Effect of Food with Low Enrichment of N-3 Fatty Acids in a Two-Month Diet on the Fatty Acid Content in the Plasma and Erythrocytes and on Cardiovascular Risk Markers in Healthy Young Men
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, randomizované kontrolované studie
Grantová podpora
TA03011027
Technology Agency of the Czech Republic
PubMed
32722083
PubMed Central
PMC7468964
DOI
10.3390/nu12082207
PII: nu12082207
Knihovny.cz E-zdroje
- Klíčová slova
- blood coagulation, blood lipids, body composition, erythrocytes, fatty acids spectrum, n-3 polyunsaturated fatty acids, omega-3 diet,
- MeSH
- dieta metody MeSH
- dospělí MeSH
- erytrocyty chemie MeSH
- fortifikované potraviny * MeSH
- index tělesné hmotnosti MeSH
- jednoduchá slepá metoda MeSH
- kardiovaskulární nemoci prevence a kontrola MeSH
- lidé MeSH
- lipoproteiny HDL krev MeSH
- lipoproteiny LDL krev MeSH
- maso MeSH
- mastné kyseliny krev MeSH
- mladiství MeSH
- mladý dospělý MeSH
- omega-3 mastné kyseliny aplikace a dávkování MeSH
- rizikové faktory kardiovaskulárních chorob MeSH
- vejce MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- lipoproteiny HDL MeSH
- lipoproteiny LDL MeSH
- mastné kyseliny MeSH
- omega-3 mastné kyseliny MeSH
Polyunsaturated fatty acids of the n-3 series (n-3 PUFA) exhibit a number of favorable effects on the human organism and it is desirable to increase their intake in the diet. For this purpose, flaxseed oil was added to a chicken-feed mixture for the production of meat and eggs. The content of n-3 PUFA in the obtained meat was increased from 250 mg (reference value) to 900 mg in 100 g of meat and from 110 mg (reference value) to 190 mg in 100 g of whole egg; the enriched products are designated as omega-3 meat and omega-3 eggs. Omega-3 meat and eggs were subsequently fed for a period of eight weeks in an amount of 480 g of meat and four eggs (228 g netto) a week to a group of 14 healthy volunteers, whose body composition parameters were measured and blood was analyzed biochemically to determine blood lipids, coagulation parameters, plasma, and erythrocyte fatty acid spectrum composition. A control group of 14 volunteers was fed normal chicken and eggs in the same regime. The performed dietary intervention increases the intake of long-chain PUFA (LC-PUFA) by 37 mg per day, which represents 7-15% of the recommended daily dose. The performed tests demonstrated that the consumption of omega-3 enriched meat and eggs significantly increases the content of n-3 PUFA in the erythrocytes, which are a long-term indicator of fatty acid intake. This intervention has no demonstrable effect on the basic body parameters, such as body weight, fat content, Body Mass Index (BMI), and also on the plasma cholesterol level, high-density lipoprotein (HDL), low-density lipoprotein (LDL), blood clotting and inflammation markers, and omega-3 index.
Zobrazit více v PubMed
Zibaeenezhad M.J., Ghavipisheh M., Attar A., Aslani A. Comparison of the effect of omega-3 supplements and fresh fish on lipid profile: A randomized, open-labeled trial. Nutr. Diabetes. 2017;7:1–8. doi: 10.1038/s41387-017-0007-8. PubMed DOI PMC
Mensink R.P. Effects of Saturated Fatty Acids on Serum Lipids and Lipoproteins: A Systematic Review and Regression Analysis. [(accessed on 20 June 2020)]; Available online: https://apps.who.int/iris/bitstream/handle/10665/246104/9789241565349-eng.pdf.
Burdge G.C., Jones A.E., Wootton S.A. Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men. Br. J. Nutr. 2002;88:355–363. doi: 10.1079/BJN2002662. PubMed DOI
Burdge G.C., Wootton S.A. Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br. J. Nutr. 2002;88:411–420. doi: 10.1079/BJN2002689. PubMed DOI
Domenichiello A.F., Kitson A.P., Bazinet R.P. Is docosahexaenoic acid synthesis from alpha-linolenic acid sufficient to supply the adult brain? Prog. Lipid Res. 2015;59:54–66. doi: 10.1016/j.plipres.2015.04.002. PubMed DOI
Julibert A., Bibiloni M.D., Tur J.A. Dietary fat intake and metabolic syndrome in adults: A systematic review. Nutr. Metab. Carbiovasc. Dis. 2019;29:887–905. doi: 10.1016/j.numecd.2019.05.055. PubMed DOI
Silva Figueiredo P., Inada A.C., Marcelino G., Cardozo C.M.L., Freitas K.D., Guimaraes R.D.A., de Castro A.P., do Nascimento V.A., Hiane P.A. Fatty acids consumption: The role metabolic aspects involved in obesity and its associated disorders. Nutrients. 2017;9:32. doi: 10.3390/nu9101158. PubMed DOI PMC
Qian F., Korat A.A., Malik V., Hu F.B. Metabolic effects of monounsaturated fatty acid-enriched diets compared with carbohydrate or polyunsaturated fatty acid-enriched diets in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Care. 2016;39:1448–1457. doi: 10.2337/dc16-0513. PubMed DOI PMC
Marangoni F., Poli A. Clinical pharmacology of n-3 polyunsaturated fatty acids: Non-lipidic metabolic and hemodynamic effects in human patients. Atheroscler. Suppl. 2013;14:230–236. doi: 10.1016/S1567-5688(13)70003-5. PubMed DOI
Gao L.G., Cao J., Mao Q.X., Lu X.C., Zhou X.L., Fan L. Influence of omega-3 polyunsaturated fatty acid-supplementation on platelet aggregation in humans: A meta-analysis of randomized controlled trials. Atherosclerosis. 2013;226:328–334. doi: 10.1016/j.atherosclerosis.2012.10.056. PubMed DOI
Cardoso C., Afonso C., Bandarra N.M. Dietary dha and health: Cognitive function ageing. Nutr. Res. Rev. 2016;29:281–294. doi: 10.1017/S0954422416000184. PubMed DOI
Statement on the Benefits of Fish/Seafood Consumption Compared to the Risks of Methylmercury in Fish/Seafood. [(accessed on 20 June 2020)]; Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2015.3982. DOI
Mozaffarian D., Wu J.H. (n-3) fatty acids and cardiovascular health: Are effects of epa and dha shared or complementary? J. Nutr. Biochem. 2012;142:614S–625S. doi: 10.3945/jn.111.149633. PubMed DOI PMC
Wall R., Ross R.P., Fitzgerald G.F., Stanton C. Fatty acids from fish: The anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev. 2010;68:280–289. doi: 10.1111/j.1753-4887.2010.00287.x. PubMed DOI
Sati A., Bhatt P. Krill oil: The most powerful omega 3 known on earth. Int. J. Pharm. Sci. Res. 2018;9:2693–2699. doi: 10.13040/ijpsr.0975-8232.9(7).2693-99. DOI
Rezanka T., Petrankova M., Cepak V., Pribyl P., Sigler K., Cajthaml T. Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid. Folia Microbiol. 2010;55:265–269. doi: 10.1007/s12223-010-0039-0. PubMed DOI
Xue Z., Wan F., Yu W., Liu J., Zhang Z., Kou X. Edible oil production from microalgae: A review. Eur. J. Lipid Sci. Technol. 2018;120:1700428. doi: 10.1002/ejlt.201700428. DOI
Jonasdottir S.H. Fatty acid profiles and production in marine phytoplankton. Mar. Drugs. 2019;17 doi: 10.3390/md17030151. PubMed DOI PMC
Avallone R., Vitale G., Bertolotti M. Omega-3 fatty acids and neurodegenerative diseases: New evidence in clinical trials. Int. J. Mol. Sci. 2019;20:4256. doi: 10.3390/ijms20174256. PubMed DOI PMC
Givens D.I. Manipulation of lipids in animal-derived foods: Can it contribute to public health nutrition? Eur. J. Lipid Sci. Technol. 2015;117:1306–1316. doi: 10.1002/ejlt.201400427. DOI
Schuchardt J.P., Hahn A. Bioavailability of long-chain omega-3 fatty acids. Prostag. Leukotr. Ess. 2013;89:1–8. doi: 10.1016/j.plefa.2013.03.010. PubMed DOI
Prasad P., Anjali P., Sreedhar R.V. Plant-based stearidonic acid as sustainable source of omega-3 fatty acid with functional outcomes on human health. Crit. Rev. Food Sci. Nutr. 2020:1–13. doi: 10.1080/10408398.2020.1765137. PubMed DOI
Bowen K.J., Richter C.K., Skulas-Ray A.C., Mozaffarian D., Kris-Etherton P.M. Projected long-chain n-3 fatty acid intake post-replacement of vegetables oils with stearidonic acid-modified varieties: Results from a national health and nutrition examination survey 2003–2008 analysis. Lipids. 2018;53:961–970. doi: 10.1002/lipd.12105. PubMed DOI
Cortinas L., Villaverde C., Galobart J., Baucells M.D., Codony R., Barroeta A.C. Fatty acid content in chicken thigh and breast as affected by dietary polyunsaturation level. Poult. Sci. 2004;83:1155–1164. doi: 10.1093/ps/83.7.1155. PubMed DOI
Zuidhof M.J., Betti M., Korver D.R., Hernandez F.I.L., Schneider B.L., Carney V.L., Renema R.A. Omega-3-enriched broiler meat: 1. Optimization of a production system. Poult. Sci. 2009;88:1108–1120. doi: 10.3382/ps.2008-00171. PubMed DOI
Fraeye I., Bruneel C., Lemahieu C., Buyse J., Muylaert K., Foubert I. Dietary enrichment of eggs with omega-3 fatty acids: A review. Food Res. Int. 2012;48:961–969. doi: 10.1016/j.foodres.2012.03.014. DOI
Meluzzi A., Sirri F., Tallarico N., Franchini A. Effect of different vegetable lipid sources on the fatty acid composition of egg yolk and on hen performance. Arch. Geflugelkd. 2001;65:207–213.
Benavides A.H.J. Evaluation of the type housing and inclusion of flaxseed supplement “linum usitatisium l.” For the production egg enrichment with omega-3 fatty acids. Rev. Colomb. Investig. Agroind. 2018;5:52–73. doi: 10.23850/24220582.1509. DOI
Keegan J.D., Fusconi G., Morlacchini M., Moran C.A. Whole-life or fattening period only broiler feeding strategies achieve similar levels of omega-3 fatty acid enrichment using the dha-rich protist, aurantiochytrium limacinum. Animals. 2019;9:14. doi: 10.3390/ani9060327. PubMed DOI PMC
Moran C.A., Morlacchini M., Keegan J.D., Rutz F., Fusconi G. Docosahexaenoic acid enrichment of layer hen tissues and eggs through dietary supplementation with heterotrophically grown aurantiochytrium limacinum. J. Appl. Poult. Res. 2020;29:152–161. doi: 10.1016/j.japr.2019.10.002. DOI
Turner T.D., Mapiye C., Aalhus J.L., Beaulieu A.D., Patience J.F., Zijlstra R.T., Dugan M.E.R. Flaxseed fed pork: N-3 fatty acid enrichment and contribution to dietary recommendations. Meat Sci. 2014;96:541–547. doi: 10.1016/j.meatsci.2013.08.021. PubMed DOI
Vahmani P., Mapiye C., Prieto N., Rolland D.C., McAllister T.A., Aalhus J.L., Dugan M.E.R. The scope for manipulating the polyunsaturated fatty acid content of beef: A review. J. Anim. Sci. Biotechnol. 2015;6:29. doi: 10.1186/s40104-015-0026-z. PubMed DOI PMC
Zajic T., Mraz J., Kozák P., Adámková V., Pickova J. Meat of common carp with increased omega 3 fatty acids content as a tool for prevention and rehabilitation of cardiovascular diseases. Interni Med. Pro Praxi. 2012;14:437–440.
Czech Statistical Office Food Cousumption. [(accessed on 20 June 2020)]; Available online: https://www.czso.cz/csu/czso/spotreba-potravin-2018.
Rose H.G., Oklander M. Improved procedure for the extraction of lipids from human erythrocytes. J. Lipid Res. 1965;6:428–431. PubMed
McEwen B.J., Morel-Kopp M.C., Chen W., Tofler G.H., Ward C.M. Effects of omega-3 polyunsaturated fatty acids on platelet function in healthy subjects and subjects with cardiovascular disease. Semin. Thromb. Hemost. 2013;39:25–32. doi: 10.1055/s-0032-1333309. PubMed DOI
Cottin S.C., Alsaleh A., Sanders T.A.B., Hall W.L. Lack of effect of supplementation with epa or dha on plateletmonocyte aggregates and vascular function in healthy men. Nutr. Metab. Carbiovasc. Dis. 2016;26:743–751. doi: 10.1016/j.numecd.2016.03.004. PubMed DOI
Austria J.A., Richard M.N., Chahine M.N., Edel A.L., Malcolmson L.J., Dupasquier C.M.C., Pierce G.N. Bioavailability of alpha-linolenic acid in subjects after ingestion of three different forms of flaxseed. J. Am. Coll. Nutr. 2008;27:214–221. doi: 10.1080/07315724.2008.10719693. PubMed DOI
Finnegan Y.E., Howarth D., Minihane A.M., Kew S., Miller G.J., Calder P.C., Williams C.M. Plant and marine derived (n-3) polyunsaturated fatty acids do not affect blood coagulation and fibrinolytic factors in moderately hyperlipidemic humans. J. Nutr. 2003;133:2210–2213. doi: 10.1093/jn/133.7.2210. PubMed DOI
Sijben J.W.C., Calder P.C. Differential immunomodulation with long-chain n-3 pufa in health and chronic disease. Proc. Nutr. Soc. 2007;66:237–259. doi: 10.1017/S0029665107005472. PubMed DOI
Risé P., Eligini S., Ghezzi S., Colli S., Galli C. Fatty acid composition of plasma, blood cells and whole blood: Relevance for the assessment of the fatty acid status in humans. Prostag. Leukotr. Ess. 2007;76:363–369. doi: 10.1016/j.plefa.2007.05.003. PubMed DOI
Poppitt S.D., Kilmartin P., Butler P., Keogh G.F. Assessment of erythrocyte phospholipid fatty acid composition as a biomarker for dietary mufa, pufa or saturated fatty acid intake in a controlled cross-over intervention trial. Lipids Health Dis. 2005;4:30. doi: 10.1186/1476-511X-4-30. PubMed DOI PMC
Serra-Majem L., Nissensohn M., Overby N.C., Fekete K. Dietary methods and biomarkers of omega 3 fatty acids: A systematic review. Br. J. Nutr. 2012;107:S64–S76. doi: 10.1017/S000711451200147X. PubMed DOI
Harris W.S. The omega-6:Omega-3 ratio: A critical appraisal and possible successor. Prostag. Leukotr. Ess. 2018;132:34–40. doi: 10.1016/j.plefa.2018.03.003. PubMed DOI
Alfaddagh A., Elajami T.K., Saleh M., Mohebali D., Bistrian B.R., Welty F.K. An omega-3 fatty acid plasma index ≥ 4% prevents progression of coronary artery plaque in patients with coronary artery disease on statin treatment. Atherosclerosis. 2019;285:153–162. doi: 10.1016/j.atherosclerosis.2019.04.213. PubMed DOI PMC