Molecular Mechanisms Underlying Hepatocellular Carcinoma Induction by Aberrant NRF2 Activation-Mediated Transcription Networks: Interaction of NRF2-KEAP1 Controls the Fate of Hepatocarcinogenesis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
2017/25/B/NZ5/02762
Narodowe Centrum Nauki
PubMed
32751080
PubMed Central
PMC7432811
DOI
10.3390/ijms21155378
PII: ijms21155378
Knihovny.cz E-zdroje
- Klíčová slova
- NF-E2-related factor 2, hepatocellular carcinoma, oxidative stress, redox homeostasis, transcription factor,
- MeSH
- aktivace transkripce * MeSH
- analýza přežití MeSH
- faktor 2 související s NF-E2 genetika metabolismus MeSH
- genové regulační sítě MeSH
- hepatocelulární karcinom diagnóza genetika mortalita patologie MeSH
- karcinogeneze genetika metabolismus patologie MeSH
- KEAP-1 genetika metabolismus MeSH
- lidé MeSH
- mutace MeSH
- nádorové buněčné linie MeSH
- nádory jater diagnóza genetika mortalita patologie MeSH
- oxidace-redukce MeSH
- oxidační stres MeSH
- prognóza MeSH
- regulace genové exprese u nádorů * MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- faktor 2 související s NF-E2 MeSH
- KEAP-1 MeSH
- KEAP1 protein, human MeSH Prohlížeč
- NFE2L2 protein, human MeSH Prohlížeč
NF-E2-related factor 2 (NRF2) is a basic leucine zipper transcription factor, a master regulator of redox homeostasis regulating a variety of genes for antioxidant and detoxification enzymes. NRF2 was, therefore, initially thought to protect the liver from oxidative stress. Recent studies, however, have revealed that mutations in NRF2 cause aberrant accumulation of NRF2 in the nucleus and exert the upregulation of NRF2 target genes. Moreover, among all molecular changes in hepatocellular carcinoma (HCC), NRF2 activation has been revealed as a more prominent pathway contributing to the progression of precancerous lesions to malignancy. Nevertheless, how its activation leads to poor prognosis in HCC patients remains unclear. In this review, we provide an overview of how aberrant activation of NRF2 triggers HCC development. We also summarize the emerging roles of other NRF family members in liver cancer development.
Department of Pharmacognosy University of Vienna 1090 Vienna Austria
Institute of Neurobiology Bulgarian Academy of Sciences 1113 Sofia Bulgaria
Zobrazit více v PubMed
Abdalla M.Y., Ahmad I.M., Spitz D.R., Schmidt W.N., Britigan B.E. Hepatitis C Virus-Core and Non Structural Proteins Lead to Different Effects on Cellular Antioxidant Defenses. J. Med. Virol. 2005;76:489–497. doi: 10.1002/jmv.20388. PubMed DOI
Brault C., Levy P., Duponchel S., Michelet M., Salle A., Pecheur E.I., Plissonnier M.L., Parent R., Vericel E., Ivanov A.V., et al. Glutathione Peroxidase 4 is Reversibly Induced by HCV to Control Lipid Peroxidation and to Increase Virion Infectivity. Gut. 2016;65:144–154. doi: 10.1136/gutjnl-2014-307904. PubMed DOI
Higuchi H., Adachi M., Miura S., Gores G.J., Ishii H. The Mitochondrial Permeability Transition Contributes to Acute Ethanol-Induced Apoptosis in Rat Hepatocytes. Hepatology. 2001;34:320–328. doi: 10.1053/jhep.2001.26380. PubMed DOI
Sidharthan S., Kottilil S. Mechanisms of Alcohol-Induced Hepatocellular Carcinoma. Hepatol. Int. 2014;8:452–457. doi: 10.1007/s12072-013-9494-4. PubMed DOI PMC
Tsai S.M., Lin S.K., Lee K.T., Hsiao J.K., Huang J.C., Wu S.H., Ma H., Wu S.H., Tsai L.Y. Evaluation of Redox Statuses in Patients with Hepatitis B Virus-Associated Hepatocellular Carcinoma. Ann. Clin. Biochem. 2009;46:394–400. doi: 10.1258/acb.2009.009029. PubMed DOI
Zhou L., Yang Y., Tian D., Wang Y. Oxidative Stress-Induced 1, N6-Ethenodeoxyadenosine Adduct Formation Contributes to Hepatocarcinogenesis. Oncol. Rep. 2013;29:875–884. doi: 10.3892/or.2013.2227. PubMed DOI PMC
Tanaka H., Fujita N., Sugimoto R., Urawa N., Horiike S., Kobayashi Y., Iwasa M., Ma N., Kawanishi S., Watanabe S., et al. Hepatic Oxidative DNA Damage is Associated with Increased Risk for Hepatocellular Carcinoma in Chronic Hepatitis C. Br. J. Cancer. 2008;98:580–586. doi: 10.1038/sj.bjc.6604204. PubMed DOI PMC
Bartsch H., Nair J. Oxidative Stress and Lipid Peroxidation-Derived DNA-Lesions in Inflammation Driven Carcinogenesis. Cancer Detect. Prev. 2004;28:385–391. doi: 10.1016/j.cdp.2004.07.004. PubMed DOI
Takaki A., Kawano S., Uchida D., Takahara M., Hiraoka S., Okada H. Paradoxical Roles of Oxidative Stress Response in the Digestive System before and After Carcinogenesis. Cancers. 2019;11:213. doi: 10.3390/cancers11020213. PubMed DOI PMC
Fujinaga H., Tsutsumi T., Yotsuyanagi H., Moriya K., Koike K. Hepatocarcinogenesis in Hepatitis C: HCV Shrewdly Exacerbates Oxidative Stress by Modulating both Production and Scavenging of Reactive Oxygen Species. Oncology. 2011;81(Suppl. 1):11–17. doi: 10.1159/000333253. PubMed DOI
Bhargava A., Raghuram G.V., Pathak N., Varshney S., Jatawa S.K., Jain D., Mishra P.K. Occult Hepatitis C Virus Elicits Mitochondrial Oxidative Stress in Lymphocytes and Triggers PI3-Kinase-Mediated DNA Damage Response. Free Radic. Biol. Med. 2011;51:1806–1814. doi: 10.1016/j.freeradbiomed.2011.08.009. PubMed DOI
Jungst C., Cheng B., Gehrke R., Schmitz V., Nischalke H.D., Ramakers J., Schramel P., Schirmacher P., Sauerbruch T., Caselmann W.H. Oxidative Damage is Increased in Human Liver Tissue Adjacent to Hepatocellular Carcinoma. Hepatology. 2004;39:1663–1672. doi: 10.1002/hep.20241. PubMed DOI
He F., Antonucci L., Yamachika S., Zhang Z., Taniguchi K., Umemura A., Hatzivassiliou G., Roose-Girma M., Reina-Campos M., Duran A., et al. NRF2 Activates Growth Factor Genes and Downstream AKT Signaling to Induce Mouse and Human Hepatomegaly. J. Hepatol. 2020;72:1182–1195. doi: 10.1016/j.jhep.2020.01.023. PubMed DOI PMC
Raghunath A., Sundarraj K., Arfuso F., Sethi G., Perumal E. Dysregulation of Nrf2 in Hepatocellular Carcinoma: Role in Cancer Progression and Chemoresistance. Cancers. 2018;10:481. doi: 10.3390/cancers10120481. PubMed DOI PMC
McMahon M., Itoh K., Yamamoto M., Hayes J.D. Keap1-Dependent Proteasomal Degradation of Transcription Factor Nrf2 Contributes to the Negative Regulation of Antioxidant Response Element-Driven Gene Expression. J. Biol. Chem. 2003;278:21592–21600. doi: 10.1074/jbc.M300931200. PubMed DOI
Itoh K., Wakabayashi N., Katoh Y., Ishii T., Igarashi K., Engel J.D., Yamamoto M. Keap1 Represses Nuclear Activation of Antioxidant Responsive Elements by Nrf2 through Binding to the Amino-Terminal Neh2 Domain. Genes Dev. 1999;13:76–86. doi: 10.1101/gad.13.1.76. PubMed DOI PMC
Huang H.C., Nguyen T., Pickett C.B. Phosphorylation of Nrf2 at Ser-40 by Protein Kinase C Regulates Antioxidant Response Element-Mediated Transcription. J. Biol. Chem. 2002;277:42769–42774. doi: 10.1074/jbc.M206911200. PubMed DOI
Nguyen T., Huang H.C., Pickett C.B. Transcriptional Regulation of the Antioxidant Response Element. Activation by Nrf2 and Repression by MafK. J. Biol. Chem. 2000;275:15466–15473. doi: 10.1074/jbc.M000361200. PubMed DOI
Itoh K., Chiba T., Takahashi S., Ishii T., Igarashi K., Katoh Y., Oyake T., Hayashi N., Satoh K., Hatayama I., et al. An Nrf2/small Maf Heterodimer Mediates the Induction of Phase II Detoxifying Enzyme Genes through Antioxidant Response Elements. Biochem. Biophys. Res. Commun. 1997;236:313–322. doi: 10.1006/bbrc.1997.6943. PubMed DOI
Yamaguchi Y., Kamai T., Higashi S., Murakami S., Arai K., Shirataki H., Yoshida K.I. Nrf2 Gene Mutation and Single Nucleotide Polymorphism rs6721961 of the Nrf2 Promoter Region in Renal Cell Cancer. BMC Cancer. 2019;19:1137. doi: 10.1186/s12885-019-6347-0. PubMed DOI PMC
Kerins M.J., Ooi A. A Catalogue of Somatic NRF2 Gain-of-Function Mutations in Cancer. Sci. Rep. 2018;8:12846. doi: 10.1038/s41598-018-31281-0. PubMed DOI PMC
Shibata T., Kokubu A., Saito S., Narisawa-Saito M., Sasaki H., Aoyagi K., Yoshimatsu Y., Tachimori Y., Kushima R., Kiyono T., et al. NRF2 Mutation Confers Malignant Potential and Resistance to Chemoradiation Therapy in Advanced Esophageal Squamous Cancer. Neoplasia. 2011;13:864–873. doi: 10.1593/neo.11750. PubMed DOI PMC
Shibata T., Ohta T., Tong K.I., Kokubu A., Odogawa R., Tsuta K., Asamura H., Yamamoto M., Hirohashi S. Cancer Related Mutations in NRF2 Impair its Recognition by Keap1-Cul3 E3 Ligase and Promote Malignancy. Proc. Natl. Acad. Sci. USA. 2008;105:13568–13573. doi: 10.1073/pnas.0806268105. PubMed DOI PMC
Guichard C., Amaddeo G., Imbeaud S., Ladeiro Y., Pelletier L., Maad I.B., Calderaro J., Bioulac-Sage P., Letexier M., Degos F., et al. Integrated Analysis of Somatic Mutations and Focal Copy-Number Changes Identifies Key Genes and Pathways in Hepatocellular Carcinoma. Nat. Genet. 2012;44:694–698. doi: 10.1038/ng.2256. PubMed DOI PMC
Wang J., Shao M., Liu M., Peng P., Li L., Wu W., Wang L., Duan F., Zhang M., Song S., et al. PKCalpha Promotes Generation of Reactive Oxygen Species Via DUOX2 in Hepatocellular Carcinoma. Biochem. Biophys. Res. Commun. 2015;463:839–845. doi: 10.1016/j.bbrc.2015.06.021. PubMed DOI
Gentric G., Maillet V., Paradis V., Couton D., L’Hermitte A., Panasyuk G., Fromenty B., Celton-Morizur S., Desdouets C. Oxidative Stress Promotes Pathologic Polyploidization in Nonalcoholic Fatty Liver Disease. J. Clin. Investig. 2015;125:981–992. doi: 10.1172/JCI73957. PubMed DOI PMC
Sakurai T., He G., Matsuzawa A., Yu G.Y., Maeda S., Hardiman G., Karin M. Hepatocyte Necrosis Induced by Oxidative Stress and IL-1 Alpha Release Mediate Carcinogen-Induced Compensatory Proliferation and Liver Tumorigenesis. Cancer Cell. 2008;14:156–165. doi: 10.1016/j.ccr.2008.06.016. PubMed DOI PMC
Wang Z., Li Z., Ye Y., Xie L., Li W. Oxidative Stress and Liver Cancer: Etiology and Therapeutic Targets. Oxid. Med. Cell. Longev. 2016;2016:7891574. doi: 10.1155/2016/7891574. PubMed DOI PMC
Koliaki C., Szendroedi J., Kaul K., Jelenik T., Nowotny P., Jankowiak F., Herder C., Carstensen M., Krausch M., Knoefel W.T., et al. Adaptation of Hepatic Mitochondrial Function in Humans with Non-Alcoholic Fatty Liver is Lost in Steatohepatitis. Cell Metab. 2015;21:739–746. doi: 10.1016/j.cmet.2015.04.004. PubMed DOI
Malik A.N., Czajka A. Is Mitochondrial DNA Content a Potential Biomarker of Mitochondrial Dysfunction? Mitochondrion. 2013;13:481–492. doi: 10.1016/j.mito.2012.10.011. PubMed DOI
Satapati S., Sunny N.E., Kucejova B., Fu X., He T.T., Mendez-Lucas A., Shelton J.M., Perales J.C., Browning J.D., Burgess S.C. Elevated TCA Cycle Function in the Pathology of Diet-Induced Hepatic Insulin Resistance and Fatty Liver. J. Lipid Res. 2012;53:1080–1092. doi: 10.1194/jlr.M023382. PubMed DOI PMC
Wiemann S.U., Satyanarayana A., Tsahuridu M., Tillmann H.L., Zender L., Klempnauer J., Flemming P., Franco S., Blasco M.A., Manns M.P., et al. Hepatocyte Telomere Shortening and Senescence are General Markers of Human Liver Cirrhosis. FASEB J. 2002;16:935–942. doi: 10.1096/fj.01-0977com. PubMed DOI
Vrba J., Modriansky M. Oxidative Burst of Kupffer Cells: Target for Liver Injury Treatment. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2002;146:15–20. doi: 10.5507/bp.2002.003. PubMed DOI
Mahmoudvand S., Shokri S., Taherkhani R., Farshadpour F. Hepatitis C Virus Core Protein Modulates several Signaling Pathways Involved in Hepatocellular Carcinoma. World J. Gastroenterol. 2019;25:42–58. doi: 10.3748/wjg.v25.i1.42. PubMed DOI PMC
Chusri P., Kumthip K., Hong J., Zhu C., Duan X., Jilg N., Fusco D.N., Brisac C., Schaefer E.A., Cai D., et al. HCV Induces Transforming Growth Factor beta1 through Activation of Endoplasmic Reticulum Stress and the Unfolded Protein Response. Sci. Rep. 2016;6:22487. doi: 10.1038/srep22487. PubMed DOI PMC
Nguyen K.C., Willmore W.G., Tayabali A.F. Cadmium Telluride Quantum Dots Cause Oxidative Stress Leading to Extrinsic and Intrinsic Apoptosis in Hepatocellular Carcinoma HepG2 Cells. Toxicology. 2013;306:114–123. doi: 10.1016/j.tox.2013.02.010. PubMed DOI
Lin W., Tsai W.L., Shao R.X., Wu G., Peng L.F., Barlow L.L., Chung W.J., Zhang L., Zhao H., Jang J.Y., et al. Hepatitis C Virus Regulates Transforming Growth Factor beta1 Production through the Generation of Reactive Oxygen Species in a Nuclear Factor kappaB-Dependent Manner. Gastroenterology. 2010;138:2509–2518.e1. doi: 10.1053/j.gastro.2010.03.008. PubMed DOI PMC
Gong G., Waris G., Tanveer R., Siddiqui A. Human Hepatitis C Virus NS5A Protein Alters Intracellular Calcium Levels, Induces Oxidative Stress, and Activates STAT-3 and NF-Kappa B. Proc. Natl. Acad. Sci. USA. 2001;98:9599–9604. doi: 10.1073/pnas.171311298. PubMed DOI PMC
McKillop I.H., Schmidt C.M., Cahill P.A., Sitzmann J.V. Altered Expression of Mitogen-Activated Protein Kinases in a Rat Model of Experimental Hepatocellular Carcinoma. Hepatology. 1997;26:1484–1491. doi: 10.1002/hep.510260615. PubMed DOI
Mahmoud A.M., Mohammed H.M., Khadrawy S.M., Galaly S.R. Hesperidin Protects Against Chemically Induced Hepatocarcinogenesis Via Modulation of Nrf2/ARE/HO-1, PPARgamma and TGF-beta1/Smad3 Signaling, and Amelioration of Oxidative Stress and Inflammation. Chem. Biol. Interact. 2017;277:146–158. doi: 10.1016/j.cbi.2017.09.015. PubMed DOI
Zhang D.D., Lo S.C., Cross J.V., Templeton D.J., Hannink M. Keap1 is a Redox-Regulated Substrate Adaptor Protein for a Cul3-Dependent Ubiquitin Ligase Complex. Mol. Cell. Biol. 2004;24:10941–10953. doi: 10.1128/MCB.24.24.10941-10953.2004. PubMed DOI PMC
Motohashi H., Yamamoto M. Nrf2-Keap1 Defines a Physiologically Important Stress Response Mechanism. Trends Mol. Med. 2004;10:549–557. doi: 10.1016/j.molmed.2004.09.003. PubMed DOI
Kobayashi A., Kang M.I., Okawa H., Ohtsuji M., Zenke Y., Chiba T., Igarashi K., Yamamoto M. Oxidative Stress Sensor Keap1 Functions as an Adaptor for Cul3-Based E3 Ligase to Regulate Proteasomal Degradation of Nrf2. Mol. Cell. Biol. 2004;24:7130–7139. doi: 10.1128/MCB.24.16.7130-7139.2004. PubMed DOI PMC
Basak P., Sadhukhan P., Sarkar P., Sil P.C. Perspectives of the Nrf-2 Signaling Pathway in Cancer Progression and Therapy. Toxicol. Rep. 2017;4:306–318. doi: 10.1016/j.toxrep.2017.06.002. PubMed DOI PMC
Moi P., Chan K., Asunis I., Cao A., Kan Y.W. Isolation of NF-E2-Related Factor 2 (Nrf2), a NF-E2-Like Basic Leucine Zipper Transcriptional Activator that Binds to the Tandem NF-E2/AP1 Repeat of the Beta-Globin Locus Control Region. Proc. Natl. Acad. Sci. USA. 1994;91:9926–9930. doi: 10.1073/pnas.91.21.9926. PubMed DOI PMC
Motohashi H., Katsuoka F., Engel J.D., Yamamoto M. Small Maf Proteins Serve as Transcriptional Cofactors for Keratinocyte Differentiation in the Keap1-Nrf2 Regulatory Pathway. Proc. Natl. Acad. Sci. USA. 2004;101:6379–6384. doi: 10.1073/pnas.0305902101. PubMed DOI PMC
Hirotsu Y., Katsuoka F., Funayama R., Nagashima T., Nishida Y., Nakayama K., Engel J.D., Yamamoto M. Nrf2-MafG Heterodimers Contribute Globally to Antioxidant and Metabolic Networks. Nucleic Acids Res. 2012;40:10228–10239. doi: 10.1093/nar/gks827. PubMed DOI PMC
Taguchi K., Motohashi H., Yamamoto M. Molecular Mechanisms of the Keap1-Nrf2 Pathway in Stress Response and Cancer Evolution. Genes Cells. 2011;16:123–140. doi: 10.1111/j.1365-2443.2010.01473.x. PubMed DOI
Wasserman W.W., Fahl W.E. Functional Antioxidant Responsive Elements. Proc. Natl. Acad. Sci. USA. 1997;94:5361–5366. doi: 10.1073/pnas.94.10.5361. PubMed DOI PMC
Kim J., Keum Y.S. NRF2, a Key Regulator of Antioxidants with Two Faces towards Cancer. Oxid. Med. Cell. Longev. 2016;2016:2746457. doi: 10.1155/2016/2746457. PubMed DOI PMC
Tong K.I., Katoh Y., Kusunoki H., Itoh K., Tanaka T., Yamamoto M. Keap1 Recruits Neh2 through Binding to ETGE and DLG Motifs: Characterization of the Two-Site Molecular Recognition Model. Mol. Cell. Biol. 2006;26:2887–2900. doi: 10.1128/MCB.26.8.2887-2900.2006. PubMed DOI PMC
Katoh Y., Iida K., Kang M.I., Kobayashi A., Mizukami M., Tong K.I., McMahon M., Hayes J.D., Itoh K., Yamamoto M. Evolutionary Conserved N-Terminal Domain of Nrf2 is Essential for the Keap1-Mediated Degradation of the Protein by Proteasome. Arch. Biochem. Biophys. 2005;433:342–350. doi: 10.1016/j.abb.2004.10.012. PubMed DOI
Wang H., Liu K., Geng M., Gao P., Wu X., Hai Y., Li Y., Li Y., Luo L., Hayes J.D., et al. RXRalpha Inhibits the NRF2-ARE Signaling Pathway through a Direct Interaction with the Neh7 Domain of NRF2. Cancer Res. 2013;73:3097–3108. doi: 10.1158/0008-5472.CAN-12-3386. PubMed DOI
Rada P., Rojo A.I., Chowdhry S., McMahon M., Hayes J.D., Cuadrado A. SCF/Beta-TrCP Promotes Glycogen Synthase Kinase 3-Dependent Degradation of the Nrf2 Transcription Factor in a Keap1-Independent Manner. Mol. Cell. Biol. 2011;31:1121–1133. doi: 10.1128/MCB.01204-10. PubMed DOI PMC
Katoh Y., Itoh K., Yoshida E., Miyagishi M., Fukamizu A., Yamamoto M. Two Domains of Nrf2 Cooperatively Bind CBP, a CREB Binding Protein, and Synergistically Activate Transcription. Genes Cells. 2001;6:857–868. doi: 10.1046/j.1365-2443.2001.00469.x. PubMed DOI
Nioi P., Nguyen T., Sherratt P.J., Pickett C.B. The Carboxy-Terminal Neh3 Domain of Nrf2 is Required for Transcriptional Activation. Mol. Cell. Biol. 2005;25:10895–10906. doi: 10.1128/MCB.25.24.10895-10906.2005. PubMed DOI PMC
Cullinan S.B., Gordan J.D., Jin J., Harper J.W., Diehl J.A. The Keap1-BTB Protein is an Adaptor that Bridges Nrf2 to a Cul3-Based E3 Ligase: Oxidative Stress Sensing by a Cul3-Keap1 Ligase. Mol. Cell. Biol. 2004;24:8477–8486. doi: 10.1128/MCB.24.19.8477-8486.2004. PubMed DOI PMC
Li X., Zhang D., Hannink M., Beamer L.J. Crystal Structure of the Kelch Domain of Human Keap1. J. Biol. Chem. 2004;279:54750–54758. doi: 10.1074/jbc.M410073200. PubMed DOI
Kobayashi A., Kang M.I., Watai Y., Tong K.I., Shibata T., Uchida K., Yamamoto M. Oxidative and Electrophilic Stresses Activate Nrf2 through Inhibition of Ubiquitination Activity of Keap1. Mol. Cell. Biol. 2006;26:221–229. doi: 10.1128/MCB.26.1.221-229.2006. PubMed DOI PMC
Zhang D.D., Hannink M. Distinct Cysteine Residues in Keap1 are Required for Keap1-Dependent Ubiquitination of Nrf2 and for Stabilization of Nrf2 by Chemopreventive Agents and Oxidative Stress. Mol. Cell. Biol. 2003;23:8137–8151. doi: 10.1128/MCB.23.22.8137-8151.2003. PubMed DOI PMC
Goldstein L.D., Lee J., Gnad F., Klijn C., Schaub A., Reeder J., Daemen A., Bakalarski C.E., Holcomb T., Shames D.S., et al. Recurrent Loss of NFE2L2 Exon 2 is a Mechanism for Nrf2 Pathway Activation in Human Cancers. Cell Rep. 2016;16:2605–2617. doi: 10.1016/j.celrep.2016.08.010. PubMed DOI
Zavattari P., Perra A., Menegon S., Kowalik M.A., Petrelli A., Angioni M.M., Follenzi A., Quagliata L., Ledda-Columbano G.M., Terracciano L., et al. Nrf2, but Not Beta-Catenin, Mutation Represents an Early Event in Rat Hepatocarcinogenesis. Hepatology. 2015;62:851–862. doi: 10.1002/hep.27790. PubMed DOI
Fujimoto A., Furuta M., Totoki Y., Tsunoda T., Kato M., Shiraishi Y., Tanaka H., Taniguchi H., Kawakami Y., Ueno M., et al. Whole-Genome Mutational Landscape and Characterization of Noncoding and Structural Mutations in Liver Cancer. Nat. Genet. 2016;48:500–509. doi: 10.1038/ng.3547. PubMed DOI
Cancer Genome Atlas Research Network Comprehensive Genomic Characterization of Squamous Cell Lung Cancers. Nature. 2012;489:519–525. doi: 10.1038/nature11404. PubMed DOI PMC
Ngo H.K.C., Kim D.H., Cha Y.N., Na H.K., Surh Y.J. Nrf2 Mutagenic Activation Drives Hepatocarcinogenesis. Cancer Res. 2017;77:4797–4808. doi: 10.1158/0008-5472.CAN-16-3538. PubMed DOI
Orru C., Szydlowska M., Taguchi K., Zavattari P., Perra A., Yamamoto M., Columbano A. Genetic Inactivation of Nrf2 Prevents Clonal Expansion of Initiated Cells in a Nutritional Model of Rat Hepatocarcinogenesis. J. Hepatol. 2018;69:635–643. doi: 10.1016/j.jhep.2018.05.010. PubMed DOI
Jeong Y., Hoang N.T., Lovejoy A., Stehr H., Newman A.M., Gentles A.J., Kong W., Truong D., Martin S., Chaudhuri A., et al. Role of KEAP1/NRF2 and TP53 Mutations in Lung Squamous Cell Carcinoma Development and Radiation Resistance. Cancer Discov. 2017;7:86–101. doi: 10.1158/2159-8290.CD-16-0127. PubMed DOI PMC
Niture S.K., Jaiswal A.K. Nrf2-Induced Antiapoptotic Bcl-xL Protein Enhances Cell Survival and Drug Resistance. Free Radic. Biol. Med. 2013;57:119–131. doi: 10.1016/j.freeradbiomed.2012.12.014. PubMed DOI PMC
Zheng A., Chevalier N., Calderoni M., Dubuis G., Dormond O., Ziros P.G., Sykiotis G.P., Widmann C. CRISPR/Cas9 Genome-Wide Screening Identifies KEAP1 as a Sorafenib, Lenvatinib, and Regorafenib Sensitivity Gene in Hepatocellular Carcinoma. Oncotarget. 2019;10:7058–7070. doi: 10.18632/oncotarget.27361. PubMed DOI PMC
Patra K.C., Hay N. The Pentose Phosphate Pathway and Cancer. Trends Biochem. Sci. 2014;39:347–354. doi: 10.1016/j.tibs.2014.06.005. PubMed DOI PMC
Aydin Y., Chedid M., Chava S., Danielle Williams D., Liu S., Hagedorn C.H., Sumitran-Holgersson S., Reiss K., Moroz K., Lu H., et al. Activation of PERK-Nrf2 Oncogenic Signaling Promotes Mdm2-Mediated Rb Degradation in Persistently Infected HCV Culture. Sci. Rep. 2017;7:9223. doi: 10.1038/s41598-017-10087-6. PubMed DOI PMC
Fabrizio F.P., Costantini M., Copetti M., La Torre A., Sparaneo A., Fontana A., Poeta L., Gallucci M., Sentinelli S., Graziano P., et al. Keap1/Nrf2 Pathway in Kidney Cancer: Frequent Methylation of KEAP1 Gene Promoter in Clear Renal Cell Carcinoma. Oncotarget. 2017;8:11187–11198. doi: 10.18632/oncotarget.14492. PubMed DOI PMC
Liu X., Sun C., Liu B., Jin X., Li P., Zheng X., Zhao T., Li F., Li Q. Genistein Mediates the Selective Radiosensitizing Effect in NSCLC A549 Cells Via Inhibiting Methylation of the keap1 Gene Promoter Region. Oncotarget. 2016;7:27267–27279. doi: 10.18632/oncotarget.8403. PubMed DOI PMC
Nault J.C., Mallet M., Pilati C., Calderaro J., Bioulac-Sage P., Laurent C., Laurent A., Cherqui D., Balabaud C., Zucman-Rossi J. High Frequency of Telomerase Reverse-Transcriptase Promoter Somatic Mutations in Hepatocellular Carcinoma and Preneoplastic Lesions. Nat. Commun. 2013;4:2218. doi: 10.1038/ncomms3218. PubMed DOI PMC
Ahmad F., Dixit D., Sharma V., Kumar A., Joshi S.D., Sarkar C., Sen E. Nrf2-Driven TERT Regulates Pentose Phosphate Pathway in Glioblastoma. Cell Death Dis. 2016;7:e2213. doi: 10.1038/cddis.2016.117. PubMed DOI PMC
Kansanen E., Kuosmanen S.M., Leinonen H., Levonen A.L. The Keap1-Nrf2 Pathway: Mechanisms of Activation and Dysregulation in Cancer. Redox Biol. 2013;1:45–49. doi: 10.1016/j.redox.2012.10.001. PubMed DOI PMC
Gozzelino R., Jeney V., Soares M.P. Mechanisms of Cell Protection by Heme Oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 2010;50:323–354. doi: 10.1146/annurev.pharmtox.010909.105600. PubMed DOI
Loboda A., Damulewicz M., Pyza E., Jozkowicz A., Dulak J. Role of Nrf2/HO-1 System in Development, Oxidative Stress Response and Diseases: An Evolutionarily Conserved Mechanism. Cell. Mol. Life Sci. 2016;73:3221–3247. doi: 10.1007/s00018-016-2223-0. PubMed DOI PMC
Chen R., Cui J., Xu C., Xue T., Guo K., Gao D., Liu Y., Ye S., Ren Z. The Significance of MMP-9 Over MMP-2 in HCC Invasiveness and Recurrence of Hepatocellular Carcinoma After Curative Resection. Ann. Surg. Oncol. 2012;19(Suppl. 3):S375–S384. doi: 10.1245/s10434-011-1836-7. PubMed DOI
Nart D., Yaman B., Yilmaz F., Zeytunlu M., Karasu Z., Kilic M. Expression of Matrix Metalloproteinase-9 in Predicting Prognosis of Hepatocellular Carcinoma After Liver Transplantation. Liver Transplant. 2010;16:621–630. doi: 10.1002/lt.22028. PubMed DOI
Zhang Q., Chen X., Zhou J., Zhang L., Zhao Q., Chen G., Xu J., Qian F., Chen Z. CD147, MMP-2, MMP-9 and MVD-CD34 are Significant Predictors of Recurrence After Liver Transplantation in Hepatocellular Carcinoma Patients. Cancer Biol. Ther. 2006;5:808–814. doi: 10.4161/cbt.5.7.2754. PubMed DOI
Zhang M., Zhang C., Zhang L., Yang Q., Zhou S., Wen Q., Wang J. Nrf2 is a Potential Prognostic Marker and Promotes Proliferation and Invasion in Human Hepatocellular Carcinoma. BMC Cancer. 2015;15:531. doi: 10.1186/s12885-015-1541-1. PubMed DOI PMC
Mitsuishi Y., Taguchi K., Kawatani Y., Shibata T., Nukiwa T., Aburatani H., Yamamoto M., Motohashi H. Nrf2 Redirects Glucose and Glutamine into Anabolic Pathways in Metabolic Reprogramming. Cancer Cell. 2012;22:66–79. doi: 10.1016/j.ccr.2012.05.016. PubMed DOI
Chorley B.N., Campbell M.R., Wang X., Karaca M., Sambandan D., Bangura F., Xue P., Pi J., Kleeberger S.R., Bell D.A. Identification of Novel NRF2-Regulated Genes by ChIP-Seq: Influence on Retinoid X Receptor Alpha. Nucleic Acids Res. 2012;40:7416–7429. doi: 10.1093/nar/gks409. PubMed DOI PMC
Sun Q.K., Zhu J.Y., Wang W., Lv Y., Zhou H.C., Yu J.H., Xu G.L., Ma J.L., Zhong W., Jia W.D. Diagnostic and Prognostic Significance of Peroxiredoxin 1 Expression in Human Hepatocellular Carcinoma. Med. Oncol. 2014;31:786. doi: 10.1007/s12032-013-0786-2. PubMed DOI
Aguilar-Melero P., Prieto-Alamo M.J., Jurado J., Holmgren A., Pueyo C. Proteomics in HepG2 Hepatocarcinoma Cells with Stably Silenced Expression of PRDX1. J. Proteom. 2013;79:161–171. doi: 10.1016/j.jprot.2012.12.005. PubMed DOI
Lee D., Xu I.M., Chiu D.K., Lai R.K., Tse A.P., Lan Li L., Law C.T., Tsang F.H., Wei L.L., Chan C.Y., et al. Folate Cycle Enzyme MTHFD1L Confers Metabolic Advantages in Hepatocellular Carcinoma. J. Clin. Investig. 2017;127:1856–1872. doi: 10.1172/JCI90253. PubMed DOI PMC
Singh A., Happel C., Manna S.K., Acquaah-Mensah G., Carrerero J., Kumar S., Nasipuri P., Krausz K.W., Wakabayashi N., Dewi R., et al. Transcription Factor NRF2 Regulates miR-1 and miR-206 to Drive Tumorigenesis. J. Clin. Investig. 2013;123:2921–2934. doi: 10.1172/JCI66353. PubMed DOI PMC
Datta J., Kutay H., Nasser M.W., Nuovo G.J., Wang B., Majumder S., Liu C.G., Volinia S., Croce C.M., Schmittgen T.D., et al. Methylation Mediated Silencing of MicroRNA-1 Gene and its Role in Hepatocellular Carcinogenesis. Cancer Res. 2008;68:5049–5058. doi: 10.1158/0008-5472.CAN-07-6655. PubMed DOI PMC
Eades G., Yang M., Yao Y., Zhang Y., Zhou Q. MiR-200a Regulates Nrf2 Activation by Targeting Keap1 mRNA in Breast Cancer Cells. J. Biol. Chem. 2011;286:40725–40733. doi: 10.1074/jbc.M111.275495. PubMed DOI PMC
Petrelli A., Perra A., Cora D., Sulas P., Menegon S., Manca C., Migliore C., Kowalik M.A., Ledda-Columbano G.M., Giordano S., et al. MicroRNA/gene Profiling Unveils Early Molecular Changes and Nuclear Factor Erythroid Related Factor 2 (NRF2) Activation in a Rat Model Recapitulating Human Hepatocellular Carcinoma (HCC) Hepatology. 2014;59:228–241. doi: 10.1002/hep.26616. PubMed DOI
Gan N., Sun X., Song L. Activation of Nrf2 by Microcystin-LR Provides Advantages for Liver Cancer Cell Growth. Chem. Res. Toxicol. 2010;23:1477–1484. doi: 10.1021/tx1001628. PubMed DOI
Huang Y., Li W., Kong A.N. Anti-Oxidative Stress Regulator NF-E2-Related Factor 2 Mediates the Adaptive Induction of Antioxidant and Detoxifying Enzymes by Lipid Peroxidation Metabolite 4-Hydroxynonenal. Cell Biosci. 2012;2:40. doi: 10.1186/2045-3701-2-40. PubMed DOI PMC
Levings D.C., Wang X., Kohlhase D., Bell D.A., Slattery M. A Distinct Class of Antioxidant Response Elements is Consistently Activated in Tumors with NRF2 Mutations. Redox Biol. 2018;19:235–249. doi: 10.1016/j.redox.2018.07.026. PubMed DOI PMC
Ikeda H., Nishi S., Sakai M. Transcription Factor Nrf2/MafK Regulates Rat Placental Glutathione S-Transferase Gene during Hepatocarcinogenesis. Biochem. J. 2004;380:515–521. doi: 10.1042/bj20031948. PubMed DOI PMC
Muramatsu M., Sakai M. Mechanisms of a Tumor Marker, Glutathione Transferase P, Expression during Hepatocarcinogenesis of the Rat. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2006;82:339–352. doi: 10.2183/pjab.82.339. PubMed DOI PMC
Endo H., Owada S., Inagaki Y., Shida Y., Tatemichi M. Glucose Starvation Induces LKB1-AMPK-Mediated MMP-9 Expression in Cancer Cells. Sci. Rep. 2018;8:10122. doi: 10.1038/s41598-018-28074-w. PubMed DOI PMC
Liu D., Zhang Y., Wei Y., Liu G., Liu Y., Gao Q., Zou L., Zeng W., Zhang N. Activation of AKT Pathway by Nrf2/PDGFA Feedback Loop Contributes to HCC Progression. Oncotarget. 2016;7:65389–65402. doi: 10.18632/oncotarget.11700. PubMed DOI PMC
Sanchez-Rodriguez R., Torres-Mena J.E., Quintanar-Jurado V., Chagoya-Hazas V., Del Castillo E.R., Del Pozo Yauner L., Villa-Trevino S., Perez-Carreon J.I. Ptgr1 Expression is Regulated by NRF2 in Rat Hepatocarcinogenesis and Promotes Cell Proliferation and Resistance to Oxidative Stress. Free Radic. Biol. Med. 2017;102:87–99. doi: 10.1016/j.freeradbiomed.2016.11.027. PubMed DOI
Li L., Fu J., Liu D., Sun J., Hou Y., Chen C., Shao J., Wang L., Wang X., Zhao R., et al. Hepatocyte-Specific Nrf2 Deficiency Mitigates High-Fat Diet-Induced Hepatic Steatosis: Involvement of Reduced PPARgamma Expression. Redox Biol. 2020;30:101412. doi: 10.1016/j.redox.2019.101412. PubMed DOI PMC
Yang C., Tan Y.X., Yang G.Z., Zhang J., Pan Y.F., Liu C., Fu J., Chen Y., Ding Z.W., Dong L.W., et al. Gankyrin has an Antioxidative Role through the Feedback Regulation of Nrf2 in Hepatocellular Carcinoma. J. Exp. Med. 2016;213:859–875. doi: 10.1084/jem.20151208. PubMed DOI PMC
You A., Nam C.W., Wakabayashi N., Yamamoto M., Kensler T.W., Kwak M.K. Transcription Factor Nrf2 Maintains the Basal Expression of Mdm2: An Implication of the Regulation of p53 Signaling by Nrf2. Arch. Biochem. Biophys. 2011;507:356–364. doi: 10.1016/j.abb.2010.12.034. PubMed DOI
Gawrieh S., Dakhoul L., Miller E., Scanga A., deLemos A., Kettler C., Burney H., Liu H., Abu-Sbeih H., Chalasani N., et al. Characteristics, Aetiologies and Trends of Hepatocellular Carcinoma in Patients without Cirrhosis: A United States Multicentre Study. Aliment. Pharmacol. Ther. 2019;50:809–821. doi: 10.1111/apt.15464. PubMed DOI
Grohmann M., Wiede F., Dodd G.T., Gurzov E.N., Ooi G.J., Butt T., Rasmiena A.A., Kaur S., Gulati T., Goh P.K., et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289–1306.e20. doi: 10.1016/j.cell.2018.09.053. PubMed DOI PMC
Margini C., Dufour J.F. The Story of HCC in NAFLD: From Epidemiology, Across Pathogenesis, to Prevention and Treatment. Liver Int. 2016;36:317–324. doi: 10.1111/liv.13031. PubMed DOI
Hoki T., Miyanishi K., Tanaka S., Takada K., Kawano Y., Sakurada A., Sato M., Kubo T., Sato T., Sato Y., et al. Increased Duodenal Iron Absorption through Up-Regulation of Divalent Metal Transporter 1 from Enhancement of Iron Regulatory Protein 1 Activity in Patients with Nonalcoholic Steatohepatitis. Hepatology. 2015;62:751–761. doi: 10.1002/hep.27774. PubMed DOI
Beloribi-Djefaflia S., Vasseur S., Guillaumond F. Lipid Metabolic Reprogramming in Cancer Cells. Oncogenesis. 2016;5:e189. doi: 10.1038/oncsis.2015.49. PubMed DOI PMC
Abramczyk H., Surmacki J., Kopec M., Olejnik A.K., Lubecka-Pietruszewska K., Fabianowska-Majewska K. The Role of Lipid Droplets and Adipocytes in Cancer. Raman Imaging of Cell Cultures: MCF10A, MCF7, and MDA-MB-231 Compared to Adipocytes in Cancerous Human Breast Tissue. Analyst. 2015;140:2224–2235. doi: 10.1039/C4AN01875C. PubMed DOI
Accioly M.T., Pacheco P., Maya-Monteiro C.M., Carrossini N., Robbs B.K., Oliveira S.S., Kaufmann C., Morgado-Diaz J.A., Bozza P.T., Viola J.P. Lipid Bodies are Reservoirs of Cyclooxygenase-2 and Sites of Prostaglandin-E2 Synthesis in Colon Cancer Cells. Cancer Res. 2008;68:1732–1740. doi: 10.1158/0008-5472.CAN-07-1999. PubMed DOI
Guillaumond F., Bidaut G., Ouaissi M., Servais S., Gouirand V., Olivares O., Lac S., Borge L., Roques J., Gayet O., et al. Cholesterol Uptake Disruption, in Association with Chemotherapy, is a Promising Combined Metabolic Therapy for Pancreatic Adenocarcinoma. Proc. Natl. Acad. Sci. USA. 2015;112:2473–2478. doi: 10.1073/pnas.1421601112. PubMed DOI PMC
Qiu B., Ackerman D., Sanchez D.J., Li B., Ochocki J.D., Grazioli A., Bobrovnikova-Marjon E., Diehl J.A., Keith B., Simon M.C. HIF2alpha-Dependent Lipid Storage Promotes Endoplasmic Reticulum Homeostasis in Clear-Cell Renal Cell Carcinoma. Cancer Discov. 2015;5:652–667. doi: 10.1158/2159-8290.CD-14-1507. PubMed DOI PMC
Yue S., Li J., Lee S.Y., Lee H.J., Shao T., Song B., Cheng L., Masterson T.A., Liu X., Ratliff T.L., et al. Cholesteryl Ester Accumulation Induced by PTEN Loss and PI3K/AKT Activation Underlies Human Prostate Cancer Aggressiveness. Cell Metab. 2014;19:393–406. doi: 10.1016/j.cmet.2014.01.019. PubMed DOI PMC
Guri Y., Colombi M., Dazert E., Hindupur S.K., Roszik J., Moes S., Jenoe P., Heim M.H., Riezman I., Riezman H., et al. MTORC2 Promotes Tumorigenesis Via Lipid Synthesis. Cancer Cell. 2017;32:807–823.e12. doi: 10.1016/j.ccell.2017.11.011. PubMed DOI
Xu J., Kulkarni S.R., Donepudi A.C., More V.R., Slitt A.L. Enhanced Nrf2 Activity Worsens Insulin Resistance, Impairs Lipid Accumulation in Adipose Tissue, and Increases Hepatic Steatosis in Leptin-Deficient Mice. Diabetes. 2012;61:3208–3218. doi: 10.2337/db11-1716. PubMed DOI PMC
Li Y., Chao X., Yang L., Lu Q., Li T., Ding W.X., Ni H.M. Impaired Fasting-Induced Adaptive Lipid Droplet Biogenesis in Liver-Specific Atg5-Deficient Mouse Liver is Mediated by Persistent Nuclear Factor-Like 2 Activation. Am. J. Pathol. 2018;188:1833–1846. doi: 10.1016/j.ajpath.2018.04.015. PubMed DOI PMC
Moya M., Benet M., Guzman C., Tolosa L., Garcia-Monzon C., Pareja E., Castell J.V., Jover R. Foxa1 Reduces Lipid Accumulation in Human Hepatocytes and is Down-Regulated in Nonalcoholic Fatty Liver. PLoS ONE. 2012;7:e30014. doi: 10.1371/journal.pone.0030014. PubMed DOI PMC
Suzuki A., Shim J., Ogata K., Yoshioka H., Iwata J. Cholesterol Metabolism Plays a Crucial Role in the Regulation of Autophagy for Cell Differentiation of Granular Convoluted Tubules in Male Mouse Submandibular Glands. Development. 2019;146 doi: 10.1242/dev.178335. PubMed DOI PMC
Huang J., Tabbi-Anneni I., Gunda V., Wang L. Transcription Factor Nrf2 Regulates SHP and Lipogenic Gene Expression in Hepatic Lipid Metabolism. Am. J. Physiol. Gastrointest. Liver Physiol. 2010;299:G1211–G1221. PubMed PMC
Mehta K., Van Thiel D.H., Shah N., Mobarhan S. Nonalcoholic Fatty Liver Disease: Pathogenesis and the Role of Antioxidants. Nutr. Rev. 2002;60:289–293. doi: 10.1301/002966402320387224. PubMed DOI
Souza-Mello V. Peroxisome Proliferator-Activated Receptors as Targets to Treat Non-Alcoholic Fatty Liver Disease. World J. Hepatol. 2015;7:1012–1019. doi: 10.4254/wjh.v7.i8.1012. PubMed DOI PMC
Pi J., Leung L., Xue P., Wang W., Hou Y., Liu D., Yehuda-Shnaidman E., Lee C., Lau J., Kurtz T.W., et al. Deficiency in the Nuclear Factor E2-Related Factor-2 Transcription Factor Results in Impaired Adipogenesis and Protects Against Diet-Induced Obesity. J. Biol. Chem. 2010;285:9292–9300. doi: 10.1074/jbc.M109.093955. PubMed DOI PMC
More V.R., Xu J., Shimpi P.C., Belgrave C., Luyendyk J.P., Yamamoto M., Slitt A.L. Keap1 Knockdown Increases Markers of Metabolic Syndrome After Long-Term High Fat Diet Feeding. Free Radic. Biol. Med. 2013;61:85–94. doi: 10.1016/j.freeradbiomed.2013.03.007. PubMed DOI PMC
Farombi E.O., Shrotriya S., Na H.K., Kim S.H., Surh Y.J. Curcumin Attenuates Dimethylnitrosamine-Induced Liver Injury in Rats through Nrf2-Mediated Induction of Heme Oxygenase-1. Food Chem. Toxicol. 2008;46:1279–1287. doi: 10.1016/j.fct.2007.09.095. PubMed DOI
Panieri E., Santoro M.M. ROS Homeostasis and Metabolism: A Dangerous Liason in Cancer Cells. Cell Death Dis. 2016;7:e2253. doi: 10.1038/cddis.2016.105. PubMed DOI PMC
Menegon S., Columbano A., Giordano S. The Dual Roles of NRF2 in Cancer. Trends Mol. Med. 2016;22:578–593. doi: 10.1016/j.molmed.2016.05.002. PubMed DOI
Sporn M.B., Liby K.T. NRF2 and Cancer: The Good, the Bad and the Importance of Context. Nat. Rev. Cancer. 2012;12:564–571. doi: 10.1038/nrc3278. PubMed DOI PMC
DeNicola G.M., Karreth F.A., Humpton T.J., Gopinathan A., Wei C., Frese K., Mangal D., Yu K.H., Yeo C.J., Calhoun E.S., et al. Oncogene-Induced Nrf2 Transcription Promotes ROS Detoxification and Tumorigenesis. Nature. 2011;475:106–109. doi: 10.1038/nature10189. PubMed DOI PMC
Umemura A., He F., Taniguchi K., Nakagawa H., Yamachika S., Font-Burgada J., Zhong Z., Subramaniam S., Raghunandan S., Duran A., et al. P62, Upregulated during Preneoplasia, Induces Hepatocellular Carcinogenesis by Maintaining Survival of Stressed HCC-Initiating Cells. Cancer Cell. 2016;29:935–948. doi: 10.1016/j.ccell.2016.04.006. PubMed DOI PMC
Komatsu M., Kurokawa H., Waguri S., Taguchi K., Kobayashi A., Ichimura Y., Sou Y.S., Ueno I., Sakamoto A., Tong K.I., et al. The Selective Autophagy Substrate p62 Activates the Stress Responsive Transcription Factor Nrf2 through Inactivation of Keap1. Nat. Cell Biol. 2010;12:213–223. doi: 10.1038/ncb2021. PubMed DOI
Inami Y., Waguri S., Sakamoto A., Kouno T., Nakada K., Hino O., Watanabe S., Ando J., Iwadate M., Yamamoto M., et al. Persistent Activation of Nrf2 through p62 in Hepatocellular Carcinoma Cells. J. Cell Biol. 2011;193:275–284. doi: 10.1083/jcb.201102031. PubMed DOI PMC
Ichimura Y., Waguri S., Sou Y.S., Kageyama S., Hasegawa J., Ishimura R., Saito T., Yang Y., Kouno T., Fukutomi T., et al. Phosphorylation of p62 Activates the Keap1-Nrf2 Pathway during Selective Autophagy. Mol. Cell. 2013;51:618–631. doi: 10.1016/j.molcel.2013.08.003. PubMed DOI
Saito T., Ichimura Y., Taguchi K., Suzuki T., Mizushima T., Takagi K., Hirose Y., Nagahashi M., Iso T., Fukutomi T., et al. P62/Sqstm1 Promotes Malignancy of HCV-Positive Hepatocellular Carcinoma through Nrf2-Dependent Metabolic Reprogramming. Nat. Commun. 2016;7:12030. doi: 10.1038/ncomms12030. PubMed DOI PMC
Ichimura Y., Komatsu M. Activation of p62/SQSTM1-Keap1-Nuclear Factor Erythroid 2-Related Factor 2 Pathway in Cancer. Front. Oncol. 2018;8:210. doi: 10.3389/fonc.2018.00210. PubMed DOI PMC
An J.H., Blackwell T.K. SKN-1 Links C. Elegans Mesendodermal Specification to a Conserved Oxidative Stress Response. Genes Dev. 2003;17:1882–1893. doi: 10.1101/gad.1107803. PubMed DOI PMC
Motohashi H., O’Connor T., Katsuoka F., Engel J.D., Yamamoto M. Integration and Diversity of the Regulatory Network Composed of Maf and CNC Families of Transcription Factors. Gene. 2002;294:1–12. doi: 10.1016/S0378-1119(02)00788-6. PubMed DOI
Grimberg K.B., Beskow A., Lundin D., Davis M.M., Young P. Basic Leucine Zipper Protein Cnc-C is a Substrate and Transcriptional Regulator of the Drosophila 26S Proteasome. Mol. Cell. Biol. 2011;31:897–909. doi: 10.1128/MCB.00799-10. PubMed DOI PMC
Wang W., Chan J.Y. Nrf1 is Targeted to the Endoplasmic Reticulum Membrane by an N-Terminal Transmembrane Domain. Inhibition of Nuclear Translocation and Transacting Function. J. Biol. Chem. 2006;281:19676–19687. doi: 10.1074/jbc.M602802200. PubMed DOI
Zhang Y., Lucocq J.M., Hayes J.D. The Nrf1 CNC/bZIP Protein is a Nuclear Envelope-Bound Transcription Factor that is Activated by t-Butyl Hydroquinone but Not by Endoplasmic Reticulum Stressors. Biochem. J. 2009;418:293–310. doi: 10.1042/BJ20081575. PubMed DOI
Fuse Y., Kobayashi M. Conservation of the Keap1-Nrf2 System: An Evolutionary Journey through Stressful Space and Time. Molecules. 2017;22:436. doi: 10.3390/molecules22030436. PubMed DOI PMC
Chenais B., Derjuga A., Massrieh W., Red-Horse K., Bellingard V., Fisher S.J., Blank V. Functional and Placental Expression Analysis of the Human NRF3 Transcription Factor. Mol. Endocrinol. 2005;19:125–137. doi: 10.1210/me.2003-0379. PubMed DOI
Kobayashi M., Itoh K., Suzuki T., Osanai H., Nishikawa K., Katoh Y., Takagi Y., Yamamoto M. Identification of the Interactive Interface and Phylogenic Conservation of the Nrf2-Keap1 System. Genes Cells. 2002;7:807–820. doi: 10.1046/j.1365-2443.2002.00561.x. PubMed DOI
Tian W., De la Vega M.R., Schmidlin C.J., Ooi A., Zhang D.D. Kelch-Like ECH-Associated Protein 1 (KEAP1) Differentially Regulates Nuclear Factor Erythroid-2-Related Factors 1 and 2 (NRF1 and NRF2) J. Biol. Chem. 2018;293:2029–2040. doi: 10.1074/jbc.RA117.000428. PubMed DOI PMC
Liu P., Kerins M.J., Tian W., Neupane D., Zhang D.D., Ooi A. Differential and Overlapping Targets of the Transcriptional Regulators NRF1, NRF2, and NRF3 in Human Cells. J. Biol. Chem. 2019;294:18131–18149. doi: 10.1074/jbc.RA119.009591. PubMed DOI PMC
Leung L., Kwong M., Hou S., Lee C., Chan J.Y. Deficiency of the Nrf1 and Nrf2 Transcription Factors Results in Early Embryonic Lethality and Severe Oxidative Stress. J. Biol. Chem. 2003;278:48021–48029. doi: 10.1074/jbc.M308439200. PubMed DOI
Kobayashi A., Waku T. New Addiction to the NRF2-Related Factor NRF3 in Cancer Cells: Ubiquitin-Independent Proteolysis through the 20S Proteasome. Cancer Sci. 2020;111:6–14. doi: 10.1111/cas.14244. PubMed DOI PMC
Tsuchiya Y., Taniguchi H., Ito Y., Morita T., Karim M.R., Ohtake N., Fukagai K., Ito T., Okamuro S., Iemura S., et al. The Casein Kinase 2-nrf1 Axis Controls the Clearance of Ubiquitinated Proteins by Regulating Proteasome Gene Expression. Mol. Cell. Biol. 2013;33:3461–3472. doi: 10.1128/MCB.01271-12. PubMed DOI PMC
Kapeta S., Chondrogianni N., Gonos E.S. Nuclear Erythroid Factor 2-Mediated Proteasome Activation Delays Senescence in Human Fibroblasts. J. Biol. Chem. 2010;285:8171–8184. doi: 10.1074/jbc.M109.031575. PubMed DOI PMC
Chen J., Wang M., Xiang Y., Ru X., Ren Y., Liu X., Qiu L., Zhang Y. Nrf1 is Endowed with a Dominant Tumor-Repressing Effect Onto the Wnt/beta-Catenin-Dependent and Wnt/beta-Catenin-Independent Signaling Networks in the Human Liver Cancer. Oxid. Med. Cell. Longev. 2020;2020:5138539. doi: 10.1155/2020/5138539. PubMed DOI PMC
Yu M.M., Feng Y.H., Zheng L., Zhang J., Luo G.H. Short Hairpin RNA-Mediated Knockdown of Nuclear Factor Erythroid 2-Like 3 Exhibits Tumor-Suppressing Effects in Hepatocellular Carcinoma Cells. World J. Gastroenterol. 2019;25:1210–1223. doi: 10.3748/wjg.v25.i10.1210. PubMed DOI PMC
Chowdhury A.M.M.A., Katoh H., Hatanaka A., Iwanari H., Nakamura N., Hamakubo T., Natsume T., Waku T., Kobayashi A. Multiple Regulatory Mechanisms of the Biological Function of NRF3 (NFE2L3) Control Cancer Cell Proliferation. Sci. Rep. 2017;7:12494. doi: 10.1038/s41598-017-12675-y. PubMed DOI PMC
Waku T., Nakamura N., Koji M., Watanabe H., Katoh H., Tatsumi C., Tamura N., Hatanaka A., Hirose S., Katayama H., et al. NRF3-POMP-20S Proteasome Assembly Axis Promotes Cancer Development Via Ubiquitin-Independent Proteolysis of p53 and Retinoblastoma Protein. Mol. Cell. Biol. 2020;40 doi: 10.1128/MCB.00597-19. PubMed DOI PMC
Bury M., Le Calve B., Lessard F., Dal Maso T., Saliba J., Michiels C., Ferbeyre G., Blank V. NFE2L3 Controls Colon Cancer Cell Growth through Regulation of DUX4, a CDK1 Inhibitor. Cell Rep. 2019;29:1469–1481.e9. doi: 10.1016/j.celrep.2019.09.087. PubMed DOI
Chevillard G., Paquet M., Blank V. Nfe2l3 (Nrf3) Deficiency Predisposes Mice to T-Cell Lymphoblastic Lymphoma. Blood. 2011;117:2005–2008. doi: 10.1182/blood-2010-02-271460. PubMed DOI
Xu Z., Chen L., Leung L., Yen T.S., Lee C., Chan J.Y. Liver-Specific Inactivation of the Nrf1 Gene in Adult Mouse Leads to Nonalcoholic Steatohepatitis and Hepatic Neoplasia. Proc. Natl. Acad. Sci. USA. 2005;102:4120–4125. doi: 10.1073/pnas.0500660102. PubMed DOI PMC