A New Approach for Testing Fetal Heart Rate Monitors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No. TL01000302
Czech Technical Science Foundation - TACR ETA
PubMed
32722397
PubMed Central
PMC7436177
DOI
10.3390/s20154139
PII: s20154139
Knihovny.cz E-zdroje
- Klíčová slova
- cardiotocograph, doppler effect, fetal heart rate, fetal heart rate monitor device, heart movement simulator, tests of medical device,
- MeSH
- lidé MeSH
- monitorování fyziologických funkcí MeSH
- plod * MeSH
- srdeční frekvence plodu * MeSH
- srdeční frekvence MeSH
- těhotenství MeSH
- ultrasonografie MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
In this paper, a new approach for the periodical testing and the functionality evaluation of a fetal heart rate monitor device based on ultrasound principle is proposed. The design and realization of the device are presented, together with the description of its features and functioning tests. In the designed device, a relay element, driven by an electric signal that allows switching at two specific frequencies, is used to simulate the fetus and the mother's heartbeat. The simulator was designed to be compliant with the standard requirements for accurate assessment and measurement of medical devices. The accuracy of the simulated signals was evaluated, and it resulted to be stable and reliable. The generated frequencies show an error of about 0.5% with respect to the nominal one while the accuracy of the test equipment was within ±3% of the test signal set frequency. This value complies with the technical standard for the accuracy of fetal heart rate monitor devices. Moreover, the performed tests and measurements show the correct functionality of the developed simulator. The proposed equipment and testing respect the technical requirements for medical devices. The features of the proposed device make it simple and quick in testing a fetal heart rate monitor, thus providing an efficient way to evaluate and test the correlation capabilities of commercial apparatuses.
Zobrazit více v PubMed
Moorman A., Webb S., Brown N.A., Lamers W., Anderson R.H. Development of the heart: (1) formation of the cardiac chambers and arterial trunks. Heart. 2003;89:806–814. doi: 10.1136/heart.89.7.806. PubMed DOI PMC
Makrydimas G., Sebire N.J., Lolis D., Vlassis N., Nicolaides K.H. Fetal loss following ultrasound diagnosis of a live fetus at 6–10 weeks of gestation. Ultrasound Obstet. Gynecol. 2003;22:368–372. doi: 10.1002/uog.204. PubMed DOI
von Steinburg S.P., Boulesteix A., Lederer C., Grunow S., Schiermeier S., Hatzmann W., Schneider K.M., Daumer M. What is the “normal” fetal heart rate? PeerJ. 2013;1:e82. doi: 10.7717/peerj.82. PubMed DOI PMC
Davey B. Diagnosis and management of heart failure in the fetus. Minerva Pediatrica. 2012;64:471–492. PubMed PMC
European Health Information Gateway. [(accessed on 4 June 2020)]; Available online: https://gateway.euro.who.int/en/indicators/hfa_82-1160-fetal-deaths-per-1000-births/
Matonia A. Modelling of non-invasively recorded maternal and fetal electrocardiographic signals. Biocybern. Biomed. Eng. 2005;25:27–39.
Reinhard J. Intrapartum Heart Rate Ambiguity: A Comparison of Cardiotocogram and Abdominal Fetal Electrocardiogram with Maternal Electrocardiogram. Gynecol. Obstet. Investig. 2013;75:101–108. doi: 10.1159/000345059. PubMed DOI
Martinek R. Non-Invasive Fetal Monitoring: A Maternal Surface ECG Electrode Placement-Based Novel Approach for Optimization of Adaptive Filter Control Parameters Using the LMS and RLS Algorithms. Sensors. 2017;17:1154. doi: 10.3390/s17051154. PubMed DOI PMC
Adam G.K. Design and Development of Embedded Control System for a Lime Delivery Machine. IFAC Proc. Vol. 2009;42:102–107. doi: 10.3182/20090210-3-CZ-4002.00023. DOI
Majernik J., Mad’ar M., Mojzisova J. Integration of Virtual Patients in Education of Veterinary Medicine; Proceedings of the 2017 Federated Conference on Computer Science and Information Systems; Prague, Czech Republic. 3–6 September 2017; pp. 185–188.
Pillarisetty L.S., Bragg B.N. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2020. [(accessed on 20 July 2020)]. Late Decelerations. Available online: https://www.ncbi.nlm.nih.gov/books/NBK539820/ PubMed
Jezewski J. Is Abdominal Fetal Electrocardiography an Alternative to Doppler Ultrasound for FHR Variability Evaluation? Front. Physiol. 2017;8:305. doi: 10.3389/fphys.2017.00305. PubMed DOI PMC
Martinek R. A Phonocardiographic-Based Fiber-Optic Sensor and Adaptive Filtering System for Noninvasive Continuous Fetal Heart Rate Monitoring. Sensors. 2017;17:890. doi: 10.3390/s17040890. PubMed DOI PMC
Grepl J. Advanced Computer and Communication Engineering Technology. Springer; Cham, Switzerland: 2016. Real time signal detection and computer visualization of the patient respiration; pp. 783–793.
Jezewski J., Roj D., Wrobel J., Horoba K. A novel technique for fetal heart rate estimation from Doppler ultrasound signal. Biomed. Eng. Online. 2011;10:92. doi: 10.1186/1475-925X-10-92. PubMed DOI PMC
Rozanek M. Variability of Vital Signs in Simulations with Mannequin in Education of Bioengineers; Proceedings of the 2017 IEEE International Conference on E-Health and Bioengineering Conference; Sinaia, Romania. 22–24 June 2017; pp. 611–614.
Knaus J.V. Ambulatory Gynecology. Springer; Berlin/Heidelberg, Germany: 2018. pp. 1–415.
Kurjak A. CRC Handbook of Ultrasound in Obstetrics and Gynecology. Volume 1. CRC Press; Boca Raton, FL, USA: 2019. pp. 1–360.
Keder L., Olsen M.E., editors. Gynecologic Care. Cambridge University Press; Cambridge, UK: 2018. pp. 1–464.
Sameni R., Clifford G.D. A Review of Fetal ECG Signal Processing; Issues and Promising Directions. Open Pacing Electrophysiol. Ther. J. 2010;3:4–20. doi: 10.2174/1876536X01003010004. PubMed DOI PMC
Wladimiroff J.W., Seelen J.C. Fetal heart action in early pregnancy. Development of fetal vagal function. Eur. J. Obstet. Gynecol. 1972;2:55–63. doi: 10.1016/0028-2243(72)90065-2. DOI
Peterek T. Principal component analysis and fuzzy clustering of SA HRV during the Orthostatic challenge; Proceedings of the 2012 35th International Conference on Telecommunications and Signal Processing (TSP); Prague, Czech Republic. 3–4 July 2012.
Fluke Prosim 8 Manual. [(accessed on 20 July 2020)]; Available online: https://www.flukebiomedical.com/sites/default/files/resources/prosim8_umeng0300.pdf.
Bibbo D. Design and Development of a Novel Invasive Blood Pressure Simulator for Patient’s Monitor Testing. Sensors. 2020;20:259. doi: 10.3390/s20010259. PubMed DOI PMC
Goncalves H. Comparison of the effect of different sampling modes on computer analysis of cardiotocograms. Comput. Biol. Med. 2015;64:62–66. doi: 10.1016/j.compbiomed.2015.06.011. PubMed DOI
Cesarelli M. Simulation of foetal phonocardiographic recordings for testing of FHR extraction algorithms. Comput. Methods Programs Biomed. 2012;107:513–523. doi: 10.1016/j.cmpb.2011.11.008. PubMed DOI
van der Hout-van der Jagt M.B., Oei S.G., Bovendeerd P.H.M. A mathematical model for simulation of early decelerations in the cardiotocogram during labor. Med. Eng. Phys. 2012;34:579–589. doi: 10.1016/j.medengphy.2011.09.004. PubMed DOI
Martinek R. A novel LabVIEW-based multi-channel non-invasive abdominal maternal-fetal electrocardiogram signal generator. Physiol. Meas. 2016;37:238–256. doi: 10.1088/0967-3334/37/2/238. PubMed DOI
Mert A., Sezdi M., Akan A. A test and simulation device for Doppler-based fetal heart rate monitoring. Turk. J. Electr. Eng. Comput. Sci. 2015;23:1187–1194. doi: 10.3906/elk-1306-224. DOI
Minnalkodi N.S. Cardio tocograph: Admission test and outcome. J. Evol. Med Dent. Sci. 2015;4:16747–16753. doi: 10.14260/jemds/2015/2508. DOI
Pinas A., Chandraharan E. Continuous cardiotocography during labour: Analysis, classification and management. Best Pract. Res. Clin. Obstet. Gynaecol. 2016;30:33–47. doi: 10.1016/j.bpobgyn.2015.03.022. PubMed DOI
Hamelmann P., Mischi M., Kolen A.F., van Laar J.O.E.H., Vullings R., Bergmans J.W.M. Fetal Heart Rate Monitoring Implemented by Dynamic Adaptation of Transmission Power of a Flexible Ultrasound Transducer Array. Sensors. 2019;19:1195. doi: 10.3390/s19051195. PubMed DOI PMC
Series 50 Fetal Monitors. 7th ed. Philps; Amsterdam, The Netherlands: 2020. [(accessed on 20 July 2020)]. p. 98. Available online: http://www.frankshospitalworkshop.com/equipment/documents/ecg/service_manuals/Philips_Series_50_-_Service_manual.pdf.
Heart and Cardiac Muscle Physiology. J. Physiol. 1994;475:77–87. doi: 10.1113/jphysiol.1994.sp020101. DOI
Modern Trends and Applications of Intelligent Methods in Biomedical Signal and Image Processing