An approach to classifying occupational exposures to endocrine disrupting chemicals by sex hormone function using an expert judgment process
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
156077
CIHR - Canada
PubMed
32704083
DOI
10.1038/s41370-020-0253-z
PII: 10.1038/s41370-020-0253-z
Knihovny.cz E-zdroje
- Klíčová slova
- Androgenic, Antiandrogenic, Antiestrogenic, Endocrine disruptor, Estrogenic, Occupational exposures,
- MeSH
- dibutylftalát MeSH
- endokrinní disruptory * MeSH
- lidé MeSH
- mínění MeSH
- pohlavní steroidní hormony MeSH
- pracovní expozice * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- dibutylftalát MeSH
- endokrinní disruptory * MeSH
- pohlavní steroidní hormony MeSH
Endocrine disrupting chemicals (EDCs) are exogenous substances that interfere with the endocrine system and cause adverse effects. We aimed to classify the effects of 24 known EDCs, prevalent in certain occupations, according to four modes of action (estrogenic, antiestrogenic, androgenic, and/or antiandrogenic). A literature search, stratified into four types of literature was conducted (namely: national and international agency reports; review articles; primary studies; ToxCastTM). The state of the evidence of each EDC on sex hormone function was summarized and reviewed by an expert panel. For each mode of action, the experts evaluated the likelihood of endocrine disruption in five categories: "No", "Unlikely", "Possibly", "Probably", and "Yes". Seven agents were categorized as "Yes," or having strong evidence for their effects on sex hormone function (antiandrogenic: lead, arsenic, butylbenzyl phthalate, dibutyl phthalate, dicyclohexyl phthalate; estrogenic: nonylphenol, bisphenol A). Nine agents were categorized as "Probable," or having probable evidence (antiandrogenic: bis(2-ethylhexyl)phthalate, nonylphenol, toluene, bisphenol A, diisononyl phthalate; androgenic: cadmium; estrogenic: copper, cadmium and; anti-estrogenic: lead). Two agents (arsenic, polychlorinated biphenyls) had opposing conclusions supporting both "probably" estrogenic and antiestrogenic effects. This synthesis will allow researchers to evaluate the health effects of selected EDCs with an added level of precision related to the mode of action.
Centre de recherche du CHUM Montréal QC Canada
Centre de recherche en santé publique Université de Montréal Montréal QC Canada
Département Prévention Cancer Environnement Centre Léon Bérard Lyon France
Department of Occupational and Environmental Health Université de Montréal Montréal QC Canada
Department of Social and Preventive Medicine Université de Montréal Montréal QC Canada
Faculty of Safety Engineering Technical University of Ostrava Ostrava Czech Republic
Inserm UA 08 Radiations Défense Santé Environement Lyon France
Institute of Experimental Medicine of the CAS Prague Czech Republic
Zobrazit více v PubMed
Centers for Disease Control and Prevention (CDC). Fourth National Report on human exposure to environmental chemicals, updated tables. 2017;1. https://www.cdc.gov/biomonitoring/pdf/FourthReport_UpdatedTables_Volume1_Jan2017.pdf .
Damstra T, Barlow S, Bergman A, Kavlock R, Van Der Kraak G. International Programme on Chemical Safety, Global assessment of the state‐of‐the‐science of endocrine disruptors. 2002. http://www.who.int/ipcs/publications/new_issues/endocrine_disruptors/en/ .
Ferlay J, Shin H-R, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917. PubMed DOI
Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ Health Perspect. 2008;116:39–44. PubMed DOI
IARC. Arsenic, metals, fibres, and dusts. IARC Monogr Eval Carcinog Risks Hum. 2012;100:11–465.
IARC. Polychlorinated biphenyls and polybrominated biphenyls. IARC Monogr Eval Carcinog Risks Hum. 2016;107:9–500.
IARC. Some organophosphate insecticides and herbicides. IARC Monogr Eval Carcinog Risks Hum. 2017;112:39–42.
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. EDC-2: the Endocrine Society’s Second Scientific Statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36:E1–50. PubMed DOI PMC
Jeng HA. Exposure to endocrine disrupting chemicals and male reproductive health. Front Public Health. 2014;2:55. PubMed DOI PMC
Sweeney MF, Hasan N, Soto AM, Sonnenschein C. Environmental endocrine disruptors: Effects on the human male reproductive system. Rev Endocr Metab Disord. 2015;16:341–57. PubMed DOI PMC
Crain DA, Janssen SJ, Edwards TM, Heindel J, Ho SM, Hunt P, et al. Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing. Fertil Steril. 2008;90:911–40. PubMed DOI PMC
Smarr MM, Kannan K, Buck Louis GM. Endocrine disrupting chemicals and endometriosis. Fertil Steril. 2016;106:959–66. PubMed DOI PMC
Rachon D. Endocrine disrupting chemicals (EDCs) and female cancer: Informing the patients. Rev Endocr Metab Disord. 2015;16:359–64. PubMed DOI PMC
Burns KA, Korach KS. Estrogen receptors and human disease: an update. Arch Toxicol. 2012;86:1491–504. PubMed DOI PMC
Folkerd E, Dowsett M. Sex hormones and breast cancer risk and prognosis. Breast. 2013;22 (Suppl 2):S38–43. PubMed DOI PMC
Dobbs RW, Malhotra NR, Greenwald DT, Wang AY, Prins GS, Abern MR. Estrogens and prostate cancer. Prostate Cancer Prostatic Dis. 2019;22:185–94. PubMed DOI PMC
Chuffa LG, Lupi-Junior LA, Costa AB, Amorim JP, Seiva FR. The role of sex hormones and steroid receptors on female reproductive cancers. Steroids. 2017;118:93–108. PubMed DOI PMC
Gibson DA, Simitsidellis I, Collins F, Saunders PTK. Endometrial intracrinology: oestrogens, androgens and endometrial disorders. Int J Mol Sci. 2018;19:3276. https://doi.org/10.3390/ijms19103276 .
White A, Ironmonger L, Steele RJC, Ormiston-Smith N, Crawford C, Seims A. A review of sex-related differences in colorectal cancer incidence, screening uptake, routes to diagnosis, cancer stage and survival in the UK. BMC Cancer. 2018;18:906. PubMed DOI PMC
Clendenen TV, Koenig KL, Shore RE, Levitz M, Arslan AA, Zeleniuch-Jacquotte A. Postmenopausal levels of endogenous sex hormones and risk of colorectal cancer. Cancer Epidemiol Biomark Prev. 2009;18:275–81. DOI
Grodstein F, Newcomb PA, Stampfer MJ. Postmenopausal hormone therapy and the risk of colorectal cancer: a review and meta-analysis. Am J Med. 1999;106:574–82. PubMed DOI PMC
La Vecchia C, Franceschi S. Reproductive factors and colorectal cancer. Cancer Causes Control. 1991;2:193–200. PubMed DOI PMC
Prentice RL, Pettinger M, Beresford SA, Wactawski-Wende J, Hubbell FA, Stefanick ML, et al. Colorectal cancer in relation to postmenopausal estrogen and estrogen plus progestin in the Women’s Health Initiative clinical trial and observational study. Cancer Epidemiol Biomark Prev. 2009;18:1531–7. DOI
Combarnous Y, Nguyen TMD. Comparative overview of the mechanisms of action of hormones and endocrine disruptor compounds. Toxics. 2019;7:5. https://doi.org/10.3390/toxics7010005 .
Sonnenschein C, Soto AM. An updated review of environmental estrogen and androgen mimics and antagonists. J Steroid Biochem Mol Biol. 1998;65:143–50. PubMed DOI PMC
Endocrine Society. Impact of EDCs on reproductive systems. 2019. https://www.endocrine.org/topics/edc/what-edcs-are/common-edcs/reproduction .
Ropero AB, Alonso-Magdalena P, Ripoll C, Fuentes E, Nadal A. Rapid endocrine disruption: environmental estrogen actions triggered outside the nucleus. J Steroid Biochem Mol Biol. 2006;102:163–9. PubMed DOI PMC
Luccio-Camelo DC, Prins GS. Disruption of androgen receptor signaling in males by environmental chemicals. J Steroid Biochem Mol Biol. 2011;127:74–82. PubMed DOI PMC
Endocrine Society. Endocrinology glossary. 2018. https://www.endocrine.org/news-room/glossary .
Kortenkamp A. Ten years of mixing cocktails: a review of combination effects of endocrine-disrupting chemicals. Environ Health Perspect. 2007;115:98–105. PubMed DOI PMC
Lauretta R, Sansone A, Sansone M, Romanelli F, Appetecchia M. Endocrine disrupting chemicals: effects on endocrine glands. Front Endocrinol. 2019;10:178. DOI
Margina D, Nitulescu GM, Ungurianu A, Mesnage R, Goumenou M, Sarigiannis D, et al. Overview of the effects of chemical mixtures with endocrine disrupting activity in the context of real‑life risk simulation (RLRS): an integrative approach (review). World Acad Sci J. 2019;1:157–64. PubMed PMC
Ribeiro E, Ladeira C, Viegas S. EDCs mixtures: a stealthy hazard for human health? Toxics. 2017;5:5. DOI PMC
Sobolewski M, Conrad K, Allen JL, Weston H, Martin K, Lawrence BP, et al. Sex-specific enhanced behavioral toxicity induced by maternal exposure to a mixture of low dose endocrine-disrupting chemicals. Neurotoxicology. 2014;45:121–30. PubMed DOI PMC
Woodruff TJ. Bridging epidemiology and model organisms to increase understanding of endocrine disrupting chemicals and human health effects. J Steroid Biochem Mol Biol. 2011;127:108–17. PubMed DOI PMC
La Merrill MA, Vandenberg LN, Smith MT, Goodson W, Browne P, Patisaul HB, et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol. 2020;16:45–57. PubMed DOI PMC
Bonde JP, Flachs EM, Rimborg S, Glazer CH, Giwercman A, Ramlau-Hansen CH, et al. The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: a systematic review and meta-analysis. Hum Reprod Update. 2016;23:104–25. PubMed DOI PMC
Lavoue J. CANJEM occupational exposure information system. 2015. http://www.canjem.ca/ .
Brouwers MM, van Tongeren M, Hirst AA, Bretveld RW, Roeleveld N. Occupational exposure to potential endocrine disruptors: further development of a job exposure matrix. Occup Environ Med. 2009;66:607–14. PubMed DOI PMC
Joint FAO/WHO Expert Committee on Food Additives (JECFA). Evaluation of certain food additives and contaminants: eightieth report of the joint FAO/WHO expert committee on food additives. Geneva, Switzerland: World Health Organization (WHO); 2016. pp. 132. WHO Technical Report Series 995.
Joint FAO/WHO Expert Committee on Food Additives (JECFA). Safety evaluation of certain food additives and contaminants: prepared by the eightieth meeting of the joint FAO/WHO expert committee on food additives (JECFA). Geneva, Switzerland: World Health Organization (WHO); 2015. pp. 142. WHO Food Additives Series 71.
BKH. Endocrine disruptors: study on gathering informations on 435 substances with insufficient data. 2002:Annex 7. https://ec.europa.eu/environment/chemicals/endocrine/pdf/bkh_report.pdf .
BKH. Endocrine disruptors: study on gathering informations on 435 substances with insufficient data. 2002:Annex 12. https://ec.europa.eu/environment/chemicals/endocrine/pdf/bkh_report.pdf .
ECHA. Evaluation of new scientific evidence concerning DINP and DIDP in relation to entry 52 of Annex XVII to REACH Regulation (EC) No 1907/2006. 2013. https://echa.europa.eu/documents/10162/31b4067e-de40-4044-93e8-9c9ff1960715 .
ECHA. Support document of the opinion of the member state committee for the identification of dibutyl phthalate (DBP). 2014. https://echa.europa.eu/documents/10162/e4edaefa-84a4-4972-89f0-470cd64bc949 .
ECHA. Opinion of the member state committee for identification of benzyl butyl phthalate (BBP) as a substance of very high concern. 2014. https://www.echa.europa.eu/documents/10162/02d9dcca-b07b-448b-8331-f7209af10d16 .
ECHA. Support document to the opinion of the member state committee for identification of Bis(2-ethylhexyl) phthalate (DEHP). 2014. https://echa.europa.eu/documents/10162/21833221/svhc_msc_opinion_support_document_dehp_20141211_en.pdf .
ECHA. Annex XV report - Proposal for identification of a substance of very high concern on the basis of the criteria set out in REACH Article 57. 2015. https://echa.europa.eu/documents/10162/cdc07dd9-0f7e-4b07-9721-1a51c6f627af .
ECHA. Prioritisation of substances of very high concern (SVHCs) for inclusion in the Authorisation List (Annex XIV). 2014. https://echa.europa.eu/documents/10162/13640/gen_approach_svhc_prior_in_recommendations_en.pdf .
INSERM. Reproduction et environnement, Expertise collective. Paris: Inserm; 2011. www.inserm.fr/content/download/38030/244999/.../reproduction_et_environnement.pdf2011 .
Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB. Cadmium-a metallohormone? Toxicol Appl Pharmacol. 2009;238:266–71. PubMed DOI PMC
Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB. Metals and breast cancer. J Mammary Gland Biol Neoplasia. 2013;18:63–73. PubMed DOI PMC
Darbre PD. Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. J Appl Toxicol. 2006;26:191–7. PubMed DOI
Noorimotlagh Z, Haghighi NJ, Ahmadimoghadam M, Rahim F. An updated systematic review on the possible effect of nonylphenol on male fertility. Environ Sci Pollut Res Int. 2017;24:3298–314. PubMed DOI
Radke EG, Braun JM, Meeker JD, Cooper GS. Phthalate exposure and male reproductive outcomes: a systematic review of the human epidemiological evidence. Environ Int. 2018;121:764–93. PubMed DOI
Takiguchi M, Yoshihara S. New aspects of cadmium as endocrine disruptor. Environ Sci. 2006;13:107–16. PubMed
Witorsch RJ, Thomas JA. Personal care products and endocrine disruption: a critical review of the literature. Crit Rev Toxicol. 2010;40 (Suppl 3):1–30. PubMed DOI PMC
Ajayi O, Charles-Davies M, Anetor J, Ademola A. Pituitary, Gonadal, Thyroid Hormones and Endocrine Disruptors in Pre and Postmenopausal Nigerian Women with ER-, PR- and HER-2-Positive and Negative Breast Cancers. Med Sci. (Basel). 2018;6:37. https://doi.org/10.3390/medsci6020037 .
Akingbemi BT, Sottas CM, Koulova AI, Klinefelter GR, Hardy MP. Inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinology. 2004;145:592–603. PubMed DOI PMC
Bistakova J, Forgacs Z, Bartos Z, Szivosne MR, Jambor T, Knazicka Z, et al. Effects of 4-nonylphenol on the steroidogenesis of human adrenocarcinoma cell line (NCI-H295R). J Environ Sci Health A Tox Hazard Subst Environ Eng. 2017;52:221–7. PubMed DOI PMC
Bitsch N, Dudas C, Korner W, Failing K, Biselli S, Rimkus G, et al. Estrogenic activity of musk fragrances detected by the E-screen assay using human mcf-7 cells. Arch Environ Contam Toxicol. 2002;43:257–64. PubMed DOI PMC
Bonefeld-Jorgensen EC, Long M, Hofmeister MV, Vinggaard AM. Endocrine-disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4-n-nonylphenol, and 4-n-octylphenol in vitro: new data and a brief review. Environ Health Perspect. 2007;115 Suppl 1:69–76. PubMed DOI PMC
Brehm E, Rattan S, Gao L, Flaws JA. Prenatal exposure to Di(2-Ethylhexyl) phthalate causes long-term transgenerational effects on female reproduction in mice. Endocrinology. 2018;159:795–809. PubMed DOI PMC
Chamkhia N, Sakly M, Rhouma KB. Male reproductive impacts of styrene in rat. Toxicol Ind Health. 2006;22:349–55. PubMed DOI PMC
Choe SY, Kim SJ, Kim HG, Lee JH, Choi Y, Lee H, et al. Evaluation of estrogenicity of major heavy metals. Sci Total Environ. 2003;312:15–21. PubMed DOI PMC
Date K, Ohno K, Azuma Y, Hirano S, Kobayashi K, Sakurai T, et al. Endocrine-disrupting effects of styrene oligomers that migrated from polystyrene containers into food. Food Chem Toxicol. 2002;40:65–75. PubMed DOI PMC
Davey JC, Bodwell JE, Gosse JA, Hamilton JW. Arsenic as an endocrine disruptor: effects of arsenic on estrogen receptor-mediated gene expression in vivo and in cell culture. Toxicol Sci. 2007;98:75–86. PubMed DOI PMC
Denham M, Schell LM, Deane G, Gallo MV, Ravenscroft J, DeCaprio AP, et al. Relationship of lead, mercury, mirex, dichlorodiphenyldichloroethylene, hexachlorobenzene, and polychlorinated biphenyls to timing of menarche among Akwesasne Mohawk girls. Pediatrics. 2005;115:e127–34. PubMed DOI PMC
Di Lorenzo M, Forte M, Valiante S, Laforgia V, De Falco M. Interference of dibutylphthalate on human prostate cell viability. Ecotoxicol Environ Saf. 2018;147:565–73. PubMed DOI PMC
Ernst J, Jann JC, Biemann R, Koch HM, Fischer B. Effects of the environmental contaminants DEHP and TCDD on estradiol synthesis and aryl hydrocarbon receptor and peroxisome proliferator-activated receptor signalling in the human granulosa cell line KGN. Mol Hum Reprod. 2014;20:919–28. PubMed DOI
Eum KD, Weisskopf MG, Nie LH, Hu H, Korrick SA. Cumulative lead exposure and age at menopause in the Nurses’ Health Study cohort. Environ Health Perspect. 2014;122:229–34. PubMed DOI PMC
Fossato da Silva DA, Teixeira CT, Scarano WR, Favareto AP, Fernandez CD, Grotto D, et al. Effects of methylmercury on male reproductive functions in Wistar rats. Reprod Toxicol. 2011;31:431–9. PubMed DOI
Fu Y, Jia FB, Wang J, Song M, Liu SM, Li YF, et al. Effects of sub-chronic aluminum chloride exposure on rat ovaries. Life Sci. 2014;100:61–6. PubMed DOI
Gou YY, Lin S, Que DE, Tayo LL, Lin DY, Chen KC, et al. Estrogenic effects in the influents and effluents of the drinking water treatment plants. Environ Sci Pollut Res Int. 2016;23:8518–28. PubMed DOI
Haghighi KS, Aminian O, FarzanehChavoshi, Bahaedini LS, Soltani S, Najarkolaei F. Relationship between blood lead level and male reproductive hormones in male lead exposed workers of a battery factory: a cross-sectional study. Iran J Reprod Med. 2013;11:673–6.
Heath JC, Abdelmageed Y, Braden TD, Goyal HO. The effects of chronic ingestion of mercuric chloride on fertility and testosterone levels in male Sprague Dawley rats. J Biomed Biotechnol. 2012;2012:815186. PubMed DOI PMC
Hosni H, Selim O, Abbas M, Fathy A. Semen quality and reproductive endocrinal function related to blood lead levels in infertile painters. Andrologia. 2013;45:120–7. PubMed DOI
Hu G, Li J, Shan Y, Li X, Zhu Q, Li H, et al. In utero combined di-(2-ethylhexyl) phthalate and diethyl phthalate exposure cumulatively impairs rat fetal Leydig cell development. Toxicology. 2018;395:23–33. PubMed DOI
Huang Q, Luo L, Alamdar A, Zhang J, Liu L, Tian M, et al. Integrated proteomics and metabolomics analysis of rat testis: mechanism of arsenic-induced male reproductive toxicity. Sci Rep. 2016;6:32518. PubMed DOI PMC
Huang X, Zhou Y, Ma J, Wang N, Zhang Z, Ji J, et al. Nitric oxide mediated effects on reproductive toxicity caused by carbon disulfide in male rats. Environ Toxicol Pharmacol. 2012;34:679–87. PubMed DOI PMC
Iavicoli I, Carelli G, Stanek EJ 3rd, Castellino N, Calabrese EJ. Effects of low doses of dietary lead on puberty onset in female mice. Reprod Toxicol. 2004;19:35–41. PubMed DOI PMC
Jambor T, Lukacova J, Tvrda E, Knazicka Z, Forgacs Z, Lukac N. The impact of 4-nonylphenol on the viability and hormone production of mouse Leydig cells. Folia Biol. 2016;62:34–9.
Jarry H, Gamer A, Wuttke W. Effects of 5-day styrene inhalation on serum LH and testosterone levels and on hypothalamic and striatal amino acid neurotransmitter concentrations in male rats. Inhal Toxicol. 2004;16:209–15. PubMed DOI PMC
Kim SH, Nam KH, Hwang KA, Choi KC. Influence of hexabromocyclododecane and 4-nonylphenol on the regulation of cell growth, apoptosis and migration in prostatic cancer cells. Toxicol In Vitro. 2016;32:240–7. PubMed DOI PMC
Knazicka Z, Lukac N, Forgacs Z, Tvrda E, Lukacova J, Slivkova J, et al. Effects of mercury on the steroidogenesis of human adrenocarcinoma (NCI-H295R) cell line. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2013;48:348–53. PubMed DOI PMC
Kopp TI, Lundqvist J, Petersen RK, Oskarsson A, Kristiansen K, Nellemann C, et al. In vitro screening of inhibition of PPAR-gamma activity as a first step in identification of potential breast carcinogens. Hum Exp Toxicol. 2015;34:1106–18. PubMed DOI PMC
Kumar N, Sharan S, Srivastava S, Roy P. Assessment of estrogenic potential of diethyl phthalate in female reproductive system involving both genomic and non-genomic actions. Reprod Toxicol. 2014;49:12–26. PubMed DOI PMC
Kumar N, Srivastava S, Roy P. Impact of low molecular weight phthalates in inducing reproductive malfunctions in male mice: special emphasis on Sertoli cell functions. Gen Comp Endocrinol. 2015;215:36–50. PubMed DOI PMC
Lei HL, Wei HJ, Ho HY, Liao KW, Chien LC. Relationship between risk factors for infertility in women and lead, cadmium, and arsenic blood levels: a cross-sectional study from Taiwan. BMC Public Health. 2015;15:1220. PubMed DOI PMC
Li CJ, Yeh CY, Chen RY, Tzeng CR, Han BC, Chien LC. Biomonitoring of blood heavy metals and reproductive hormone level related to low semen quality. J Hazard Mater. 2015;300:815–22. PubMed DOI PMC
Li X, Sun Z, Manthari RK, Li M, Guo Q, Wang J. Effect of gestational exposure to arsenic on puberty in offspring female mice. Chemosphere. 2018;202:119–26. PubMed DOI PMC
Luderer U, Morgan MS, Brodkin CA, Kalman DA, Faustman EM. Reproductive endocrine effects of acute exposure to toluene in men and women. Occup Environ Med. 1999;56:657–66. PubMed DOI PMC
Maloney EK, Waxman DJ. trans-Activation of PPARalpha and PPARgamma by structurally diverse environmental chemicals. Toxicol Appl Pharmacol. 1999;161:209–18. PubMed DOI PMC
Martin MB, Reiter R, Pham T, Avellanet YR, Camara J, Lahm M, et al. Estrogen-like activity of metals in MCF-7 breast cancer cells. Endocrinology. 2003;144:2425–36. PubMed DOI PMC
McGregor AJ, Mason HJ. Chronic occupational lead exposure and testicular endocrine function. Hum Exp Toxicol. 1990;9:371–6. PubMed DOI PMC
Mori N, Sawada N, Iwasaki M, Yamaji T, Goto A, Shimazu T, et al. Circulating sex hormone levels and colorectal cancer risk in Japanese postmenopausal women: the JPHC nested case-control study. Int J Cancer. 2019;145:1238–44. PubMed DOI PMC
Moussa H, Hachfi L, Trimeche M, Najjar MF, Sakly R. Accumulation of mercury and its effects on testicular functions in rats intoxicated orally by methylmercury. Andrologia. 2011;43:23–7. PubMed DOI PMC
Munoz A, Chervona Y, Hall M, Kluz T, Gamble MV, Costa M. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water. Toxicol Appl Pharmacol. 2015;284:330–8. PubMed DOI PMC
Ohno K, Azuma Y, Date K, Nakano S, Kobayashi T, Nagao Y, et al. Evaluation of styrene oligomers eluted from polystyrene for estrogenicity in estrogen receptor binding assay, reporter gene assay, and uterotrophic assay. Food Chem Toxicol. 2003;41:131–41. PubMed DOI PMC
Ohno K, Azuma Y, Nakano S, Kobayashi T, Hirano S, Nobuhara Y, et al. Assessment of styrene oligomers eluted from polystyrene-made food containers for estrogenic effects in in vitro assays. Food Chem Toxicol. 2001;39:1233–41. PubMed DOI PMC
Ohyama KI, Nagai F, Tsuchiya Y. Certain styrene oligomers have proliferative activity on MCF-7 human breast tumor cells and binding affinity for human estrogen receptor. Environ Health Perspect. 2001;109:699–703. PubMed PMC
Okazaki H, Takeda S, Matsuo S, Matsumoto M, Furuta E, Kohro-Ikeda E, et al. Inhibitory modulation of human estrogen receptor alpha and beta activities by dicyclohexyl phthalate in human breast cancer cell lines. J Toxicol Sci. 2017;42:417–25. PubMed DOI PMC
Ono A, Kawashima K, Sekita K, Hirose A, Ogawa Y, Saito M, et al. Toluene inhalation induced epididymal sperm dysfunction in rats. Toxicology. 1999;139:193–205. PubMed DOI PMC
Pant N, Upadhyay G, Pandey S, Mathur N, Saxena DK, Srivastava SP. Lead and cadmium concentration in the seminal plasma of men in the general population: correlation with sperm quality. Reprod Toxicol. 2003;17:447–50. PubMed DOI PMC
Parodi DA, Greenfield M, Evans C, Chichura A, Alpaugh A, Williams J, et al. Alteration of mammary gland development and gene expression by in utero exposure to arsenic. Reprod Toxicol. 2015;54:66–75. PubMed DOI PMC
Pomatto V, Cottone E, Cocci P, Mozzicafreddo M, Mosconi G, Nelson ER, et al. Plasticizers used in food-contact materials affect adipogenesis in 3T3-L1 cells. J Steroid Biochem Mol Biol. 2018;178:322–32. PubMed DOI PMC
Ramdhan DH, Kamijima M, Wang D, Ito Y, Naito H, Yanagiba Y, et al. Differential response to trichloroethylene-induced hepatosteatosis in wild-type and PPARalpha-humanized mice. Environ Health Perspect. 2010;118:1557–63. PubMed DOI PMC
Rodamilans M, Martinez-Osaba MJ, To-Figueras J, Rivera-Fillat F, Torra M, Perez P, et al. Inhibition of intratesticular testosterone synthesis by inorganic lead. Toxicol Lett. 1988;42:285–90. PubMed DOI PMC
Rodamilans M, Osaba MJ, To-Figueras J, Rivera Fillat F, Marques JM, Perez P, et al. Lead toxicity on endocrine testicular function in an occupationally exposed population. Hum Toxicol. 1988;7:125–8. PubMed DOI PMC
Ronis MJ, Badger TM, Shema SJ, Roberson PK, Shaikh F. Effects on pubertal growth and reproduction in rats exposed to lead perinatally or continuously throughout development. J Toxicol Environ Health A. 1998;53:327–41. PubMed DOI
Selevan SG, Rice DC, Hogan KA, Euling SY, Pfahles-Hutchens A, Bethel J. Blood lead concentration and delayed puberty in girls. N Engl J Med. 2003;348:1527–36. PubMed DOI
Sokol RZ. Reversibility of the toxic effect of lead on the male reproductive axis. Reprod Toxicol. 1989;3:175–80. PubMed DOI
Sokol RZ, Madding CE, Swerdloff RS. Lead toxicity and the hypothalamic-pituitary-testicular axis. Biol Reprod. 1985;33:722–8. PubMed DOI PMC
Specht IO, Toft G, Hougaard KS, Lindh CH, Lenters V, Jonsson BA, et al. Associations between serum phthalates and biomarkers of reproductive function in 589 adult men. Environ Int. 2014;66:146–56. PubMed DOI
Sukocheva OA, Yang Y, Gierthy JF, Seegal RF. Methyl mercury influences growth-related signaling in MCF-7 breast cancer cells. Environ Toxicol. 2005;20:32–44. PubMed DOI
Sun H, Hu C, Jia L, Zhu Y, Zhao H, Shao B, et al. Effects of aluminum exposure on serum sex hormones and androgen receptor expression in male rats. Biol Trace Elem Res. 2011;144:1050–8. PubMed DOI PMC
Sun X, Sun H, Yu K, Wang Z, Liu Y, Liu K, et al. Aluminum chloride causes the dysfunction of testes through inhibiting the ATPase enzyme activities and gonadotropin receptor expression in rats. Biol Trace Elem Res. 2018;183:296–304. PubMed DOI
Sun Y, Wang W, Guo Y, Zheng B, Li H, Chen J, et al. High copper levels in follicular fluid affect follicle development in polycystic ovary syndrome patients: population-based and in vitro studies. Toxicol Appl Pharmacol. 2019;365:101–11. PubMed DOI
Svensson BG, Nise G, Erfurth EM, Olsson H. Neuroendocrine effects in printing workers exposed to toluene. Br J Ind Med. 1992;49:402–8. PubMed PMC
Takao T, Nanamiya W, Nazarloo HP, Asaba K, Hashimoto K. Possible reproductive toxicity of styrene in peripubertal male mice. Endocr J. 2000;47:343–7. PubMed DOI PMC
Taupeau C, Poupon J, Treton D, Brosse A, Richard Y, Machelon V. Lead reduces messenger RNA and protein levels of cytochrome p450 aromatase and estrogen receptor beta in human ovarian granulosa cells. Biol Reprod. 2003;68:1982–8. PubMed DOI PMC
Telisman S, Cvitkovic P, Jurasovic J, Pizent A, Gavella M, Rocic B. Semen quality and reproductive endocrine function in relation to biomarkers of lead, cadmium, zinc, and copper in men. Environ Health Perspect. 2000;108:45–53. PubMed DOI PMC
Thoreux-Manlay A, Le Goascogne C, Segretain D, Jegou B, Pinon-Lataillade G. Lead affects steroidogenesis in rat Leydig cells in vivo and in vitro. Toxicology. 1995;103:53–62. PubMed DOI PMC
Thoreux-Manlay A, Velez de la Calle JF, Olivier MF, Soufir JC, Masse R, Pinon-Lataillade G. Impairment of testicular endocrine function after lead intoxication in the adult rat. Toxicology. 1995;100:101–9. PubMed DOI PMC
Tsukahara S, Nakajima D, Kuroda Y, Hojo R, Kageyama S, Fujimaki H. Effects of maternal toluene exposure on testosterone levels in fetal rats. Toxicol Lett. 2009;185:79–84. PubMed DOI PMC
Wang N, She Y, Zhu Y, Zhao H, Shao B, Sun H, et al. Effects of subchronic aluminum exposure on the reproductive function in female rats. Biol Trace Elem Res. 2012;145:382–7. PubMed DOI PMC
Wang YX, Zeng Q, Sun Y, You L, Wang P, Li M, et al. Phthalate exposure in association with serum hormone levels, sperm DNA damage and spermatozoa apoptosis: a cross-sectional study in China. Environ Res. 2016;150:557–65. PubMed DOI PMC
Wijesekara GU, Fernando DM, Wijerathna S, Bandara N. Environmental and occupational exposures as a cause of male infertility. Ceylon Med J. 2015;60:52–6. PubMed DOI PMC
Wolff MS, Engel SM, Berkowitz GS, Ye X, Silva MJ, Zhu C, et al. Prenatal phenol and phthalate exposures and birth outcomes. Environ Health Perspect. 2008;116:1092–7. PubMed DOI PMC
Wu JJ, Wang KL, Wang SW, Hwang GS, Mao IF, Chen ML, et al. Differential effects of nonylphenol on testosterone secretion in rat Leydig cells. Toxicology. 2010;268:1–7. PubMed DOI
Wu T, Buck GM, Mendola P. Blood lead levels and sexual maturation in U.S. girls: the Third National Health and Nutrition Examination Survey, 1988–1994. Environ Health Perspect. 2003;111:737–41. PubMed DOI PMC
Xu LC, Sun H, Chen JF, Bian Q, Qian J, Song L, et al. Evaluation of androgen receptor transcriptional activities of bisphenol A, octylphenol and nonylphenol in vitro. Toxicology. 2005;216:197–203. PubMed DOI PMC
Xu Y, Tokar EJ, Waalkes MP. Arsenic-induced cancer cell phenotype in human breast epithelia is estrogen receptor-independent but involves aromatase activation. Arch Toxicol. 2014;88:263–74. PubMed DOI PMC
Zeng Q, Yi H, Huang L, An Q, Wang H. Reduced testosterone and Ddx3y expression caused by long-term exposure to arsenic and its effect on spermatogenesis in mice. Environ Toxicol Pharmacol. 2018;63:84–91. PubMed DOI PMC
Zhang X, Wang Y, Zhao Y, Chen X. Experimental study on the estrogen-like effect of mercuric chloride. Biometals. 2008;21:143–50. PubMed DOI
Zhang ZW, Zhi G, Qiao N, Kang ZL, Chen ZL, Hu LM, et al. Copper-induced spermatozoa head malformation is related to oxidative damage to testes in CD-1 mice. Biol Trace Elem Res. 2016;173:427–32. PubMed DOI
Bay K, Main KM, Toppari J, Skakkebaek NE. Testicular descent: INSL3, testosterone, genes and the intrauterine milieu. Nat Rev Urol. 2011;8:187–96. PubMed DOI
Emmen JM, McLuskey A, Adham IM, Engel W, Verhoef-Post M, Themmen AP, et al. Involvement of insulin-like factor 3 (Insl3) in diethylstilbestrol-induced cryptorchidism. Endocrinology. 2000;141:846–9. PubMed DOI
Klonisch T, Muller-Huesmann H, Riedel M, Kehlen A, Bialek J, Radestock Y, et al. INSL3 in the benign hyperplastic and neoplastic human prostate gland. Int J Oncol. 2005;27:307–15. PubMed PMC
Lague E, Tremblay JJ. Antagonistic effects of testosterone and the endocrine disruptor mono-(2-ethylhexyl) phthalate on INSL3 transcription in Leydig cells. Endocrinology. 2008;149:4688–94. PubMed DOI PMC
Olokpa E, Bolden A, Stewart LV. The androgen receptor regulates PPARgamma expression and activity in human prostate cancer cells. J Cell Physiol. 2016;231:2664–72. PubMed DOI PMC
Olokpa E, Moss PE, Stewart LV. Crosstalk between the androgen receptor and PPAR gamma signaling pathways in the prostate. PPAR Res. 2017;2017:9456020. PubMed DOI PMC
Zimmermann S, Steding G, Emmen JM, Brinkmann AO, Nayernia K, Holstein AF, et al. Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol Endocrinol. 1999;13:681–91. PubMed DOI
US EPA. Toxicity horecasting—ToxCast. 2018. https://comptox.epa.gov/dashboard .
Vandenberg LN, Agerstrand M, Beronius A, Beausoleil C, Bergman A, Bero LA, et al. A proposed framework for the systematic review and integrated assessment (SYRINA) of endocrine disrupting chemicals. Environ Health. 2016;15:74. PubMed DOI PMC
Sakkiah S, Guo W, Pan B, Kusko R, Tong W, Hong H. Computational prediction models for assessing endocrine disrupting potential of chemicals. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2018;36:192–218. PubMed DOI PMC
Fong J-P, Lee F-J, Lu I-S, Uang S-N, Lee C-C. Relationship between urinary concentrations ofdi(2-ethylhexyl) phthalate (DEHP) metabolites andreproductive hormones in polyvinyl chlorideproduction worker. Occup Environ Med. 2015;72:346–53. PubMed DOI PMC
Morgan M, Deoraj A, Felty Q, Roy D. Environmental estrogen-like endocrine disrupting chemicals and breast cancer. Mol Cell Endocrinol. 2017;457:89–102. PubMed DOI PMC
EPA. Bis(2-ethylhexyl) phthalate (DEHP). 1992. https://www.epa.gov/sites/production/files/2016-09/documents/bis-2-ethylhexyl-phthalate.pdf .
IARC. Inorganic and organic lead compounds. IARC Monogr Eval Carcinog Risks Hum. 2006;87:1–471.
Shirkhanloo H, Golbabaei F, Hassani H, Eftekhar F, Kian MJ. Occupational exposure to mercury: air exposure assessment and biological monitoring based on dispersive ionic liquid-liquid microextraction. Iran J Public Health. 2014;43:793–9. PubMed PMC
US EPA. Nonylphenol (NP) and nonylphenol ethoxylates (NPEs) action plan. 2010. https://www.epa.gov/sites/production/files/2015-09/documents/rin2070-za09_np-npes_action_plan_final_2010-08-09.pdf .
Scientific Committee on Occupational Exposure Limits. Recommendation from the Scientific Committee on Occupational Exposure Limits for Copper and its inorganic compounds. SCOEL/SUM/171. 2014.
EPA. Toluene. 1992. https://www.epa.gov/sites/production/files/2016-09/documents/toluene.pdf .
Canadian Centre for Occupational Health and Safety (CCOHS). OSH answers fact sheets—Alzheimer’s disease and aluminum exposure. 2019. https://www.ccohs.ca/oshanswers/diseases/alzheime.html .
Riihimaki V, Aitio A. Occupational exposure to aluminum and its biomonitoring in perspective. Crit Rev Toxicol. 2012;42:827–53. PubMed DOI PMC
Hines CJ, Nilsen Hopf NB, Deddens JA, Calafat AM, Silva MJ, Grote AA, et al. Urinary phthalate metabolite concentrations among workers in selected industries: a pilot biomonitoring study. Ann Occup Hyg. 2009;53:1–17. PubMed PMC
EPA. Styrene 1992. https://www.epa.gov/sites/production/files/2016-09/documents/styrene.pdf .
IARC. Bisphenol A diglycidyl ether. IARC Monogr Eval Carcinog Risks Hum. 1999;71:1285–9.
IARC. Butyl benzyl phthalate. IARC Monogr Eval Carcinog Risks Hum. 1999;73:155–29.
IARC. Cadmium and cadmium compounds. IARC Monogr Eval Carcinog Risks Hum. 1993;58:119–237.
Centers for Disease Control and Prevention (CDC). Carbon disulfide. 2019. https://www.cdc.gov/niosh/topics/carbon-disulfide/default.html .
European Commission (EC). European Union Risk Assessment Report—dibutyl phthalate. 2004;29:41–110.
US EPA. Phthalates action plan. 2012. https://www.epa.gov/sites/production/files/2015-09/documents/phthalates_actionplan_revised_2012-03-14.pdf .
Hines CJ, Hopf NB, Deddens JA, Silva MJ, Calafat AM. Occupational exposure to diisononyl phthalate (DiNP) in polyvinyl chloride processing operations. Int Arch Occup Environ Health. 2012;85:317–25. PubMed DOI PMC
Consumer Product Safety Commission of United States (CPSC). Review of exposure data and assessments for select dialkyl ortho-phthalates. 2010. https://www.cpsc.gov/s3fs-public/pthalexp.pdf .
Agency for Toxic Substances and Disease Registry (ATSDR). Case Studies in Environmental Medicine (CSEM) ethylene glycol and propylene glycol toxicity. 2007. https://www.atsdr.cdc.gov/csem/csem.asp?csem=12&po=6 .
Committee for Recommendation of Occupational Exposure Limits, Azuma K, Endo G, Endo Y, Fukushima T, Hara K, et al. Occupational exposure limits for ethylene glycol monobutyl ether, isoprene, isopropyl acetate and propyleneimine, and classifications on carcinogenicity, occupational sensitizer and reproductive toxicant. J Occup Health. 2017;59:364–6. DOI
Faroon, Obaid M, Samuel Keith, L, Smith-Simon, Cassandra, De Rosa, Christopher T, World Health Organization, et al. Polychlorinated biphenyls: human health aspects. World Health Organization. 2003. https://apps.who.int/iris/handle/10665/42640 .
Centers for Disease Control and Prevention (CDC). Tetrachloroethylene (Perchloroethylene). 2019. https://www.cdc.gov/niosh/topics/tetrachloro/default.html .
EPA. Phenol. 1992. https://www.epa.gov/sites/production/files/2016-09/documents/phenol.pdf .
EPA. Trichloroethylene. 1992. https://www.epa.gov/sites/production/files/2016-09/documents/trichloroethylene.pdf .
EPA. Xylenes (Mixed Isomers). 1992. https://www.epa.gov/sites/production/files/2016-09/documents/xylenes.pdf .