Genetic analysis of Streptomyces albus J1074 mia mutants suggests complex relationships between post-transcriptional tRNAXXA modifications and physiological traits
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
BG-80F
Ministry of Education and Science of Ukraine
021DK17013 AWAKEDRUGS
Bundesministerium für Bildung und Forschung
PubMed
32676973
DOI
10.1007/s12223-020-00811-7
PII: 10.1007/s12223-020-00811-7
Knihovny.cz E-zdroje
- MeSH
- alkyltransferasy a aryltransferasy genetika MeSH
- antibakteriální látky biosyntéza MeSH
- bakteriální geny genetika MeSH
- bakteriální proteiny genetika MeSH
- fenotyp * MeSH
- genetická transkripce MeSH
- genetické testování metody MeSH
- mutace MeSH
- peroxid vodíku farmakologie MeSH
- posttranskripční úpravy RNA * MeSH
- RNA transferová metabolismus MeSH
- sekundární metabolismus účinky léků genetika MeSH
- Streptomyces účinky léků genetika růst a vývoj metabolismus MeSH
- sulfurtransferasy genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkyltransferasy a aryltransferasy MeSH
- antibakteriální látky MeSH
- bakteriální proteiny MeSH
- peroxid vodíku MeSH
- RNA transferová MeSH
- sulfurtransferasy MeSH
Proteins MiaA and MiaB catalyze sequential isopentenylation and methylthiolation, respectively, of adenosine residue in 37th position of tRNAXXA. The mia mutations were recently shown by us to affect secondary metabolism and morphology of Streptomyces. However, it remained unknown as to whether both or one of the aforementioned modifications is critical for colony development and antibiotic production. Here, we addressed this issue through analysis of Streptomyces albus J1074 strains carrying double miaAmiaB knockout or extra copy of miaB gene. The double mutant differed from wild-type and miaA-minus strains in severity of morphological defects, growth dynamics, and secondary metabolism. Introduction of extra copy of miaB gene into miaA mutant restored aerial mycelium formation to the latter on certain solid media. Hence, miaB gene might be involved in tRNA thiomethylation in the absence of miaA; either MiaA- or MiaB-mediated modification appears to be enough to support normal metabolic and morphological processes in Streptomyces.
Zobrazit více v PubMed
Agris PF, Koh H, Söll D (1973) The effect of growth temperatures on the in vivo ribose methylation of Bacillus stearothermophilus transfer RNA. Arch Biochem Biophys 154:277–282 DOI
Agris PF, Narendran A, Sarachan K et al (2017) The importance of being modified: the role of RNA modifications in translational fidelity. Enzymes 41:1–50 DOI
Barends S, Zehl M, Bialek S, de Waal E, Traag BA, Willemse J, Jensen ON, Vijgenboom E, van Wezel GP (2010) Transfer-messenger RNA controls the translation of cell-cycle and stress proteins in Streptomyces. EMBO Rep 11:119–125 DOI
Bilyk B, Luzhetskyy A (2014) Unusual site-specific DNA integration into the highly active pseudo-attB of the Streptomyces albus J1074 genome. Appl Microbiol Biotechnol 98:5095–5104 DOI
Boccaletto P, Machnicka MA, Purta E, Piątkowski P, Bagiński B, Wirecki TK, de Crécy-Lagard V, Ross R, Limbach PA, Kotter A, Helm M, Bujnicki JM (2018) MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res 46:D303–D307 DOI
Caillet J, Droogmans L (1988) Molecular cloning of the Escherichia coli miaA gene involved in the formation of delta 2-isopentenyl adenosine in tRNA. J Bacteriol 170:4147–4152 DOI
Dal Magro C, Keller P, Kotter A et al (2018) A vastly increased chemical variety of RNA modifications containing a thioacetal structure. Angew Chem Int Ed Engl 57:7893–7897 DOI
Engel F, Ossipova E, Jakobsson PJ, Vockenhuber MP, Suess B (2020) sRNA scr5239 involved in feedback loop regulation of Streptomyces coelicolor central metabolism. Front Microbiol 10:3121 DOI
Ericson JU, Björk GR (1986) Pleiotropic effects induced by modification deficiency next to the anticodon of tRNA from Salmonella typhimurium LT2. J Bacteriol 166:1013–1021 DOI
Esberg B, Leung HC, Tsui HC et al (1999) Identification of the miaB gene, involved in methylthiolation of isopentenylated A37 derivatives in the tRNA of Salmonella typhimurium and Escherichia coli. J Bacteriol 181:7256–7265 DOI
Feeney MA, Chandra G, Findlay KC et al (2017) Translational control of the SigR-directed oxidative stress response in Streptomyces via IF3-mediated repression of a noncanonical GTC start codon. MBio 8
González A, Rodríguez M, Braña AF, Méndez C, Salas JA, Olano C (2016) New insights into paulomycin biosynthesis pathway in Streptomyces albus J1074 and generation of novel derivatives by combinatorial biosynthesis. Microb Cell Factories 15:56 DOI
Herrmann S, Siegl T, Luzhetska M, Petzke L, Jilg C, Welle E, Erb A, Leadlay PF, Bechthold A, Luzhetskyy A (2012) Site-specific recombination strategies for engineering actinomycete genomes. Appl Environ Microbiol 78:1804–1812 DOI
Jackman JE, Alfonzo JD (2013) Transfer RNA modifications: nature’s combinatorial chemistry playground. Wiley Interdiscip Rev RNA 4:35–48 DOI
Jones SE, Leong V, Ortega J, Elliot MA (2014) Development, antibiotic production, and ribosome assembly in Streptomyces venezuelae are impacted by RNase J and RNase III deletion. J Bacteriol 196:4253–4267 DOI
Kaminska KH, Baraniak U, Boniecki M, Nowaczyk K, Czerwoniec A, Bujnicki JM (2007) Structural bioinformatics analysis of enzymes involved in the biosynthesis pathway of the hypermodified nucleoside ms2io6A37 in tRNA. Proteins Struct Funct Bioinforma 70:1–18 DOI
Kellner S, Neumann J, Rosenkranz D, Lebedeva S, Ketting RF, Zischler H, Schneider D, Helm M (2014) Profiling of RNA modifications by multiplexed stable isotope labelling. Chem Commun (Camb) 50:3516–3518 DOI
Kieser T, Bibb MJ, Buttner MJ et al (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich
Kirchner S, Ignatova Z (2015) Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet 16:98–112 DOI
Koshla O, Lopatniuk M, Rokytskyy I, Yushchuk O, Dacyuk Y, Fedorenko V, Luzhetskyy A, Ostash B (2017) Properties of Streptomyces albus J1074 mutant deficient in tRNA DOI
Koshla O, Yushchuk O, Ostash I, Dacyuk Y, Myronovskyi M, Jäger G, Süssmuth RD, Luzhetskyy A, Byström A, Kirsebom LA, Ostash B (2019) Gene miaA for post-transcriptional modification of tRNA DOI
Leung H-CE, Chen Y, Winkler ME (1997) Regulation of substrate recognition by the MiaA tRNA prenyltransferase modification enzyme of Escherichia coli K-12. J Biol Chem 272:13073–13083 DOI
Mathevon C, Pierrel F, Oddou J-L, Garcia-Serres R, Blondin G, Latour JM, Menage S, Gambarelli S, Fontecave M, Atta M (2007) tRNA-modifying MiaE protein from Salmonella typhimurium is a nonheme diiron monooxygenase. Proc Natl Acad Sci U S A 104:13295–13300 DOI
McLean TC, Hoskisson PA, Seipke RF (2016) Coordinate regulation of antimycin and candicidin biosynthesis. mSphere:1
Myronovskyi M, Rosenkränzer B, Luzhetskyy A (2014) Iterative marker excision system. Appl Microbiol Biotechnol 98:4557–4570 DOI
Olano C, García I, González A, Rodriguez M, Rozas D, Rubio J, Sánchez-Hidalgo M, Braña AF, Méndez C, Salas JA (2014) Activation and identification of five clusters for secondary metabolites in Streptomyces albus J1074. Microb Biotechnol 7:242–256 DOI
Ontiveros RJ, Stoute J, Liu KF (2019) The chemical diversity of RNA modifications. Biochem J 476:1227–1245 DOI
Persson BC, Björk GR (1993) Isolation of the gene (miaE) encoding the hydroxylase involved in the synthesis of 2-methylthio-cis-ribozeatin in tRNA of Salmonella typhimurium and characterization of mutants. J Bacteriol 175:7776–7785 DOI
Persson BC, Olafsson O, Lundgren HK et al (1998) The ms DOI
Phelps SS, Malkiewicz A, Agris PF, Joseph S (2004) Modified nucleotides in tRNA(Lys) and tRNA(Val) are important for translocation. J Mol Biol 338:439–444 DOI
Pierrel F, Douki T, Fontecave M, Atta M (2004) MiaB protein is a bifunctional radical-S-adenosylmethionine enzyme involved in thiolation and methylation of tRNA. J Biol Chem 279:47555–47563 DOI
Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York
Schweizer U, Bohleber S, Fradejas-Villar N (2017) The modified base isopentenyladenosine and its derivatives in tRNA. RNA Biol 14:1197–1208 DOI
Sehin Y, Koshla O, Dacyuk Y, Zhao R, Ross R, Myronovskyi M, Limbach PA, Luzhetskyy A, Walker S, Fedorenko V, Ostash B (2019) Gene ssfg_01967 (miaB) for tRNA modification influences morphogenesis and moenomycin biosynthesis in Streptomyces ghanaensis ATCC14672. Microbiology 165:233–245 DOI
Shigi N (2014) Biosynthesis and functions of sulfur modifications in tRNA. Front Genet 5:67 DOI
Thompson KM, Gottesman S (2014) The MiaA tRNA modification enzyme is necessary for robust RpoS expression in Escherichia coli. J Bacteriol 196:754–761 DOI
Vold BS, Longmire ME, Keith DE (1981) Thiolation and 2-methylthio- modification of Bacillus subtilis transfer ribonucleic acids. J Bacteriol 148:869–876 DOI
Yu JM, Wang D, Pierson LS, Pierson EA (2017) Disruption of MiaA provides insights into the regulation of phenazine biosynthesis under suboptimal growth conditions in Pseudomonas chlororaphis 30-84. Microbiology 163:94–108 DOI