Beyond physical exhaustion: Understanding overtraining syndrome through the lens of molecular mechanisms and clinical manifestation

. 2025 Jul ; 7 (4) : 237-248. [epub] 20250129

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40264836
Odkazy

PubMed 40264836
PubMed Central PMC12010411
DOI 10.1016/j.smhs.2025.01.006
PII: S2666-3376(25)00017-4
Knihovny.cz E-zdroje

BACKGROUND: Overtraining Syndrome (OTS) is a condition resulting from excessive physical activity without adequate recovery, predominantly affecting elite athletes and military personnel. While overreaching can be a temporary state, non-functional overreaching may progress to chronic OTS. This review explores various hypotheses regarding the pathogenesis of OTS, including glycogen depletion, dysregulated cytokine response, oxidative stress, and alterations in the autonomic nervous system function. It also highlights the systemic impact of OTS on multiple organ systems, immune function, and overall health, linking the condition to chronic inflammation and an increased disease susceptibility. Additionally, it addresses the role of the gut microbiome in health modulation through physical activity. METHODS: This narrative review was conducted through a structured search of peer-reviewed journal articles in databases such as PubMed, Web of Science, and Google Scholar, focusing on studies involving human participants and published in English. RESULTS: OTS has systemic effects on multiple organ systems, immune function, and overall health, leading to chronic inflammation and increased disease susceptibility. Athletes with OTS exhibit higher morbidity rates, influenced by factors such as sleep deprivation and stress. The review also emphasizes the role of the gut microbiome as a significant modulator of health through physical activity. CONCLUSION: Balanced training and recovery are crucial for preventing OTS and maintaining optimal health and quality of life in physically active individuals. Understanding the complex pathophysiology of OTS is essential for developing effective prevention and treatment strategies.

Zobrazit více v PubMed

Anderson E., Durstine J.L. Physical activity, exercise, and chronic diseases: a brief review. Sports Med Health Sci. 2019;1(1):3–10. doi: 10.1016/j.smhs.2019.08.006. PubMed DOI PMC

Qiu P., Wu J., Li M., Zhao Z., Wang Q. Causal inference between physical activity and chronic diseases: insights from a two-sample Mendelian randomization study. Sports Med Health Sci. 2024;10 doi: 10.1016/j.smhs.2024.09.002. Published online September 10, 2024. DOI

Wang T., Laher I., Li S. Exercise snacks and physical fitness in sedentary populations. Sports Med Health Sci. 2025;7(1):1–7. doi: 10.1016/j.smhs.2024.02.006. PubMed DOI PMC

Kreher J.B., Schwartz J.B. Overtraining syndrome: a practical guide. Sport Health. 2012;4(2):128–138. doi: 10.1177/1941738111434406. PubMed DOI PMC

Armstrong L.E., Bergeron M.F., Lee E.C., Mershon J.E., Armstrong E.M. Overtraining syndrome as a complex systems phenomenon. Front Netw Physiol. 2021;1 doi: 10.3389/fnetp.2021.794392. PubMed DOI PMC

Carfagno D.G., Hendrix J.C. Overtraining syndrome in the athlete: current clinical practice. Curr Sports Med Rep. 2014;13(1):45–51. doi: 10.1249/JSR.0000000000000027. PubMed DOI

Haghighat N., Stull T. Up-to-date understanding of overtraining syndrome and overlap with related disorders. Sports Psychiatry. 2024;3(1):31–38. doi: 10.1024/2674-0052/a000072. DOI

Madzar T., Masina T., Zaja R., et al. Overtraining syndrome as a risk factor for bone stress injuries among paralympic athletes. Medicina. 2023;60(1):52. doi: 10.3390/medicina60010052. PubMed DOI PMC

Tsukahara Y., Kamada H., Torii S., Yamasawa F. Association between self-reported overtraining syndrome and symptoms in high school track and field athletes. Int J Sports Med. 2022;44(2):138–144. doi: 10.1055/a-1954-9239. PubMed DOI

Rodrigues F., Monteiro D., Ferraz R., Branquinho L., Forte P. The association between training frequency, symptoms of overtraining and injuries in young men soccer players. Int J Environ Res Publ Health. 2023;20(8):5466. doi: 10.3390/ijerph20085466. PubMed DOI PMC

Meeusen R., Duclos M., Foster C., et al. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European college of sport science and the American college of sports medicine. Med Sci Sports Exerc. 2013;45(1):186–205. doi: 10.1249/MSS.0b013e318279a10a. PubMed DOI

Afonso J., Nakamura F.Y., Canário-Lemos R., et al. A novel approach to training monotony and acute-chronic workload index: a comparative study in soccer. Front Sports Act Living. 2021;3 doi: 10.3389/fspor.2021.661200. PubMed DOI PMC

Clemente F.M., Clark C., Castillo D., et al. Variations of training load, monotony, and strain and dose-response relationships with maximal aerobic speed, maximal oxygen uptake, and isokinetic strength in professional soccer players. PLoS One. 2019;14(12) doi: 10.1371/journal.pone.0225522. PubMed DOI PMC

Patel H., Vanguri P., Kumar D., Levin D. The impact of inadequate sleep on overtraining syndrome in 18-22-year-old male and female college athletes: a literature review. Cureus. 2024;16(3) doi: 10.7759/cureus.56186. PubMed DOI PMC

Herring S.A., Ben Kibler W., Putukian M., et al. Load, overload, and recovery in the athlete: select issues for the team physician-A consensus statement. Curr Sports Med Rep. 2019;18(4):141–148. doi: 10.1249/JSR.0000000000000589. PubMed DOI

la Torre M.E., Monda A., Messina A., et al. The potential role of nutrition in overtraining syndrome: a narrative review. Nutrients. 2023;15(23):4916. doi: 10.3390/nu15234916. PubMed DOI PMC

Campbell E., White-Barrow V., McFarlane S., Dilworth L., Irving R. Dietary and hydration patterns as indicators of overtraining in elite adolescent sprinters. Hum Nutr Metab. 2022;30 doi: 10.1016/j.hnm.2022.200170. DOI

Schorb A., Niebauer J., Aichhorn W., Schiepek G., Scherr J., Claussen M.C. Overtraining from a sports psychiatry perspective. Dtsch Z Sportmed. 2021;72(6):271–279. doi: 10.5960/dzsm.2021.496. DOI

da Rocha A.L., Pinto A.P., Kohama E.B., et al. The proinflammatory effects of chronic excessive exercise. Cytokine. 2019;119:57–61. doi: 10.1016/j.cyto.2019.02.016. PubMed DOI

Sharp N.C., Koutedakis Y. Sport and the overtraining syndrome: immunological aspects. Br Med Bull. 1992;48(3):518–533. doi: 10.1093/oxfordjournals.bmb.a072560. PubMed DOI

Smith L.L. Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress? Med Sci Sports Exerc. 2000;32(2):317–331. doi: 10.1097/00005768-200002000-00011. PubMed DOI

Powers S.K., Jackson M.J. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88(4):1243–1276. doi: 10.1152/physrev.00031.2007. PubMed DOI PMC

Rowbottom D.G., Keast D., Morton A.R. The emerging role of glutamine as an indicator of exercise stress and overtraining. Sports Med. 1996;21(2):80–97. doi: 10.2165/00007256-199621020-00002. PubMed DOI

Gastmann U.A., Lehmann M.J. Overtraining and the BCAA hypothesis. Med Sci Sports Exerc. 1998;30(7):1173–1178. doi: 10.1097/00005768-199807000-00025. PubMed DOI

Lee B.H., Hille B., Koh D.S. Serotonin modulates melatonin synthesis as an autocrine neurotransmitter in the pineal gland. Proc Natl Acad Sci U S A. 2021;118(43) doi: 10.1073/pnas.2113852118. PubMed DOI PMC

Lehmann M., Foster C., Dickhuth H.H., Gastmann U. Autonomic imbalance hypothesis and overtraining syndrome. Med Sci Sports Exerc. 1998;30(7):1140–1145. doi: 10.1097/00005768-199807000-00019. PubMed DOI

Ruuskanen O., Luoto R., Valtonen M., Heinonen O.J., Waris M. Respiratory viral infections in athletes: many unanswered questions. Sports Med. 2022;52(9):2013–2021. doi: 10.1007/s40279-022-01660-9. PubMed DOI PMC

Reid V., Gleeson M., Williams N., Clancy R. Clinical investigation of athletes with persistent fatigue and/or recurrent infections. Br J Sports Med. 2004;38(1):42–45. doi: 10.1136/bjsm.2002.002634. PubMed DOI PMC

Gleeson M., Pyne D.B. Respiratory inflammation and infections in high-performance athletes. Immunol Cell Biol. 2016;94(2):124–131. doi: 10.1038/icb.2015.100. PubMed DOI PMC

Valtonen M., Grönroos W., Luoto R., et al. Increased risk of respiratory viral infections in elite athletes: a controlled study. PLoS One. 2021;16(5) doi: 10.1371/journal.pone.0250907. PubMed DOI PMC

Tiollier E., Gomez-Merino D., Burnat P., et al. Intense training: mucosal immunity and incidence of respiratory infections. Eur J Appl Physiol. 2005;93(4):421–428. doi: 10.1007/s00421-004-1231-1. PubMed DOI

Korzeniewski K., Nitsch-Osuch A., Konior M., Lass A. Respiratory tract infections in the military environment. Respir Physiol Neurobiol. 2015;209:76–80. doi: 10.1016/j.resp.2014.09.016. PubMed DOI PMC

Gupta L., Morgan K., Gilchrist S. Does elite sport degrade sleep quality? A systematic review. Sports Med. 2017;47(7):1317–1333. doi: 10.1007/s40279-016-0650-6. PubMed DOI PMC

Hamlin M.J., Deuchrass R.W., Olsen P.D., et al. The effect of sleep quality and quantity on athlete's health and perceived training quality. Front Sports Act Living. 2021;3 doi: 10.3389/fspor.2021.705650. PubMed DOI PMC

Wentz L.M., Ward M.D., Potter C., et al. Increased risk of upper respiratory infection in military recruits who report sleeping less than 6 h per night. Mil Med. 2018;183(11-12):e699–e704. doi: 10.1093/milmed/usy090. PubMed DOI

Overtraining Lakier Smith L. Excessive exercise, and altered immunity: is this a T helper-1 versus T helper-2 lymphocyte response? Sports Med. 2003;33(5):347–364. doi: 10.2165/00007256-200333050-00002. PubMed DOI

Haller N., Reichel T., Zimmer P., et al. Blood-based biomarkers for managing workload in athletes: perspectives for research on emerging biomarkers. Sports Med. 2023;53(11):2039–2053. doi: 10.1007/s40279-023-01866-5. PubMed DOI PMC

Drummond L.R., Campos H.O., Drummond F.R., et al. Acute and chronic effects of physical exercise on IgA and IgG levels and susceptibility to upper respiratory tract infections: a systematic review and meta-analysis. Pflugers Arch. 2022;474(12):1221–1248. doi: 10.1007/s00424-022-02760-1. PubMed DOI PMC

Gleeson M. Biochemical and immunological markers of over-training. J Sports Sci Med. 2002;1(2):31–41. PubMed PMC

Hatch-McChesney A., Radcliffe P.N., Pitts K.P., et al. Changes in immune function during initial military training. Med Sci Sports Exerc. 2023;55(3):548–557. doi: 10.1249/MSS.0000000000003079. PubMed DOI PMC

Peake J.M., Neubauer O., Walsh N.P., Simpson R.J. Recovery of the immune system after exercise. J Appl Physiol. 2017;122(5):1077–1087. doi: 10.1152/japplphysiol.00622.2016. PubMed DOI

Aya V., Flórez A., Perez L., Ramírez J.D. Association between physical activity and changes in intestinal microbiota composition: a systematic review. PLoS One. 2021;16(2) doi: 10.1371/journal.pone.0247039. PubMed DOI PMC

Campbell S.C., Wisniewski P.J. Exercise is a novel promoter of intestinal health and microbial diversity. Exerc Sport Sci Rev. 2017;45(1):41–47. doi: 10.1249/JES.0000000000000096. PubMed DOI

Akazawa N., Nakamura M., Eda N., et al. Gut microbiota alternation with training periodization and physical fitness in Japanese elite athletes. Front Sports Act Living. 2023;5 doi: 10.3389/fspor.2023.1219345. PubMed DOI PMC

Wegierska A.E., Charitos I.A., Topi S., Potenza M.A., Montagnani M., Santacroce L. The connection between physical exercise and gut microbiota: implications for competitive sports athletes. Sports Med. 2022;52(10):2355–2369. doi: 10.1007/s40279-022-01696-x. PubMed DOI PMC

Camilleri M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut. 2019;68(8):1516–1526. doi: 10.1136/gutjnl-2019-318427. PubMed DOI PMC

Ribeiro F.M., Petriz B., Marques G., Kamilla L.H., Franco O.L. Is there an exercise-intensity threshold capable of avoiding the leaky gut? Front Nutr. 2021;8 doi: 10.3389/fnut.2021.627289. PubMed DOI PMC

Przewłócka K., Folwarski M., Kaczmarczyk M., et al. Combined probiotics with vitamin D3 supplementation improved aerobic performance and gut microbiome composition in mixed martial arts athletes. Front Nutr. 2023;10 doi: 10.3389/fnut.2023.1256226. PubMed DOI PMC

Mazur-Kurach P., Frączek B., Klimek A.T. Does multi-strain probiotic supplementation impact the effort capacity of competitive road cyclists? Int J Environ Res Publ Health. 2022;19(19) doi: 10.3390/ijerph191912205. PubMed DOI PMC

Mallardo M., Daniele A., Musumeci G., Nigro E. A narrative review on adipose tissue and overtraining: shedding light on the interplay among adipokines, exercise and overtraining. Int J Mol Sci. 2024;25(7):4089. doi: 10.3390/ijms25074089. PubMed DOI PMC

Oliveira A.N., Hood D.A. Exercise is mitochondrial medicine for muscle. Sports Med Health Sci. 2019;1(1):11–18. doi: 10.1016/j.smhs.2019.08.008. PubMed DOI PMC

Cheng A.J., Jude B., Lanner J.T. Intramuscular mechanisms of overtraining. Redox Biol. 2020;35 doi: 10.1016/j.redox.2020.101480. PubMed DOI PMC

Seene T., Kaasik P. Muscle damage and regeneration: response to exercise training. Health. 2013;5(6):136–145. doi: 10.4236/health.2013.56A2020. DOI

Gehlert S., Bloch W., Suhr F. Ca2+-dependent regulations and signaling in skeletal muscle: from electro-mechanical coupling to adaptation. Int J Mol Sci. 2015;16(1):1066. doi: 10.3390/ijms16011066. PubMed DOI PMC

Stožer A., Vodopivc P., Križančić Bombek L. Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiol Res. 2020;69(4):565–598. doi: 10.33549/physiolres.934371. PubMed DOI PMC

Kajaia T., Maskhulia L., Chelidze K., Akhalkatsi V., Kakhabrishvili Z. Assessment of effects of non-functional overreaching and overtraining on responses of skeletal muscle and cardiac biomarkers for monitoring of overtraining syndrome in athletes. Georgian Med News. 2021;311:79–84. PubMed

Maskhulia L., Kakhabrishvili Z., Akhalkatsi V., Tskhvediani N., Kapetivadze I., Akhalkatsi L. Evaluation of the effect of oxidative stress on dynamics of cardiac biomarkers in Georgian elite athletes with overtraining syndrome. Eur J Prev Cardiol. 2023;30(Suppl)1zwad125.126) doi: 10.1093/eurjpc/zwad125.126. DOI

Ross J.A., Heebner N.R. No pain, no gain: the military overtraining hypothesis of musculoskeletal stress and injury. Physiother Theory Pract. 2023;39(11):2289–2299. doi: 10.1080/09593985.2022.2082346. PubMed DOI

Wheeler A.R., Wenke J.C. Military fractures: overtraining, accidents, casualties, and fragility. Clin Rev Bone Miner Metabol. 2018;16(4):103–115. doi: 10.1007/s12018-018-9252-1. DOI

Kelly S., Waring A., Stone B., Pollock N. Epidemiology of bone injuries in elite athletics: a prospective 9-year cohort study. Phys Ther Sport. 2024;66:67–75. doi: 10.1016/j.ptsp.2024.01.005. PubMed DOI

Hughes J.M., Smith M.A., Henning P.C., et al. Bone formation is suppressed with multi-stressor military training. Eur J Appl Physiol. 2014;114(11):2251–2259. doi: 10.1007/s00421-014-2950-6. PubMed DOI

O'Leary T.J., Walsh N.P., Casey A., et al. Supplementary energy increases bone formation during arduous military training. Med Sci Sports Exerc. 2021;53(2):394–403. doi: 10.1249/MSS.0000000000002473. PubMed DOI

Chen J., Kim J., Shao W., et al. An anterior cruciate ligament failure mechanism. Am J Sports Med. 2019;47(9):2067–2076. doi: 10.1177/0363546519854450. PubMed DOI PMC

Chen Z., Li M., Chen P., et al. Mechanical overload-induced release of extracellular mitochondrial particles from tendon cells leads to inflammation in tendinopathy. Exp Mol Med. 2024;56(3):583–599. doi: 10.1038/s12276-024-01183-5. PubMed DOI PMC

Stojmenovic T., Malic T., Vukasinovic-Vesic M., Andjelkovic M., Dikic N. Overtraining as a risk factor for anterior cruciate ligament rupture in female basketball players. Br J Sports Med. 2017;51(4):392–393. doi: 10.1136/bjsports-2016-097372.276. DOI

Herman J.P., McKlveen J.M., Ghosal S., et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol. 2016;6(2):603. doi: 10.1002/cphy.c150015. PubMed DOI PMC

Godoy L.D., Rossignoli M.T., Delfino-Pereira P., Garcia-Cairasco N., de Lima Umeoka E.H. A comprehensive overview on stress neurobiology: basic concepts and clinical implications. Front Behav Neurosci. 2018;12:127. doi: 10.3389/fnbeh.2018.00127. PubMed DOI PMC

Steinacker J.M., Lormes W., Reissnecker S., Liu Y. New aspects of the hormone and cytokine response to training. Eur J Appl Physiol. 2004;91(4):382–391. doi: 10.1007/s00421-003-0960-x. PubMed DOI

Cadegiani F.A., Kater C.E. Hypothalamic-pituitary-adrenal (HPA) axis functioning in overtraining syndrome: findings from endocrine and metabolic responses on overtraining syndrome (EROS)—EROS-HPA axis. Sports Med Open. 2017;3(1):45. doi: 10.1186/s40798-017-0113-0. PubMed DOI PMC

Cadegiani F.A., Kater C.E. Hormonal response to a non-exercise stress test in athletes with overtraining syndrome: results from the Endocrine and metabolic Responses on Overtraining Syndrome (EROS) - EROS-STRESS. J Sci Med Sport. 2018;21(7):648–653. doi: 10.1016/j.jsams.2017.10.033. PubMed DOI

Cadegiani F.A., Kater C.E. Basal hormones and biochemical markers as predictors of overtraining syndrome in male athletes: the EROS-BASAL study. J Athl Train. 2019;54(8):906–914. doi: 10.4085/1062-6050-148-18. PubMed DOI PMC

Uusitalo A.L.T., Valkonen-Korhonen M., Helenius P., Vanninen E., Bergström K.A., Kuikka J.T. Abnormal serotonin reuptake in an overtrained, insomnic and depressed team athlete. Int J Sports Med. 2004;25(2):150–153. doi: 10.1055/s-2004-819952. PubMed DOI

Lee E.C., Fragala M.S., Kavouras S.A., Queen R.M., Pryor J.L., Casa D.J. Biomarkers in sports and exercise: tracking health, performance, and recovery in athletes. J Strength Condit Res. 2017;31(10):2920–2937. doi: 10.1519/JSC.0000000000002122. PubMed DOI PMC

Beckner M.E., Conkright W.R., Eagle S.R., et al. Impact of simulated military operational stress on executive function relative to trait resilience, aerobic fitness, and neuroendocrine biomarkers. Physiol Behav. 2021;236 doi: 10.1016/j.physbeh.2021.113413. PubMed DOI

Symons I.K., Bruce L., Main L.C. Impact of overtraining on cognitive function in endurance athletes: a systematic review. Sports Med Open. 2023;9(1):69. doi: 10.1186/s40798-023-00614-3. PubMed DOI PMC

Boutté A.M., Thangavelu B., Nemes J., et al. Neurotrauma biomarker levels and adverse symptoms among military and law enforcement personnel exposed to occupational overpressure without diagnosed traumatic brain injury. JAMA Netw Open. 2021;4(4) doi: 10.1001/jamanetworkopen.2021.6445. PubMed DOI PMC

Thangavelu B., LaValle C.R., Egnoto M.J., Nemes J., Boutté A.M., Kamimori G.H. Overpressure exposure from .50-caliber rifle training is associated with increased amyloid beta peptides in serum. Front Neurol. 2020;11:620. doi: 10.3389/fneur.2020.00620. PubMed DOI PMC

Ivanov I. Hemorheological alterations and physical activity. Appl Sci. 2022;12(20) doi: 10.3390/app122010374. DOI

Teległów A., Marchewka J., Tota Ł., et al. Changes in blood rheological properties and biochemical markers after participation in the XTERRA Poland triathlon competition. Sci Rep. 2022;12(1):3349. doi: 10.1038/s41598-022-07240-1. PubMed DOI PMC

Varlet-Marie E., Maso F., Lac G., Brun J.F. Hemorheological disturbances in the overtraining syndrome. Clin Hemorheol Microcirc. 2004;30(3-4):211–218. PubMed

Varlet-Marie E., Gaudard A., Mercier J., Bressolle F., Brun J.F. Is the feeling of heavy legs in overtrained athletes related to impaired hemorheology? Clin Hemorheol Microcirc. 2003;28(3):151–159. PubMed

Brun J.F., Varlet-Marie E., Connes P., Aloulou I. Hemorheological alterations related to training and overtraining. Biorheology. 2010;47(2):95–115. doi: 10.3233/BIR-2010-0563. PubMed DOI

Carrard J., Rigort A.C., Appenzeller-Herzog C., et al. Diagnosing overtraining syndrome: a scoping review. Sport Health. 2022;14(5):665–673. doi: 10.1177/19417381211044739. PubMed DOI PMC

Petibois C., Déléris G. Alterations of lipid profile in endurance over-trained subjects. Arch Med Res. 2004;35(6):532–539. doi: 10.1016/j.arcmed.2004.11.013. PubMed DOI

Coates A.M., Thompson K.M.A., Grigore M.M., et al. Altered carbohydrate oxidation during exercise in overreached endurance athletes is applicable to training monitoring with continuous glucose monitors. Scand J Med Sci Sports. 2024;34(1) doi: 10.1111/sms.14551. PubMed DOI

Parry-Billings M., Budgett R., Koutedakis Y., et al. Plasma amino acid concentrations in the overtraining syndrome: possible effects on the immune system. Med Sci Sports Exerc. 1992;24(12):1353–1358. PubMed

Ikonen J.N., Joro R., Uusitalo A.L., et al. Effects of military training on plasma amino acid concentrations and their associations with overreaching. Exp Biol Med (Maywood) 2020;245(12):1029–1038. doi: 10.1177/1535370220923130. PubMed DOI PMC

Stellingwerff T., Heikura I.A., Meeusen R., et al. Overtraining syndrome (OTS) and relative energy deficiency in sport (RED-S): shared pathways, symptoms and complexities. Sports Med. 2021;51(11):2251–2280. doi: 10.1007/s40279-021-01491-0. PubMed DOI

Kuikman M.A., Coates A.M., Burr J.F. Markers of low energy availability in overreached athletes: a systematic review and meta-analysis. Sports Med. 2022;52(12):2925–2941. doi: 10.1007/s40279-022-01723-x. PubMed DOI

Ruzicic R.D., Jakovljevic V., Djordjevic D. Oxidative stress in training, overtraining and detraining: from experimental to applied research. Exp Appl Biomed Res. 2016;17(4):343–348. doi: 10.1515/sjecr-2016-0002. DOI

Margonis K., Fatouros I.G., Jamurtas A.Z., et al. Oxidative stress biomarkers responses to physical overtraining: implications for diagnosis. Free Radic Biol Med. 2007;43(6):901–910. doi: 10.1016/j.freeradbiomed.2007.05.022. PubMed DOI

Tanskanen M., Atalay M., Uusitalo A. Altered oxidative stress in overtrained athletes. J Sports Sci. 2010;28(3):309–317. doi: 10.1080/02640410903473844. PubMed DOI

Brooks K.A. Overtraining syndrome, mitochondrial DNA and ATP production. J Sport Hum Perform. 2013;1(4) doi: 10.12922/jshp.0012.2013. DOI

Flockhart M., Nilsson L.C., Tais S., Ekblom B., Apró W., Larsen F.J. Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers. Cell Metabol. 2021;33(5):957–970.e6. doi: 10.1016/j.cmet.2021.02.017. PubMed DOI

Pataky M.W., Nair K.S. Too much of a good thing: excess exercise can harm mitochondria. Cell Metabol. 2021;33(5):847–848. doi: 10.1016/j.cmet.2021.04.008. PubMed DOI

Vargas-Mendoza N., Angeles-Valencia M., Morales-González Á., et al. Oxidative stress, mitochondrial function and adaptation to exercise: new perspectives in nutrition. Life. 2021;11(11):1269. doi: 10.3390/life11111269. PubMed DOI PMC

Fang W., Li Z., Liu X.H., Liu Z.M., Dun Y., Feng H. Effects of exhaustive exercise on the expression of PHB1 and the function of mitochondria in rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2017;33(6):544–549. doi: 10.12047/j.cjap.5601.2017.129. PubMed DOI

Cardinale D.A., Gejl K.D., Petersen K.G., Nielsen J., Ørtenblad N., Larsen F.J. Short-term intensified training temporarily impairs mitochondrial respiratory capacity in elite endurance athletes. J Appl Physiol(1985) 2021;131(1):388–400. doi: 10.1152/japplphysiol.00829.2020. PubMed DOI

Ostojic S.M. Exercise-induced mitochondrial dysfunction: a myth or reality? Clin Sci (Lond). 2016;130(16):1407–1416. doi: 10.1042/CS20160200. PubMed DOI

Rasmussen U.F., Krustrup P., Bangsbo J., Rasmussen H.N. The effect of high-intensity exhaustive exercise studied in isolated mitochondria from human skeletal muscle. Pflugers Arch. 2001;443(2):180–187. doi: 10.1007/s004240100689. PubMed DOI

Ogonovszky H., Sasvári M., Dosek A., et al. The effects of moderate, strenuous, and overtraining on oxidative stress markers and DNA repair in rat liver. Can J Appl Physiol. 2005;30(2):186–195. doi: 10.1139/h05-114. PubMed DOI

Pereira B.C., Pauli J.R., Antunes L.M.G., et al. Overtraining is associated with DNA damage in blood and skeletal muscle cells of Swiss mice. BMC Physiol. 2013;13:11. doi: 10.1186/1472-6793-13-11. PubMed DOI PMC

Tryfidou D.V., McClean C., Nikolaidis M.G., Davison G.W. DNA damage following acute aerobic exercise: a systematic review and meta-analysis. Sports Med. 2020;50(1):103–127. doi: 10.1007/s40279-019-01181-y. PubMed DOI PMC

Cadegiani F.A., da Silva P.H.L., Abrao T.C.P., Kater C.E. Diagnosis of overtraining syndrome: results of the endocrine and metabolic responses on overtraining syndrome study: EROS-diagnosis. J Sports Med. 2020;2020 doi: 10.1155/2020/3937819. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...