Effects of voluntary running exercise on skeletal muscle properties in nonobese rats with type 2 diabetes

. 2020 Feb 19 ; 69 (1) : 73-84. [epub] 20191219

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu hodnotící studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31852198

The skeletal muscles of animals and humans with type 2 diabetes have decreased oxidative capacity. Aerobic exercise can improve muscle oxidative capacity, but no data are available on the amount of exercise required. We investigated the effects of voluntary running exercise and running distance on the skeletal muscle properties of nonobese rats with type 2 diabetes. Six-week-old male diabetic Goto-Kakizaki rats were divided into nonexercised (GK) and exercised (GK-Ex) groups. The rats in the GK-Ex group were permitted voluntary running exercise on wheels for 6 weeks. Age-matched male Wistar rats (WR) were used as nondiabetic controls. Fasting blood glucose and HbA1c levels were higher in the GK and GK-Ex groups than in the WR group and lower in the GK-Ex group than in the GK group. Succinate dehydrogenase (SDH) activity and peroxisome proliferator-activated receptor gamma coactivator-1alpha (Pgc-1alpha) mRNA levels in the soleus and plantaris muscles were higher in the WR and GK-Ex groups than in the GK group. HbA1c and total cholesterol levels were negatively correlated with running distance and SDH activity and Pgc-1alpha mRNA levels in the soleus muscle were positively correlated with running distance. The onset and progression of diabetes in nonobese diabetic rats were effectively inhibited by running longer distances.

Zobrazit více v PubMed

ADACHI T, KIKUCHI N, YASUHARA K, ANAHARA R, GU N, MATSUNAGA T, YAMAMURA T, MORI C, TSUJIMOTO G, TSUDA K, ISHIHARA A. Fibre type distribution and gene expression levels of both succinate dehydrogenase and peroxisome proliferator-activated receptor-γ coactivator-1α of fibres in the soleus muscle of Zucker diabetic fatty rats. Exp Physiol. 2007;92:449–455. doi: 10.1113/expphysiol.2006.035451. PubMed DOI

FU S, MENG Y, ZHANG W, WANG J, HE Y, HUANG L, CHEN H, KUANG J, DU H. Transcriptomic responses of skeletal muscle to acute exercise in diabetic Goto-Kakizaki rats. Front Physiol. 2019;10:872. doi: 10.3389/fphys.2019.00872. PubMed DOI PMC

GASTER M, STAEHR P, BECK-NIELSEN H, SCHRØDER HD, HANDBERG A. GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease? Diabetes. 2001;50:1324–1329. doi: 10.2337/diabetes.50.6.1324. PubMed DOI

GOTO Y, KAKIZAKI M, MASAKI N. Spontaneous diabetes produced by selective breeding of normal Wistar rats. Proc Jpn Acad. 1975;51:80–85. doi: 10.2183/pjab1945.51.80. DOI

GOTO Y, KAKIZAKI M, MASAKI N. Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp. 1976;119:85–90. doi: 10.1620/tjem.119.85. PubMed DOI

GU N, NAGATOMO F, FUJINO H, TAKEDA I, TSUDA K, ISHIHARA A. Hyperbaric oxygen exposure improves blood glucose level and muscle oxidative capacity in rats with type 2 diabetes. Diabetes Technol Ther. 2010;12:125–133. doi: 10.1089/dia.2009.0104. PubMed DOI

ISHIHARA A, NAGATOMO F, FUJINO H, KONDO H, TSUDA K. Lifestyle-related disease and skeletal muscle: a review. J Phys Fitness Sports Med. 2012;1:17–27. doi: 10.7600/jpfsm.1.17. DOI

ISHIHARA A, ROY RR, OHIRA Y, IBATA Y, EDGERTON VR. Hypertrophy of rat plantaris muscle fibers after voluntary running with increasing loads. J Appl Physiol. 1998;84:2183–2189. doi: 10.1152/jappl.1998.84.6.2183. PubMed DOI

JENKINS DW, JENKS A. Exercise and diabetes: a narrative review. J Foot Ankle Surg. 2017;56:968–974. doi: 10.1053/j.jfas.2017.06.019. PubMed DOI

KAWANO K, HIRASHIMA T, MORI S, SAITOH Y, KUROSUMI M, NATORI T. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes. 1992;41:1422–1428. doi: 10.2337/diabetes.41.11.1422. PubMed DOI

KIM SS, KOO JH, KWON IS, OH YS, LEE SJ, KIM EJ, KIM WK, LEE J, CHO JY. Exercise training and selenium or a combined treatment ameliorates aberrant expression of glucose and lactate metabolic proteins in skeletal muscle in a rodent model of diabetes. Nutr Res Pract. 2011;5:205–213. doi: 10.4162/nrp.2011.5.3.205. PubMed DOI PMC

LIANG H, WARD WF. PGC-1α: a key regulator of energy metabolism. Adv Physiol Educ. 2006;30:145–151. doi: 10.1152/advan.00052.2006. PubMed DOI

LIN J, WU H, TARR PT, ZHANG CY, WU Z, BOSS O, MICHAEL LF, PUIGSERVER P, ISOTANI E, OLSON EN, LOWELL BB, BASSEL-DUBY R, SPIEGELMAN BM. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature. 2002;418:797–801. doi: 10.1038/nature00904. PubMed DOI

MACIA M, PECCHI E, DESROIS M, LAN C, VILMEN C, PORTHA B, BERNARD M, BENDAHAN D, GIANNESINI B. Exercise training impacts exercise tolerance and bioenergetics in gastrocnemius muscle of non-obese type-2 diabetic Goto-Kakizaki rat in vivo. Biochimie. 2018;148:36–45. doi: 10.1016/j.biochi.2018.02.014. PubMed DOI

MÅRIN P, ANDERSSON B, KROTKIEWSKI M, BJÖRNTORP P. Muscle fiber composition and capillary density in women and men with NIDDM. Diabetes Care. 1994;17:382–386. doi: 10.2337/diacare.17.5.382. PubMed DOI

MIURA S, KAI Y, ONO M, EZAKI O. Overexpression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) down-regulates GLUT4 mRNA in skeletal muscles. J Biol Chem. 2003;278:31385–31390. doi: 10.1074/jbc.M304312200. PubMed DOI

MIURA S, TOMITSUKA E, KAMEI Y, YAMAZAKI T, KAI Y, TAMURA M, KITA K, NISHINO I, EZAKI O. Overexpression of peroxisome proliferators-activated receptor γ co-activator-1α leads to muscle atrophy with depletion of ATP. Am J Pathol. 2006;169:1129–1139. doi: 10.2353/ajpath.2006.060034. PubMed DOI PMC

MORIFUJI T, MURAKAMI S, FUJITA N, KONDO H, FUJINO H. Exercise training prevents decrease in luminal capillary diameter of skeletal muscles in rats with type 2 diabetes. Sci World J. 2012;2012:645891. doi: 10.1100/2012/645891. PubMed DOI PMC

MORTENSEN OH, FRANDSEN L, SCHJERLING P, NISHIMURA E, GRUNNET N. PGC-1α and PGC-1β have both similar and distinct effects upon myofiber switching toward an oxidative phenotype. Am J Physiol Endocrinol Metab. 2006;291:E807–E816. doi: 10.1152/ajpendo.00591.2005. PubMed DOI

NAGATOMO F, FUJINO H, KONDO H, GU N, TAKEDA I, ISHIOKA N, TSUDA K, ISHIHARA A. PGC-1α mRNA level and oxidative capacity of the plantaris muscle in rats with metabolic syndrome, hypertension, and type 2 diabetes. Acta Histochem Cytochem. 2011a;44:73–80. doi: 10.1267/ahc.10041. PubMed DOI PMC

NAGATOMO F, FUJINO H, KONDO H, KOUZAKI M, GU N, TAKEDA I, TSUDA K, ISHIHARA A. The effects of running exercise on oxidative capacity and PGC-1α mRNA levels in the soleus muscle of rats with metabolic syndrome. J Physiol Sci. 2012a;62:105–114. doi: 10.1007/s12576-011-0188-1. PubMed DOI PMC

NAGATOMO F, FUJINO H, KONDO H, SUZUKI H, KOUZAKI M, TAKEDA I, ISHIHARA A. PGC-1α and FOXO1 mRNA levels and fiber characteristics of the soleus and plantaris muscles in rats after hindlimb unloading. Histol Histopathol. 2011b;26:1545–1553. doi: 10.14670/HH-26.1545. PubMed DOI

NAGATOMO F, FUJINO H, KONDO H, TAKEDA I, TSUDA K, ISHIHARA A. High-fat diet-induced reduction of peroxisome proliferator-activated receptor-γ coactivotor-1α mRNA levels and oxidative capacity in the soleus muscle of rats with metabolic syndrome. Nutr Res. 2012b;32:144–151. doi: 10.1016/j.nutres.2011.12.015. PubMed DOI

NAGATOMO F, GU N, FUJINO H, TAKEDA I, TSUDA K, ISHIHARA A. Skeletal muscle characteristics of rats with obesity, diabetes, hypertension, and hyperlipidemia. J Atheroscler Thromb. 2009;16:576–585. doi: 10.5551/jat.1065. PubMed DOI

NAGATOMO F, TAKEMURA A, ROY RR, FUJINO H, KONDO H, ISHIHARA A. Mild hyperbaric oxygen inhibits the growth-related decline in skeletal muscle oxidative capacity and prevents hyperglycemia in rats with type 2 diabetes mellitus. J Diabetes. 2018;10:753–763. doi: 10.1111/1753-0407.12666. PubMed DOI

NYHOLM B, QU Z, KAAL A, PEDERSEN SB, GRAVHOLT CH, ANDERSEN JL, SALTIN B, SCHMITZ O. Evidence of an increased number of type IIb muscle fibers in insulin-resistant first-degree relatives of patients with NIDDM. Diabetes. 1997;46:1822–1828. doi: 10.2337/diabetes.46.11.1822. PubMed DOI

OBERBACH A, BOSSENZ Y, LEHMANN S, NIEBAUER J, ADAMS V, PASCHKE R, SCHÖN MR, BLÜHER M, PUNKT K. Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes. Diabetes Care. 2006;29:895–900. doi: 10.2337/diacare.29.04.06.dc05-1854. PubMed DOI

PHIELIX E, MENSIN M. Type 2 diabetes mellitus and skeletal muscle metabolic function. Physiol Behav. 2008;94:252–258. doi: 10.1016/j.physbeh.2008.01.020. PubMed DOI

PUIGSERVER P. Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC-1α. Int J Obes. 2005;29(Suppl 1):S5–S9. doi: 10.1038/sj.ijo.0802905. PubMed DOI

QI Z, HE J, ZHANG Y, SHAO Y, DING S. Exercise training attenuates oxidative stress and decreases p53 protein content in skeletal muscle of type 2 diabetic Goto-Kakizaki rats. Free Rad Biol Med. 2011;50:794–800. doi: 10.1016/j.freeradbiomed.2010.12.022. PubMed DOI

SCHULER M, ALI F, CHAMBON C, DUTEIL D, BORNERT JM, TARDIVEL A, DESVERGNE B, WAHLI W, CHAMBON P, METZGER D. PGC1α expression is controlled in skeletal muscles by PPARß, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab. 2006;4:407–414. doi: 10.1016/j.cmet.2006.10.003. PubMed DOI

SOUTHGATE RJ, NEILL B, PRELOVSEK O, EL-OSTA A, KAMEI Y, MIURA S, EZAKI O, McLOUGHLIN TJ, ZHANG W, UNTERMAN TG, FEBBRAIO MA. FOXO1 regulates the expression of 4E-BP1 and inhibits mTOR signaling in mammalian skeletal muscle. J Biol Chem. 2007;282:21176–21186. doi: 10.1074/jbc.M702039200. PubMed DOI

TAKEMURA A, ISHIHARA A. Mild hyperbaric oxygen inhibits growth-related decrease in muscle oxidative capacity of rats with metabolic syndrome. J Atheroscler Thromb. 2017;24:26–38. doi: 10.5551/jat.34686. PubMed DOI PMC

WENDE AR, HUSS JM, SCHAEFFER PJ, GIGUÈRE V, KELLY DP. PGC-1α coactivates PDK4 gene expression via the orphan nuclear receptor ERRα: a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol. 2005;25:10684–10694. doi: 10.1128/MCB.25.24.10684-10694.2005. PubMed DOI PMC

WU H, KANATOUS SB, THURMOND FA, GALLARDO T, ISOTANI E, BASSEL-DUBY R, WILLIAMS RS. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science. 2002;296:349–352. doi: 10.1126/science.1071163. PubMed DOI

WU Z, PUIGSERFVER P, ANDERSSON U, ZHANG C, ADELMANT G, MOOTHA V, TROY A, CINTI S, LOWELL B, SCARPULLA RC, SPIEGELMAN BM. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98:115–124. doi: 10.1016/S0092-8674(00)80611-X. PubMed DOI

YASUDA K, ADACHI T, GU N, MATSUMOTO A, MATSUNAGA T, TSUJIMOTO G, TSUDA K, ISHIHARA A. Effects of hyperbaric exposure with high oxygen concentration on glucose and insulin levels and skeletal muscle-fiber properties in diabetic rats. Muscle Nerve. 2007;35:337–343. doi: 10.1002/mus.20692. PubMed DOI

YASUDA K, ADACHI T, KIKUCHI N, TSUJIMOTO G, AOKI N, TSUDA K, ISHIHARA A. Effects of running exercise on fibre-type distribution of soleus and plantaris muscles in diabetic Otsuka Long-Evans Tokushima fatty rats. Diabetes Obes Metab. 2006;8:311–321. doi: 10.1111/j.1463-1326.2005.00507.x. PubMed DOI

YASUDA K, ISHIHARA A, ADACHI T, SHIHARA N, SEINO Y, TSUDA K. Growth-related changes in skeletal muscle fiber type and insulin resistance in diabetic Otsuka Long-Evans Tokushima Fatty rats. Acta Histochem Cytochem. 2001;34:371–382. doi: 10.1267/ahc.34.371. DOI

YASUDA K, NISHIKAWA W, IWANAKA N, NAKAMURA E, SEINO Y, TSUDA K, ISHIHARA A. Abnormality in fibre type distribution of soleus and plantaris muscles in non-obese diabetic Goto-Kakizaki rats. Clin Exp Pharmacol Physiol. 2002;29:1001–1008. doi: 10.1046/j.1440-1681.2002.03757.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...