D-Lactic Acid as a Metabolite: Toxicology, Diagnosis, and Detection
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
32685468
PubMed Central
PMC7320276
DOI
10.1155/2020/3419034
Knihovny.cz E-zdroje
- MeSH
- acidóza krev diagnóza terapie MeSH
- kyselina mléčná krev chemie metabolismus toxicita MeSH
- lidé MeSH
- metabolické sítě a dráhy MeSH
- metabolom * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kyselina mléčná MeSH
Two enantiomers of lactic acid exist. While L-lactic acid is a common compound of human metabolism, D-lactic acid is produced by some strains of microorganism or by some less relevant metabolic pathways. While L-lactic acid is an endogenous compound, D-lactic acid is a harmful enantiomer. Exposure to D-lactic acid can happen by various ways including contaminated food and beverages and by microbiota during some pathological states like short bowel syndrome. The exposure to D-lactic acid cannot be diagnosed because the common analytical methods are not suitable for distinguishing between the two enantiomers. In this review, pathways for D-lactic acid, pathological processes, and diagnostical and analytical methods are introduced followed by figures and tables. The current literature is summarized and discussed.
Zobrazit více v PubMed
Lien E. J. Chirality and drug targeting: pros and cons. Journal of Drug Targeting. 2008;2(6):527–532. doi: 10.3109/10611869509015923. PubMed DOI
Yang Y., Zhang J., Yao Y. Enantioselective effects of chiral pesticides on their primary targets and secondary targets. Current Protein & Peptide Science. 2017;18(1):22–32. doi: 10.2174/1389203717666160413124239. PubMed DOI
Zhang M., Qing G., Sun T. Chiral biointerface materials. Chemical Society Reviews. 2012;41(5):1972–1984. doi: 10.1039/C1CS15209B. PubMed DOI
Zhang L., Qin L., Wang X., Cao H., Liu M. Supramolecular chirality in self-assembled soft materials: regulation of chiral nanostructures and chiral functions. Advanced Materials. 2014;26(40):6959–6964. doi: 10.1002/adma.201305422. PubMed DOI
Nguyen L. A., He H., Pham-Huy C. Chiral drugs: an overview. International Journal of Biomedical Science. 2006;2(2):85–100. PubMed PMC
Sahin E. Green synthesis of enantiopure (S)-1-(benzofuran-2-yl)ethanol by whole-cell biocatalyst. Chirality. 2019;31(10):892–897. doi: 10.1002/chir.23123. PubMed DOI
Nguyen T. T. Traceless point-to-axial chirality exchange in the atropselective synthesis of biaryls/heterobiaryls. Organic & Biomolecular Chemistry. 2019;17(29):6952–6963. doi: 10.1039/C9OB01304K. PubMed DOI
Gogoi A., Mazumder N., Konwer S., Ranawat H., Chen N. T., Zhuo G. Y. Enantiomeric recognition and separation by chiral nanoparticles. Molecules. 2019;24(6):p. 1007. doi: 10.3390/molecules24061007. PubMed DOI PMC
Evans O. B., Stacpoole P. W. Prolonged hypolactatemia and increased total pyruvate dehydrogenase activity by dichloroacetate. Biochemical Pharmacology. 1982;31(7):1295–1300. doi: 10.1016/0006-2952(82)90019-3. PubMed DOI
Merrells R. J., Cripps A. J., Chivers P. T., Fournier P. A. Role of lactic acidosis as a mediator of sprint-mediated nausea. Physiological Reports. 2019;7(21):p. e14283. doi: 10.14814/phy2.14283. PubMed DOI PMC
Theobald J., Schneider J., Cheema N., DesLauriers C. Time to development of metformin-associated lactic acidosis. Clinical Toxicology. 2020;58(7):758–762. doi: 10.1080/15563650.2019.1686514. PubMed DOI
Romero-Garcia S., Prado-Garcia H., Valencia-Camargo A. D., Alvarez-Pulido A. Lactic acidosis promotes mitochondrial biogenesis in lung adenocarcinoma cells, supporting proliferation under normoxia or survival under hypoxia. Frontiers in Oncology. 2019;9 doi: 10.3389/fonc.2019.01053. PubMed DOI PMC
Jouffroy R., Philippe P., Saade A., Carli P., Vivien B. Prognostic value of blood lactate and base deficit in refractory cardiac arrest cases undergoing extracorporeal life support. Turkish Journal of Anaesthesiology and Reanimation. 2019;47(5):407–413. doi: 10.5152/TJAR.2019.65391. PubMed DOI PMC
Mohammed T. J., Gosain R., Sharma R., Torka P. Lactic acidosis: a unique presentation of diffuse large B-cell lymphoma. BMJ Case Reports. 2019;12(10):e230277–e230277. doi: 10.1136/bcr-2019-230277. PubMed DOI PMC
Nestor C., Nasim S., Coyle N., Canavan C. Laboratory-confirmed metformin-associated lactic acidosis. Irish Medical Journal. 2019;112(8):p. 992. PubMed
Ahmed H. H., De Bels D., Attou R., Honore P. M., Redant S. Elevated lactic acid during ketoacidosis: pathophysiology and management. Journal of Translational Internal Medicine. 2019;7(3):115–117. doi: 10.2478/jtim-2019-0024. PubMed DOI PMC
Villar J., Short J. H., Lighthall G. Lactate predicts both short- and long-term mortality in patients with and without sepsis. Infectious Diseases: Research and Treatment. 2019;12:p. 117863371986277. doi: 10.1177/1178633719862776. PubMed DOI PMC
van der Mijn J. C., Kuiper M. J., Siegert C. E. H., Wassenaar A. E., van Noesel C. J. M., Ogilvie A. C. Lactic acidosis in prostate cancer: consider the Warburg effect. Case Reports in Oncology. 2017;10(3):1085–1091. doi: 10.1159/000485242. PubMed DOI PMC
Sun T., Wu Y., Wu X., Ma H. Metabolomic profiles investigation on athletes' urine 35 minutes after an 800-meter race. The Journal of Sports Medicine and Physical Fitness. 2017;57(6):839–849. doi: 10.23736/S0022-4707.17.06254-5. PubMed DOI
Rubin R. P. Carl and Gerty Cori: a collaboration that changed the face of biochemistry. Journal of Medical Biography. 2019:p. 096777201986695. doi: 10.1177/0967772019866954. PubMed DOI
Passarella S., Schurr A. L-Lactate transport and metabolism in mitochondria of Hep G2 cells-the Cori cycle revisited. Frontiers in Oncology. 2018;8 doi: 10.3389/fonc.2018.00120. PubMed DOI PMC
Kim K. H., Chun B. H., Baek J. H., Roh S. W., Lee S. H., Jeon C. O. Genomic and metabolic features of Lactobacillus sakei as revealed by its pan-genome and the metatranscriptome of kimchi fermentation. Food Microbiology. 2020;86:p. 103341. doi: 10.1016/j.fm.2019.103341. PubMed DOI
Yamamoto M., Horie M., Fukushima M., Toyotome T. Culture-based analysis of fungi in leaves after the primary and secondary fermentation processes during Ishizuchi-kurocha production and lactate assimilation of P. kudriavzevii. International Journal of Food Microbiology. 2019;306:p. 108263. doi: 10.1016/j.ijfoodmicro.2019.108263. PubMed DOI
Kim K. H., Jia X., Jia B., Jeon C. O. Identification and characterization of L-malate dehydrogenases and the L-lactate-biosynthetic pathway in Leuconostoc mesenteroides ATCC 8293. Journal of Agricultural and Food Chemistry. 2018;66(30):8086–8093. doi: 10.1021/acs.jafc.8b02649. PubMed DOI
Vitetta L., Coulson S., Thomsen M., Nguyen T., Hall S. Probiotics, D-lactic acidosis, oxidative stress and strain specificity. Gut Microbes. 2017;8(4):311–322. doi: 10.1080/19490976.2017.1279379. PubMed DOI PMC
Aso Y., Hashimoto A., Ohara H. Engineering Lactococcus lactis for D-lactic acid production from starch. Current Microbiology. 2019;76(10):1186–1192. doi: 10.1007/s00284-019-01742-4. PubMed DOI
LeJohn H. B., Stevenson R. M. [65] d(−)-Lactate dehydrogenases from fungi. Methods in Enzymology. 1975;41:293–298. doi: 10.1016/S0076-6879(75)41067-9. PubMed DOI
Razeto A., Kochhar S., Hottinger H., Dauter M., Wilson K. S., Lamzin V. S. Domain Closure, Substrate Specificity and Catalysis of d-Lactate Dehydrogenase from Lactobacillus bulgaricus. Journal of Molecular Biology. 2002;318(1):109–119. doi: 10.1016/S0022-2836(02)00086-4. PubMed DOI
Lawton J. A., Prescott N. A., Lawton P. X. From gene to structure:Lactobacillus bulgaricus D-lactate dehydrogenase from yogurt as an integrated curriculum model for undergraduate molecular biology and biochemistry laboratory courses. Biochemistry and Molecular Biology Education. 2018;46(3):270–278. doi: 10.1002/bmb.21114. PubMed DOI
Furukawa N., Miyanaga A., Togawa M., Nakajima M., Taguchi H. Diverse allosteric and catalytic functions of tetrameric d-lactate dehydrogenases from three gram-negative bacteria. AMB Express. 2014;4(1):76–76. doi: 10.1186/s13568-014-0076-1. PubMed DOI PMC
Engqvist M., Drincovich M. F., Flugge U. I., Maurino V. G. Two D-2-hydroxy-acid dehydrogenases in Arabidopsis thaliana with catalytic capacities to participate in the last reactions of the methylglyoxal and β-oxidation pathways. The Journal of Biological Chemistry. 2009;284(37):25026–25037. doi: 10.1074/jbc.M109.021253. PubMed DOI PMC
Karkovska M., Smutok O., Gonchar M. Laboratory prototype of bioreactor for oxidation of toxic D-lactate using yeast cells overproducing D-lactate cytochrome c oxidoreductase. BioMed Research International. 2016;2016:5. doi: 10.1155/2016/4652876. PubMed DOI PMC
Pohanka M., Zbořil P., Pikula J. D-Lactate dehydrogenase (cytochrome) from Saccharomyces cerevisiae purification by fast protein liquid chromatography. Polish Journal of Chemistry. 2009;83(3):415–420.
Monroe G. R., van Eerde A. M., Tessadori F., et al. Identification of human D lactate dehydrogenase deficiency. Nature Communications. 2019;10(1):p. 1477. doi: 10.1038/s41467-019-09458-6. PubMed DOI PMC
Ogata M., Arihara K., Yagi T. D-Lactate dehydrogenase of Desulfovibrio vulgaris1. Journal of Biochemistry. 1981;89(5):1423–1431. doi: 10.1093/oxfordjournals.jbchem.a133334. PubMed DOI
Choi D., Kim J., Ha S., et al. Stereospecific mechanism of DJ-1 glyoxalases inferred from their hemithioacetal-containing crystal structures. The FEBS Journal. 2014;281(24):5447–5462. doi: 10.1111/febs.13085. PubMed DOI
Jang S., Kwon D. M., Kwon K., Park C. Generation and characterization of mouse knockout for glyoxalase 1. Biochemical and Biophysical Research Communications. 2017;490(2):460–465. doi: 10.1016/j.bbrc.2017.06.063. PubMed DOI
Pfaff D. H., Fleming T., Nawroth P., Teleman A. A. Evidence against a role for the Parkinsonism-associated protein DJ-1 in methylglyoxal detoxification. The Journal of Biological Chemistry. 2017;292(2):685–690. doi: 10.1074/jbc.M116.743823. PubMed DOI PMC
Li H., Tang Z., Chu P., et al. Neuroprotective effect of phosphocreatine on oxidative stress and mitochondrial dysfunction induced apoptosis in vitro and in vivo: involvement of dual PI3K/Akt and Nrf2/HO-1 pathways. Free Radical Biology and Medicine. 2018;120:228–238. doi: 10.1016/j.freeradbiomed.2018.03.014. PubMed DOI
Jiang L., Wang J., Wang Z., et al. Role of the glyoxalase system in Alzheimer's disease. Journal of Alzheimer's Disease. 2018;66(3):887–899. doi: 10.3233/JAD-180413. PubMed DOI
Sharma N., Rao S. P., Kalivendi S. V. The deglycase activity of DJ-1 mitigates α-synuclein glycation and aggregation in dopaminergic cells: Role of oxidative stress mediated downregulation of DJ-1 in Parkinson's disease. Free Radical Biology and Medicine. 2019;135:28–37. doi: 10.1016/j.freeradbiomed.2019.02.014. PubMed DOI
Moldogazieva N. T., Mokhosoev I. M., Mel’nikova T. I., Porozov Y. B., Terentiev A. A. Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases. Oxidative Medicine and Cellular Longevity. 2019;2019:14. doi: 10.1155/2019/3085756.3085756 PubMed DOI PMC
Łopusiewicz Ł., Drozłowska E., Siedlecka P., et al. Development, characterization, and bioactivity of non-dairy kefir-like fermented beverage based on flaxseed oil cake. Food. 2019;8(11):p. 544. doi: 10.3390/foods8110544. PubMed DOI PMC
Golder H. M., Denman S. E., McSweeney C., et al. Effects of partial mixed rations and supplement amounts on milk production and composition, ruminal fermentation, bacterial communities, and ruminal acidosis. Journal of Dairy Science. 2014;97(9):5763–5785. doi: 10.3168/jds.2014-8049. PubMed DOI
Haschke-Becher E., Brunser O., Cruchet S., Gotteland M., Haschke F., Bachmann C. Urinary D-Lactate excretion in infants receiving Lactobacillus johnsonii with formula. Annals of Nutrition and Metabolism. 2009;53(3-4):240–244. doi: 10.1159/000185642. PubMed DOI
Mack D. R. D(-)-lactic acid-producing probiotics, D(-)-lactic acidosis and infants. Canadian Journal of Gastroenterology. 2004;18(11):671–675. doi: 10.1155/2004/342583. PubMed DOI
Lukasik J., Salminen S., Szajewska H. Rapid review shows that probiotics and fermented infant formulas do not caused-lactic acidosis in healthy children. Acta Paediatrica. 2018;107(8):1322–1326. doi: 10.1111/apa.14338. PubMed DOI
Rao S. S. C., Yu S., Tetangco E. P., Yan Y. Probiotics can Cause D-Lactic Acidosis and Brain Fogginess: Reply to Quigley et al. Clinical and Translational Gastroenterology. 2018;9(11):p. 207. doi: 10.1038/s41424-018-0077-5. PubMed DOI PMC
Pineiro M., Stanton C. Probiotic bacteria: legislative framework— requirements to evidence basis. The Journal of Nutrition. 2007;137(3):850S–853S. doi: 10.1093/jn/137.3.850S. PubMed DOI
Yilmaz B., Schibli S., Macpherson A. J., Sokollik C. D-Lactic acidosis: successful suppression of D-lactate–ProducingLactobacillusby probiotics. Pediatrics. 2018;142(3):e20180337–e20180337. doi: 10.1542/peds.2018-0337. PubMed DOI
Petersen C. D-lactic acidosis. Nutrition in Clinical Practice. 2017;20(6):634–645. doi: 10.1177/0115426505020006634. PubMed DOI
Fabian E., Kramer L., Siebert F., et al. D-Lactic acidosis - case report and review of the literature. Zeitschrift für Gastroenterologie. 2017;55(1):75–82. doi: 10.1055/s-0042-117647. PubMed DOI
Ardasheva R. G., Argirova M. D., Turiiski V. I., Krustev A. D. Biochemical changes in experimental rat model of abdominal compartment syndrome. Folia Medica. 2017;59(4):430–436. doi: 10.1515/folmed-2017-0056. PubMed DOI
Huang Y. S., Li Y. C., Tsai P. Y., et al. Accumulation of methylglyoxal andd-lactate in Pb-induced nephrotoxicity in rats. Biomedical Chromatography. 2017;31(5) doi: 10.1002/bmc.3869. PubMed DOI
Alarcon P., Hidalgo A. I., Manosalva C., et al. Metabolic disturbances in synovial fluid are involved in the onset of synovitis in heifers with acute ruminal acidosis. Scientific Reports. 2019;9(1) doi: 10.1038/s41598-019-42007-1. PubMed DOI PMC
Naik P., Singh S., Dave V. P., Ali M. H., Kumar A., Joseph J. Vitreous d-lactate levels as a biomarker in the diagnosis of presumed infectious culture negative endophthalmitis. Current Eye Research. 2020;45(2):184–189. doi: 10.1080/02713683.2019.1662057. PubMed DOI
Terpstra M. L., Sinnige M., Hugenholtz F., et al. Butyrate production in patients with end-stage renal disease. International Journal of Nephrology and Renovascular Disease. 2019;Volume 12:87–101. doi: 10.2147/IJNRD.S200297. PubMed DOI PMC
Sapin V., Nicolet L., Aublet-Cuvelier B., et al. Rapid decrease in plasma D-lactate as an early potential predictor of diminished 28-day mortality in critically ill septic shock patients. Clinical Chemistry and Laboratory Medicine. 2006;44(4):492–496. doi: 10.1515/CCLM.2006.086. PubMed DOI
Jorgensen V. L., Reiter N., Perner A. Luminal concentrations of L- and D-lactate in the rectum may relate to severity of disease and outcome in septic patients. Critical Care. 2006;10(6):p. R163. doi: 10.1186/cc5102. PubMed DOI PMC
Bianchetti D. G. A. M., Amelio G. S., Lava S. A. G., et al. D-Lactic acidosis in humans: systematic literature review. Pediatric Nephrology. 2018;33(4):673–681. doi: 10.1007/s00467-017-3844-8. PubMed DOI
Takahashi T., Nakakita Y., Sugiyama H., Shigyo T., Shinotsuka K. Classification and identification of strains of Lactobacillus brevis based on electrophoretic characterization of d-lactate dehydrogenase: Relationship between d-lactate dehydrogenase and beer-spoilage ability. Journal of Bioscience and Bioengineering. 1999;88(5):500–506. doi: 10.1016/S1389-1723(00)87666-5. PubMed DOI
Geissler A. J., Behr J., Vogel R. F. Multiple Genome Sequences of Important Beer-Spoiling Lactic Acid Bacteria: TABLE 1. Genome Announcements. 2016;4(5) doi: 10.1128/genomea.01077-16. PubMed DOI PMC
Geissler A. J., Behr J., von Kamp K., Vogel R. F. Metabolic strategies of beer spoilage lactic acid bacteria in beer. International Journal of Food Microbiology. 2016;216:60–68. doi: 10.1016/j.ijfoodmicro.2015.08.016. PubMed DOI
Sakamoto K., Konings W. N. Beer spoilage bacteria and hop resistance. International Journal of Food Microbiology. 2003;89(2-3):105–124. doi: 10.1016/S0168-1605(03)00153-3. PubMed DOI
Abeysekara S., Naylor J. M., Wassef A. W. A., Isak U., Zello G. A. D-Lactic acid-induced neurotoxicity in a calf model. American Journal of Physiology-Endocrinology and Metabolism. 2007;293(2):E558–E565. doi: 10.1152/ajpendo.00063.2007. PubMed DOI
Angell J. W., Jones G. L., Voigt K., Grove-White D. H. Successful correction of D-lactic acid neurotoxicity (drunken lamb syndrome) by bolus administration of oral sodium bicarbonate. Veterinary Record. 2013;173(8):p. 193. doi: 10.1136/vr.101536. PubMed DOI
Munakata S., Arakawa C., Kohira R., Fujita Y., Fuchigami T., Mugishima H. A case of D-lactic acid encephalopathy associated with use of probiotics. Brain & Development. 2010;32(8):691–694. doi: 10.1016/j.braindev.2009.09.024. PubMed DOI
Hingorani A. D., Chan N. N. D-lactate encephalopathy. Lancet. 2001;358(9295):p. 1814. doi: 10.1016/S0140-6736(01)06818-0. PubMed DOI
Puwanant M., Mo-Suwan L., Patrapinyokul S. Recurrent D-lactic acidosis in a child with short bowel syndrome. Asia Pacific Journal of Clinical Nutrition. 2005;14(2):195–198. PubMed
Narula R. K., El Shafei A., Ramaiah D., Schmitz P. G. d -lactic acidosis 23 years after jejuno-ileal bypass. American Journal of Kidney Diseases. 2000;36(2):e9.1–e9.4. doi: 10.1053/ajkd.2000.9005. PubMed DOI
Vidal R., Moliner E., Martin P. P., et al. Life cycle assessment of novel aircraft interior panels made from renewable or recyclable polymers with natural fiber reinforcements and non-halogenated flame retardants. Journal of Industrial Ecology. 2018;22(1):132–144. doi: 10.1111/jiec.12544. DOI
Jia W., Gong R. H., Soutis C., Hogg P. J. Biodegradable fibre reinforced composites composed of polylactic acid and polybutylene succinate. Plastics, Rubber and Composites. 2014;43(3):82–88. doi: 10.1179/1743289813Y.0000000070. DOI
Mendes L., Kangas A., Kukko K., et al. Characterization of emissions from a desktop 3D printer. Journal of Industrial Ecology. 2017;21(S1):S94–S106. doi: 10.1111/jiec.12569. DOI
Hegyesi N., Zhang Y., Kohári A., Polyák P., Sui X., Pukánszky B. Enzymatic degradation of PLA/cellulose nanocrystal composites. Industrial Crops and Products. 2019;141:p. 111799. doi: 10.1016/j.indcrop.2019.111799. DOI
Singhvi M. S., Zinjarde S. S., Gokhale D. V. Polylactic acid: synthesis and biomedical applications. Journal of Applied Microbiology. 2019;127(6):1612–1626. doi: 10.1111/jam.14290. PubMed DOI
Pohanka M. Three-dimensional printing in analytical chemistry: principles and applications. Analytical Letters. 2016;49(18):2865–2882. doi: 10.1080/00032719.2016.1166370. DOI
Komesu A., Oliveira J. A. R. ., Martins L. H. . S., Wolf Maciel M. R., Maciel Filho R. Lactic acid production to purification: a review. BioResources. 2017;12(2) doi: 10.15376/biores.12.2.komesu. 4364-4383. DOI
Wang Y., Deng W., Wang B., et al. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water. Nature Communications. 2013;4(1) doi: 10.1038/ncomms3141. PubMed DOI
Ajala E. O., Olonade Y. O., Ajala M. A., Akinpelu G. S. Lactic acid production from lignocellulose - a review of major challenges and selected solutions. ChemBioEng Reviews. 2020;7(2):38–49. doi: 10.1002/cben.201900018. DOI
Lee J. K., Kim S., Kim W., et al. Efficient production of d-lactate from methane in a lactate-tolerant strain of Methylomonas sp. DH-1 generated by adaptive laboratory evolution. Biotechnology for Biofuels. 2019;12(1) doi: 10.1186/s13068-019-1574-9. PubMed DOI PMC
Wan L., Zhou S., Zhang Y. Parallel advances in improving mechanical properties and accelerating degradation to polylactic acid. International Journal of Biological Macromolecules. 2019;125:1093–1102. doi: 10.1016/j.ijbiomac.2018.12.148. PubMed DOI
Robles-Bykbaev Y., Tarrío-Saavedra J., Quintana-Pita S., Díaz-Prado S., García Sabán F. J., Naya S. Statistical degradation modelling of Poly(D,L-lactide-co-glycolide) copolymers for bioscaffold applications. PLoS One. 2018;13(10, article e0204004) doi: 10.1371/journal.pone.0204004. PubMed DOI PMC
Wan L., Zhang Y. Jointly modified mechanical properties and accelerated hydrolytic degradation of PLA by interface reinforcement of PLA-WF. Journal of the Mechanical Behavior of Biomedical Materials. 2018;88:223–230. doi: 10.1016/j.jmbbm.2018.08.016. PubMed DOI
Wang X., Chen J., Tang X., et al. Biodegradation mechanism of polyesters by hydrolase from Rhodopseudomonas palustris: An in silico approach. Chemosphere. 2019;231:126–133. doi: 10.1016/j.chemosphere.2019.05.112. PubMed DOI
Lee S. H., Song W. S. Enzymatic hydrolysis of polylactic acid fiber. Applied Biochemistry and Biotechnology. 2011;164(1):89–102. doi: 10.1007/s12010-010-9117-7. PubMed DOI
Hajighasemi M., Nocek B. P., Tchigvintsev A., et al. Biochemical and structural insights into enzymatic depolymerization of polylactic acid and other polyesters by microbial carboxylesterases. Biomacromolecules. 2016;17(6):2027–2039. doi: 10.1021/acs.biomac.6b00223. PubMed DOI PMC
Lim H. A., Raku T., Tokiwa Y. Hydrolysis of polyesters by serine proteases. Biotechnology Letters. 2005;27(7):459–464. doi: 10.1007/s10529-005-2217-8. PubMed DOI
Zimmermann L., Dierkes G., Ternes T. A., Volker C., Wagner M. Benchmarking the in vitro toxicity and chemical composition of plastic consumer products. Environmental Science & Technology. 2019;53(19):11467–11477. doi: 10.1021/acs.est.9b02293. PubMed DOI
Andersen L. W., Mackenhauer J., Roberts J. C., Berg K. M., Cocchi M. N., Donnino M. W. Etiology and therapeutic approach to elevated lactate levels. Mayo Clinic Proceedings. 2013;88(10):1127–1140. doi: 10.1016/j.mayocp.2013.06.012. PubMed DOI PMC
Okazaki T., the Japanese Association for Acute Medicine out-of-hospital cardiac arrest (JAAM-OHCA) registry, Hifumi T., Kawakita K., Kuroda Y. Targeted temperature management guided by the severity of hyperlactatemia for out-of-hospital cardiac arrest patients: a post hoc analysis of a nationwide, multicenter prospective registry. Annals of Intensive Care. 2019;9(1):p. 127. doi: 10.1186/s13613-019-0603-y. PubMed DOI PMC
Koletzko S., Waag K. L., Koletzko B. Rezidivierende D-Lactat-Acidosen mit Enzephalopathie bei einem Jungen mit Kurzdarmsyndrom. DMW - Deutsche Medizinische Wochenschrift. 2008;119(13):458–462. doi: 10.1055/s-2008-1058715. PubMed DOI
Suárez L. T., Fraile P. Q., Giner C. P. Dietetic treatment with fructose in a 5-year-old girl with recurrent D-lactic acidosis. Nutrición Hospitalaria. 2017;35(2):495–498. doi: 10.20960/nh.1453. PubMed DOI
Heireman L., Mahieu B., Helbert M., Uyttenbroeck W., Stroobants J., Piqueur M. High anion gap metabolic acidosis induced by cumulation of ketones, L- and D-lactate, 5-oxoproline and acute renal failure. Acta Clinica Belgica. 2017;73(4):313–316. doi: 10.1080/17843286.2017.1358504. PubMed DOI
Langman L. J., Jannetto P. J., Sztajnkrycer M. D. Unidentified anion gap metabolic acidosis. Clinical Biochemistry. 2019;65:53–54. doi: 10.1016/j.clinbiochem.2018.12.006. PubMed DOI
Pohanka M. Antidotes against methanol poisoning: a review. Mini-Reviews in Medicinal Chemistry. 2019;19(14):1126–1133. doi: 10.2174/1389557519666190312150407. PubMed DOI
Pohanka M. Toxicology and the biological role of methanol and ethanol: current view. Biomedical Papers. 2016;160(1):54–63. doi: 10.5507/bp.2015.023. PubMed DOI
Satomura T., Hayashi J., Sakamoto H., et al. d-Lactate electrochemical biosensor prepared by immobilization of thermostable dye-linked d-lactate dehydrogenase from Candidatus Caldiarchaeum subterraneum. Journal of Bioscience and Bioengineering. 2018;126(4):425–430. doi: 10.1016/j.jbiosc.2018.04.002. PubMed DOI
Pohanka M., Zbořil P. Amperometric biosensor for D-lactate assay. Food Technology and Biotechnology. 2008;46(1):107–110.
Chen C. M., Chen S. M., Chien P. J., Yu H. Y. Development of an enzymatic assay system of D-lactate using D-lactate dehydrogenase and a UV-LED fluorescent spectrometer. Journal of Pharmaceutical and Biomedical Analysis. 2015;116:150–155. doi: 10.1016/j.jpba.2015.07.018. PubMed DOI
Ding X., Lin S., Weng H., Liang J. Separation and determination of the enantiomers of lactic acid and 2-hydroxyglutaric acid by chiral derivatization combined with gas chromatography and mass spectrometry. Journal of Separation Science. 2018;41(12):2576–2584. doi: 10.1002/jssc.201701555. PubMed DOI
Tsutsui H., Mochizuki T., Maeda T., et al. Simultaneous determination of DL-lactic acid and DL-3-hydroxybutyric acid enantiomers in saliva of diabetes mellitus patients by high-throughput LC-ESI-MS/MS. Analytical and Bioanalytical Chemistry. 2012;404(6-7):1925–1934. doi: 10.1007/s00216-012-6320-0. PubMed DOI
Henry H., Marmy Conus N., Steenhout P., Béguin A., Boulat O. Sensitive determination of D-lactic acid and L-lactic acid in urine by high-performance liquid chromatography-tandem mass spectrometry. Biomedical Chromatography. 2012;26(4):425–428. doi: 10.1002/bmc.1681. PubMed DOI
Zimmermann D. K., Weisser R., Mansfeld R. Treatment of systemic acidosis in calves by administration of sodium bicarbonate with stomach tube. Tieraerztliche Praxis Ausgabe Grosstiere Nutztiere. 2008;36(3):155–162.
Suagee-Bedore J. K., Wagner A. L., Girard I. D. Feeding DigestaWell Buffer to Horses Alters the Effects of Starch Intake on Blood pH, Lipopolysaccharide, and Interleukin-1β. Journal of Equine Veterinary Science. 2018;61:36–45. doi: 10.1016/j.jevs.2017.11.006. DOI
Trefz F. M., Constable P. D., Lorenz I. Effect of intravenous small-volume hypertonic sodium bicarbonate, sodium chloride, and glucose solutions in decreasing plasma potassium concentration in hyperkalemic neonatal calves with diarrhea. Journal of Veterinary Internal Medicine. 2017;31(3):907–921. doi: 10.1111/jvim.14709. PubMed DOI PMC
Trefz F. M., Lorch A., Feist M., Sauter-Louis C., Lorenz I. Construction and validation of a decision tree for treating metabolic acidosis in calves with neonatal diarrhea. BMC Veterinary Research. 2012;8(1):p. 238. doi: 10.1186/1746-6148-8-238. PubMed DOI PMC
Anderson Y., Curtis N., Hobbs J., et al. High serum D-lactate in patients on continuous ambulatory peritoneal dialysis. Nephrology Dialysis Transplantation. 1997;12(5):981–983. doi: 10.1093/ndt/12.5.981. PubMed DOI