORGAN DL, PROSKE U. Changes in passive tension of muscle in humans and animals after eccentric exercise. J Physiol. 2001;533:593–604. doi: 10.1111/j.1469-7793.2001.0593a.x. PubMed DOI PMC
WILLIAMS AG, DAY SH, FOLLAND JP, GOHLKE P, DHAMRAIT S, MONTGOMERY HE. Circulating angiotensin converting enzyme activity is correlated with muscle strength. Med Sci Sports Exerc. 2005;37:944–948. PubMed
WISEMAN DA, KALWAT MA, THURMOND DC. Stimulus-induced S-nitrosylation of Syntaxin 4 impacts insulin granule exocytosis. J Biol Chem. 2011;286:16344–16354. doi: 10.1074/jbc.M110.214031. PubMed DOI PMC
WRIGHT CR, BROWN EL, Della GATTA PA, FATOUROS IG, KARAGOUNIS LG, TERZIS G, MASTORAKOS G, MICHAILIDIS Y, MANDALIDIS D, SPENGOS K, CHATZINIKOLAOU A, METHENITIS S, DRAGANIDIS D, JAMURTAS AZ, RUSSELL AP. Regulation of granulocyte colony-stimulating factor and its receptor in skeletal muscle is dependent upon the type of inflammatory stimulus. J Interf Cytokine Res. 2015;35:710–719. doi: 10.1089/jir.2014.0159. PubMed DOI
YAMIN C, AMIR O, SAGIV M, ATTIAS E, MECKEL Y, EYNON N, SAGIV M, AMIR RE. ACE ID genotype affects blood creatine kinase response to eccentric exercise. J Appl Physiol. 2007;103:2057–2061. doi: 10.1152/japplphysiol.00867.2007. PubMed DOI
YAMIN C, MECKEL Y, OLIVEIRA J, DUARTE JA, BEN-ZAKEN S, NEMET D, ELIAKIM A. Genetic aspects of exercise and rhabdomyolysis. Pediatr Endocrinol Rev. 2014;11:400–408. PubMed
YANG SY, GOLDSPINK G. Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation. FEBS Lett. 2002;522:156–160. doi: 10.1016/S0014-5793(02)02918-6. PubMed DOI
YEUNG EW, BALLARD HJ, BOURREAU JP, ALLEN DG. Intracellular sodium in mammalian muscle fibers after eccentric contractions. J Appl Physiol. 2003;94:2475–2482. doi: 10.1152/japplphysiol.01128.2002. PubMed DOI
YEUNG EW, BALNAVE CD, BALLARD HJ, BOURREAU J-P, ALLEN DG. Development of T-tubular vacuoles in eccentrically damaged mouse muscle fibres. J Physiol. 2002a;540:581–592. doi: 10.1113/jphysiol.2001.013839. PubMed DOI PMC
YEUNG EW, BOURREAU J-P, ALLEN DG, BALLARD HJ. Effect of eccentric contraction-induced injury on force and intracellular pH in rat skeletal muscles. J Appl Physiol. 2002b;92:93–99. doi: 10.1152/jappl.2002.92.1.93. PubMed DOI
YEUNG EW, WHITEHEAD NP, SUCHYNA TM, GOTTLIEB PA, SACHS F, ALLEN DG. Effects of stretch-activated channel blockers on [Ca2+]i and muscle damage in the mdx mouse. J Physiol. 2005;562:367–380. doi: 10.1113/jphysiol.2004.075275. PubMed DOI PMC
YIN H, PRICE F, RUDNICKI MA. Satellite cells and the muscle stem cell niche. Physiol Rev. 2013;93:23–67. doi: 10.1152/physrev.00043.2011. PubMed DOI PMC
YOUN JH, GULVE EA, HOLLOSZY JO. Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction. Am J Physiol - Cell Physiol. 1991:260. doi: 10.1152/ajpcell.1991.260.3.C555. PubMed DOI
ZANCHI NE, LANCHA AH. Mechanical stimuli of skeletal muscle: implications on mTOR/p70s6k and protein synthesis. Eur J Appl Physiol. 2008;102:253–263. doi: 10.1007/s00421-007-0588-3. PubMed DOI
ZHOU Y, LI Y, WANG R. Evaluation of exercise-induced muscle damage by surface electromyography. J Electromyogr Kinesiol. 2011;21:356–362. doi: 10.1016/j.jelekin.2010.09.009. PubMed DOI
ZIERATH JR. Invited Review: Exercise training-induced changes in insulin signaling in skeletal muscle. J Appl Physiol. 2002;93:773–781. doi: 10.1152/japplphysiol.00126.2002. PubMed DOI