The Role of Dietary Phenolic Compounds in Epigenetic Modulation Involved in Inflammatory Processes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
68081707
Akademie Věd České Republiky
LQ1605
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32756302
PubMed Central
PMC7464822
DOI
10.3390/antiox9080691
PII: antiox9080691
Knihovny.cz E-zdroje
- Klíčová slova
- NF-κB, diseases, immune system, inflammation,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
A better understanding of the interactions between dietary phenolic compounds and the epigenetics of inflammation may impact pathological conditions and their treatment. Phenolic compounds are well-known for their antioxidant, anti-inflammatory, anti-angiogenic, and anti-cancer properties, with potential benefits in the treatment of various human diseases. Emerging studies bring evidence that nutrition may play an essential role in immune system modulation also by altering gene expression. This review discusses epigenetic mechanisms such as DNA methylation, post-translational histone modification, and non-coding microRNA activity that regulate the gene expression of molecules involved in inflammatory processes. Special attention is paid to the molecular basis of NF-κB modulation by dietary phenolic compounds. The regulation of histone acetyltransferase and histone deacetylase activity, which all influence NF-κB signaling, seems to be a crucial mechanism of the epigenetic control of inflammation by phenolic compounds. Moreover, chronic inflammatory processes are reported to be closely connected to the major stages of carcinogenesis and other non-communicable diseases. Therefore, dietary phenolic compounds-targeted epigenetics is becoming an attractive approach for disease prevention and intervention.
Department of Experimental Biology Faculty of Science Masaryk University 625 00 Brno Czech Republic
Institute of Biophysics of the Czech Academy of Sciences 612 65 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital 656 91 Brno Czech Republic
Zobrazit více v PubMed
Owona B.A., Ebrahimi A., Schluesenner H. Epigenetic effects of natural polyphenols: A focus on SIRT1-mediated mechanisms. Mol. Nutr. Food Res. 2013;58:22–32. doi: 10.1002/mnfr.201300195. PubMed DOI
Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004;79:727–747. doi: 10.1093/ajcn/79.5.727. PubMed DOI
Bravo L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998;56:317–333. doi: 10.1111/j.1753-4887.1998.tb01670.x. PubMed DOI
Scalbert A., Manach C., Morand C., Rémésy C., Jimenez L. Dietary Polyphenols and the Prevention of Diseases. Crit. Rev. Food Sci. Nutr. 2005;45:287–306. doi: 10.1080/1040869059096. PubMed DOI
Číž M., Čížová H., Denev P., Kratchanova M., Slavov A., Lojek A. Different methods for control and comparison of the antioxidant properties of vegetables. Food Control. 2010;21:518–523. doi: 10.1016/j.foodcont.2009.07.017. DOI
Denev P., Kratchanov C.G., Ciz M., Lojek A., Kratchanova M.G. Bioavailability and Antioxidant Activity of Black Chokeberry (Aronia melanocarpa) Polyphenols: in vitro and in vivo Evidences and Possible Mechanisms of Action: A Review. Compr. Rev. Food Sci. Food Saf. 2012;11:471–489. doi: 10.1111/j.1541-4337.2012.00198.x. DOI
Denev P., Kratchanova M., Číž M., Lojek A., Vasicek O., Nedelcheva P., Blazheva D., Toshkova R., Gardeva E., Yossifova L., et al. Biological activities of selected polyphenol-rich fruits related to immunity and gastrointestinal health. Food Chem. 2014;157:37–44. doi: 10.1016/j.foodchem.2014.02.022. PubMed DOI
Cory H., Passarelli S., Szeto J., Tamez M., Mattei J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018;5:87. doi: 10.3389/fnut.2018.00087. PubMed DOI PMC
Zhang H., Tsao R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016;8:33–42. doi: 10.1016/j.cofs.2016.02.002. DOI
Joven J., Micol V., Segura-Carretero A., Alonso-Villaverde C., Menendez J.A., Platform B.F.C. Polyphenols and the Modulation of Gene Expression Pathways: Can We Eat Our Way Out of the Danger of Chronic Disease? Crit. Rev. Food Sci. Nutr. 2014;54:985–1001. doi: 10.1080/10408398.2011.621772. PubMed DOI
Hardy T.M., Tollefsbol T.O. Epigenetic diet: Impact on the epigenome and cancer. Epigenomics. 2011;3:503–518. doi: 10.2217/epi.11.71. PubMed DOI PMC
Kiss A.K., Granica S., Stolarczyk M., Melzig M.F. Epigenetic modulation of mechanisms involved in inflammation: Influence of selected polyphenolic substances on histone acetylation state. Food Chem. 2012;131:1015–1020. doi: 10.1016/j.foodchem.2011.09.109. DOI
Blaze J., Wang J., Ho L., Mendelev N., Haghighi F., Pasinetti G.M. Polyphenolic Compounds Alter Stress-Induced Patterns of Global DNA Methylation in Brain and Blood. Mol. Nutr. Food Res. 2018;62 doi: 10.1002/mnfr.201700722. PubMed DOI PMC
Kim H.J., Kim S.H., Yun J.-M. Fisetin Inhibits Hyperglycemia-Induced Proinflammatory Cytokine Production by Epigenetic Mechanisms. Evidence-Based Complement. Altern. Med. 2012;2012:1–10. doi: 10.1155/2012/639469. PubMed DOI PMC
Xiao X., Shi D., Liu L., Wang J., Xie X., Kang T., Deng W. Quercetin Suppresses Cyclooxygenase-2 Expression and Angiogenesis through Inactivation of P300 Signaling. PLoS ONE. 2011;6:e22934. doi: 10.1371/journal.pone.0022934. PubMed DOI PMC
Kim H.J., Lee W., Yun J.-M. Luteolin Inhibits Hyperglycemia-Induced Proinflammatory Cytokine Production and Its Epigenetic Mechanism in Human Monocytes. Phytotherapy Res. 2014;28:1383–1391. doi: 10.1002/ptr.5141. PubMed DOI
Zhang H.P., Zhao Z.X., Pang X.F., Yang J., Yu H.X., Zhang Y.H., Zhou H., Zhao J.H. Genistein Protects Against Ox-LDL-Induced Inflammation Through MicroRNA-155/SOCS1-Mediated Repression of NF-AB Signaling Pathway in HUVECs. Inflammation. 2017;40:1450–1459. doi: 10.1007/s10753-017-0588-3. PubMed DOI
Yousefi H., Alihemmati A., Karimi P., Alipour M.R., Habibi P., Ahmadiasl N. Effect of genistein on expression of pancreatic SIRT1, inflammatory cytokines and histological changes in ovariectomized diabetic rat. Iran. J. Basic Med. Sci. 2017;20:423–429. PubMed PMC
Majid S., Dar A.A., Shahryari V., Hirata H., Ahmad A., Saini S., Tanaka Y., Dahiya A.V., Dahiya R. Genistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene B-Cell translocation gene 3 in prostate cancer. Cancer. 2009;116:66–76. doi: 10.1002/cncr.24662. PubMed DOI PMC
Fang M.Z., Wang Y., Ai N., Hou Z., Sun Y., Lu H., Welsh W., Yang C.S. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003;63:7563–7570. PubMed
Choi K.C., Jung M.G., Lee Y.H., Yoon J.C., Kwon S.H., Kang H.B., Kim M.J., Cha J.H., Kim Y.J., Jun W.J., et al. Epigallocatechin-3-Gallate, a Histone Acetyltransferase Inhibitor, Inhibits EBV-Induced B Lymphocyte Transformation via Suppression of ReIA Acetylation. Cancer Res. 2009;69:583–592. doi: 10.1158/0008-5472.CAN-08-2442. PubMed DOI
Cordero-Herrera I., Chen X.P., Ramos S., Devaraj S. (-)-Epicatechin attenuates high-glucose-induced inflammation by epigenetic modulation in human monocytes. Eur. J. Nutr. 2017;56:1369–1373. doi: 10.1007/s00394-015-1136-2. PubMed DOI
Borra M.T., Smith B.C., Denu J.M. Mechanism of Human SIRT1 Activation by Resveratrol. J. Boil. Chem. 2005;280:17187–17195. doi: 10.1074/jbc.M501250200. PubMed DOI
Pan W., Yu H., Huang S., Zhu P.-L. Resveratrol Protects against TNF-α-Induced Injury in Human Umbilical Endothelial Cells through Promoting Sirtuin-1-Induced Repression of NF-KB and p38 MAPK. PLoS ONE. 2016;11:e0147034. doi: 10.1371/journal.pone.0147034. PubMed DOI PMC
Lou X.-D., Wang H., Xia S.-J., Skog S., Sun J. Effects of Resveratrol on the Expression and DNA Methylation of Cytokine Genes in Diabetic Rat Aortas. Arch. Immunol. Ther. Exp. 2014;62:329–340. doi: 10.1007/s00005-014-0271-4. PubMed DOI
Kumar A., Rimando A.M., Levenson A.S. Resveratrol and pterostilbene as a microRNA-mediated chemopreventive and therapeutic strategy in prostate cancer. Ann. NY Acad. Sci. 2017;1403:15–26. doi: 10.1111/nyas.13372. PubMed DOI
Neckers L., Trepel J., Lee S., Chung E.-J., Lee M.-J., Jung Y.-J., Marcu M.G. Curcumin is an Inhibitor of p300 Histone Acetylatransferase. Med. Chem. 2006;2:169–174. doi: 10.2174/157340606776056133. PubMed DOI
Sun M., Estrov Z., Ji Y., Coombes K.R., Harris D.H., Kurzrock R. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol. Cancer Ther. 2008;7:464–473. doi: 10.1158/1535-7163.MCT-07-2272. PubMed DOI
Guo Y., Shu L., Zhang C., Su Z.-Y., Kong A.-N. Curcumin inhibits anchorage-independent growth of HT29 human colon cancer cells by targeting epigenetic restoration of the tumor suppressor gene DLEC1. Biochem. Pharmacol. 2015;94:69–78. doi: 10.1016/j.bcp.2015.01.009. PubMed DOI PMC
Maugeri A., Mazzone M.G., Giuliano F., Vinciguerra M., Basile G., Barchitta M., Agodi A. Curcumin Modulates DNA Methyltransferase Functions in a Cellular Model of Diabetic Retinopathy. Oxidative Med. Cell. Longev. 2018;2018:1–12. doi: 10.1155/2018/5407482. PubMed DOI PMC
Vattem D., Shetty K. biological functionality of ellagic acid: A review. J. Food Biochem. 2005;29:234–266. doi: 10.1111/j.1745-4514.2005.00031.x. DOI
Crupi P., Bleve G., Tufariello M., Corbo F., Clodoveo M.L., Tarricone L. Comprehensive identification and quantification of chlorogenic acids in sweet cherry by tandem mass spectrometry techniques. J. Food Compos. Anal. 2018;73:103–111. doi: 10.1016/j.jfca.2018.06.013. DOI
Fonayet J.V., Millán S., Martí M.P., Borràs E., Arola L. Advanced separation methods of food anthocyanins, isoflavones and flavanols. J. Chromatogr. A. 2009;1216:7143–7172. doi: 10.1016/j.chroma.2009.07.030. PubMed DOI
Harborne J.B., A Williams C. Advances in flavonoid research since 1992. Phytochemistry. 2000;55:481–504. doi: 10.1016/S0031-9422(00)00235-1. PubMed DOI
Coward L., Smith M., Kirk M., Barnes S. Chemical modification of isoflavones in soyfoods during cooking and processing. Am. J. Clin. Nutr. 1998;68:1486S–1491S. doi: 10.1093/ajcn/68.6.1486S. PubMed DOI
Setchell K.D.R., Brown N.M., Lydeking-Olsen E. The Clinical Importance of the Metabolite Equol—A Clue to the Effectiveness of Soy and Its Isoflavones. J. Nutr. 2002;132:3577–3584. doi: 10.1093/jn/132.12.3577. PubMed DOI
Lakenbrink C., Lapczynski S., Maiwald B., Engelhardt U.H. Flavonoids and other polyphenols in consumer brews of tea and other caffeinated beverages. J. Agric. Food Chem. 2000;48:2848–2852. doi: 10.1021/jf9908042. PubMed DOI
Graham H.N. Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 1992;21:334–350. doi: 10.1016/0091-7435(92)90041-F. PubMed DOI
Guyot S., Marnet N., Drilleau J.-F. Thiolysis-HPLC characterization of apple procyanidins covering a large range of polymerization states. J. Agric. Food Chem. 2001;49:14–20. doi: 10.1021/jf000814z. PubMed DOI
Thompson L.U., Robb P., Serraino M., Cheung F. Mammalian lignan production from various foods. Nutr. Cancer. 1991;16:43–52. doi: 10.1080/01635589109514139. PubMed DOI
Adlercreutz H., Mazur W. Phyto-oestrogens and Western diseases. Ann. Med. 1997;29:95–120. doi: 10.3109/07853899709113696. PubMed DOI
Heinonen S., Salonen J.T., Liukkonen K., Poutanen K., Wähälä K., Deyama T., Nishibe S., Adlercreutz H. In vitro metabolism of plant lignans: New precursors of mammalian lignans enterolactone and enterodiol. J. Agric. Food Chem. 2001;49:3178–3186. doi: 10.1021/jf010038a. PubMed DOI
Bavaresco L. Role of viticultural factors on stilbene concentrations of grapes and wine. Drugs Under Exp. Clin. Res. 2003;29:181–187. PubMed
Delmas D., Lançon A., Colin D., Jannin B., Latruffe N. Resveratrol as a Chemopreventive Agent: A Promising Molecule for Fighting Cancer. Curr. Drug Targets. 2006;7:423–442. doi: 10.2174/138945006776359331. PubMed DOI
Das D.K., Mukherjee S., Ray D. Resveratrol and red wine, healthy heart and longevity. Hear. Fail. Rev. 2010;15:467–477. doi: 10.1007/s10741-010-9163-9. PubMed DOI
Lee P.-S., Chiou Y.-S., Ho C.-T., Pan M.-H. Chemoprevention by resveratrol and pterostilbene: Targeting on epigenetic regulation. BioFactors. 2017;44:26–35. doi: 10.1002/biof.1401. PubMed DOI
Cabrini L., Barzanti V., Cipollone M., Fiorentini D., Grossi G., Tolomelli B., Zambonin L., Landi L. Antioxidants and total peroxyl radical-trapping ability of olive and seed oils. J. Agric. Food Chem. 2001;49:6026–6032. doi: 10.1021/jf010837t. PubMed DOI
Covas M.I., Miró-Casas E., Fitó M., Farré-Albadalejo M., Gimeno E., Marrugat J., De La Torre R. Bioavailability of tyrosol, an antioxidant phenolic compound present in wine and olive oil, in humans. Drugs Under Exp. Clin. Res. 2003;29:203–206. PubMed
De La Torre R., Covas M.I., Pujadas M.A., Fitó M., Farré M. Is dopamine behind the health benefits of red wine? Eur. J. Nutr. 2006;45:307–310. doi: 10.1007/s00394-006-0596-9. PubMed DOI
Amalraj A., Pius A., Gopi S., Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives—A review. J. Tradit. Complement. Med. 2016;7:205–233. doi: 10.1016/j.jtcme.2016.05.005. PubMed DOI PMC
Pan M.-H., Lai C.-S., Wu J.-C., Ho C.-T. Epigenetic and disease targets by polyphenols. Curr. Pharm. Des. 2013;19:6156–6185. doi: 10.2174/1381612811319340010. PubMed DOI
Suárez-Álvarez B., Raneros A.B., Ortega F., López-Soto A. Epigenetic modulation of the immune function: A potential target for tolerance. Epigenetics. 2013;8:694–702. doi: 10.4161/epi.25201. PubMed DOI PMC
Ospelt C., Gay S., Klein K. Epigenetics in the pathogenesis of RA. Semin. Immunopathol. 2017;39:409–419. doi: 10.1007/s00281-017-0621-5. PubMed DOI
Fuhrmann J., Thompson P.R. Protein Arginine Methylation and Citrullination in Epigenetic Regulation. ACS Chem. Boil. 2015;11:654–668. doi: 10.1021/acschembio.5b00942. PubMed DOI PMC
Morandini A.C., Santos C.F., Yilmaz O. Role of epigenetics in modulation of immune response at the junction of host–pathogen interaction and danger molecule signaling. Pathog. Dis. 2016;74 doi: 10.1093/femspd/ftw082. PubMed DOI PMC
Gibney E.R., Nolan C.M. Epigenetics and gene expression. Heredity. 2010;105:4–13. doi: 10.1038/hdy.2010.54. PubMed DOI
Castillo-Aguilera O., Depreux P., Halby L., Arimondo P.B., Goossens L. DNA Methylation Targeting: The DNMT/HMT Crosstalk Challenge. Biomolecules. 2017;7:3. doi: 10.3390/biom7010003. PubMed DOI PMC
Fernandes G.F.S., Silva G.D.B., Pavan A.R., Chiba D.E., Chin C.M., Dos Santos J.L. Epigenetic Regulatory Mechanisms Induced by Resveratrol. Nutrients. 2017;9:1201. doi: 10.3390/nu9111201. PubMed DOI PMC
Leshner M., Wang S., Lewis C., Zheng H., Chen X.A., Santy L., Wang Y. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front. Immunol. 2012;3 doi: 10.3389/fimmu.2012.00307. PubMed DOI PMC
Chuang J.C., Jones P.A. Epigenetics and microRNAs. Pediatr. Res. 2007;61:24r–29r. doi: 10.1203/pdr.0b013e3180457684. PubMed DOI
Xu Y.-M., Du J.-Y., Lau A.T.Y. Posttranslational modifications of human histone H3: An update. Proteomics. 2014;14:2047–2060. doi: 10.1002/pmic.201300435. PubMed DOI
Frías-Lasserre D., Villagra C.A. The Importance of ncRNAs as Epigenetic Mechanisms in Phenotypic Variation and Organic Evolution. Front. Microbiol. 2017;8 doi: 10.3389/fmicb.2017.02483. PubMed DOI PMC
Yekta S., Shih I.-H., Bartel B. MicroRNA-Directed Cleavage of HOXB8 mRNA. Science. 2004;304:594–596. doi: 10.1126/science.1097434. PubMed DOI
Agrawal N., Dasaradhi P.V.N., Mohmmed A., Malhotra P., Bhatnagar R.K., Mukherjee S.K. RNA Interference: Biology, Mechanism, and Applications. Microbiol. Mol. Boil. Rev. 2003;67:657–685. doi: 10.1128/MMBR.67.4.657-685.2003. PubMed DOI PMC
Muniz L., Egloff S., Kiss T. RNA elements directing in vivo assembly of the 7SK/MePCE/Larp7 transcriptional regulatory snRNP. Nucleic Acids Res. 2013;41:4686–4698. doi: 10.1093/nar/gkt159. PubMed DOI PMC
Siomi M.C., Sato K., Pezic D., Aravin A.A. PIWI-interacting small RNAs: The vanguard of genome defence. Nat. Rev. Mol. Cell Boil. 2011;12:246–258. doi: 10.1038/nrm3089. PubMed DOI
Milagro F.I., Mansego M.L., De Miguel C., Martínez J.A. Dietary factors, epigenetic modifications and obesity outcomes: Progresses and perspectives. Mol. Asp. Med. 2013;34:782–812. doi: 10.1016/j.mam.2012.06.010. PubMed DOI
Adler V., Yin Z., Tew K.D., Ronai Z.A. Role of redox potential and reactive oxygen species in stress signaling. Oncogene. 1999;18:6104–6111. doi: 10.1038/sj.onc.1203128. PubMed DOI
Olefsky J.M. IKK epsilon: A Bridge between Obesity and Inflammation. Cell. 2009;138:834–836. doi: 10.1016/j.cell.2009.08.018. PubMed DOI
Yun J.-M., Jialal I., Devaraj S. Epigenetic regulation of high glucose-induced proinflammatory cytokine production in monocytes by curcumin. J. Nutr. Biochem. 2011;22:450–458. doi: 10.1016/j.jnutbio.2010.03.014. PubMed DOI PMC
Shakibaei M., Buhrmann C., Mobasheri A. Resveratrol-mediated SIRT-1 Interactions with p300 Modulate Receptor Activator of NF-kappa B Ligand (RANKL) Activation of NF-kappa B Signaling and Inhibit Osteoclastogenesis in Bone-derived Cells. J. Biol. Chem. 2011;286:11492–11505. doi: 10.1074/jbc.M110.198713. PubMed DOI PMC
Cuevas A., Saavedra N., Salazar L.A., Abdalla D.S. Modulation of Immune Function by Polyphenols: Possible Contribution of Epigenetic Factors. Nutrients. 2013;5:2314–2332. doi: 10.3390/nu5072314. PubMed DOI PMC
Chen S., Jiang H., Wu X., Fang J. Therapeutic Effects of Quercetin on Inflammation, Obesity, and Type 2 Diabetes. Mediat. Inflamm. 2016;2016:1–5. doi: 10.1155/2016/9340637. PubMed DOI PMC
Yuan Z., Syed M.A., Panchal D., Rogers D., Joo M., Sadikot R.T. Curcumin mediated epigenetic modulation inhibits TREM-1 expression in response to lipopolysaccharide. Int. J. Biochem. Cell Boil. 2012;44:2032–2043. doi: 10.1016/j.biocel.2012.08.001. PubMed DOI
Boyanapalli S.S., Huang Y., Su Z.-Y., Cheng D., Zhang C., Guo Y., Rao R., Androulakis I.P., Kong A.-N. Pharmacokinetics and Pharmacodynamics of Curcumin in regulating anti-inflammatory and epigenetic gene expression. Biopharm. Drug Dispos. 2018;39:289–297. doi: 10.1002/bdd.2136. PubMed DOI PMC
Bo S., Togliatto G., Gambino R., Ponzo V., Lombardo G., Rosato R., Cassader M., Brizzi M.F. Impact of sirtuin-1 expression on H3K56 acetylation and oxidative stress: A double-blind randomized controlled trial with resveratrol supplementation. Acta Diabetol. 2018;55:331–340. doi: 10.1007/s00592-017-1097-4. PubMed DOI PMC
Crescenti A., Solà R., Valls R.M., Caimari A., Del Bas J.M., Anguera A., Anglès N., Arola L. Cocoa Consumption Alters the Global DNA Methylation of Peripheral Leukocytes in Humans with Cardiovascular Disease Risk Factors: A Randomized Controlled Trial. PLoS ONE. 2013;8:e65744. doi: 10.1371/journal.pone.0065744. PubMed DOI PMC
Uddin M., Aiello A.E., Wildman D.E., Koenen K.C., Pawelec G., Santos R.D.L., Goldmann E., Galea S. Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc. Natl. Acad. Sci. USA. 2010;107:9470–9475. doi: 10.1073/pnas.0910794107. PubMed DOI PMC
Klengel T., Mehta D., Anacker C., Rex-Haffner M., Pruessner J.C., Pariante C.M., Pace T.W.W., Mercer K.B., Mayberg H.S., Bradley B., et al. Faculty of 1000 evaluation for Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat. Neurosci. 2013;16:33–41. doi: 10.1038/nn.3275. PubMed DOI PMC
Gao Y., Tollefsbol T.O. Impact of Epigenetic Dietary Components on Cancer through Histone Modifications. Curr. Med. Chem. 2015;22:2051–2064. doi: 10.2174/0929867322666150420102641. PubMed DOI PMC
Ding S., Jang H., Fang J. Regulation of Immune Function by Polyphenols. J. Immunol. Res. 2018;2018:1–8. doi: 10.1155/2018/1264074. PubMed DOI PMC
Maugeri A., Barchitta M., Mazzone M.G., Giuliano F., Basile G., Agodi A. Resveratrol Modulates SIRT1 and DNMT Functions and Restores LINE-1 Methylation Levels in ARPE-19 Cells under Oxidative Stress and Inflammation. Int. J. Mol. Sci. 2018;19:2118. doi: 10.3390/ijms19072118. PubMed DOI PMC
Kong S., Yeung P., Fang D. The class III histone deacetylase sirtuin 1 in immune suppression and its therapeutic potential in rheumatoid arthritis. J. Genet. Genom. 2013;40:347–354. doi: 10.1016/j.jgg.2013.04.001. PubMed DOI PMC
Kala R., Shah H.N., Martin S.L., Tollefsbol T.O. Epigenetic-based combinatorial resveratrol and pterostilbene alters DNA damage response by affecting SIRT1 and DNMT enzyme expression, including SIRT1-dependent γ-H2AX and telomerase regulation in triple-negative breast cancer. BMC Cancer. 2015;15:672. doi: 10.1186/s12885-015-1693-z. PubMed DOI PMC
Yang H., Zhang W., Pan H., Feldser H.G., Lainez E., Miller C., Leung S., Zhong Z., Zhao H., Sweitzer S., et al. SIRT1 Activators Suppress Inflammatory Responses through Promotion of p65 Deacetylation and Inhibition of NF-κB Activity. PLoS ONE. 2012;7:e46364. doi: 10.1371/journal.pone.0046364. PubMed DOI PMC
Schug T.T., Xu Q., Gao H., Peres-Da-Silva A., Draper D.W., Fessler M.B., Purushotham A., Li X. Myeloid Deletion of SIRT1 Induces Inflammatory Signaling in Response to Environmental Stress. Mol. Cell. Boil. 2010;30:4712–4721. doi: 10.1128/MCB.00657-10. PubMed DOI PMC
Tili E., Michaille J.-J. Promiscuous Effects of Some Phenolic Natural Products on Inflammation at Least in Part Arise from Their Ability to Modulate the Expression of Global Regulators, Namely microRNAs. Molecules. 2016;21:1263. doi: 10.3390/molecules21091263. PubMed DOI PMC
Tseng B., Lee W.-J., Chen Y.-R., Tseng T.-H. Quercetin induces FasL-related apoptosis, in part, through promotion of histone H3 acetylation in human leukemia HL-60 cells. Oncol. Rep. 2011;25:583–591. doi: 10.3892/or.2010.1097. PubMed DOI
Abdulla A., Zhao X., Yang F. Natural Polyphenols Inhibit Lysine-Specific Demethylase-1 in vitro. J. Biochem. Pharmacol. Res. 2013;1:56–63. PubMed PMC
Ruiz P.A., Braune A., Hölzlwimmer G., Quintanilla-Fend L., Haller D. Quercetin inhibits TNF-induced NF-kappaB transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells. J. Nutr. 2007;137:1208–1215. doi: 10.1093/jn/137.5.1208. PubMed DOI
Reichard J.F., Motz G.T., Puga A. Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1. Nucleic Acids Res. 2007;35:7074–7086. doi: 10.1093/nar/gkm638. PubMed DOI PMC
Rangarajan P., Karthikeyan A., Dheen S.T. Role of dietary phenols in mitigating microglia-mediated neuroinflammation. Neuromolecular Med. 2016;18:453–464. doi: 10.1007/s12017-016-8430-x. PubMed DOI
Kim A., Yun J.-M. Combination Treatments with Luteolin and Fisetin Enhance Anti-Inflammatory Effects in High Glucose-Treated THP-1 Cells Through Histone Acetyltransferase/Histone Deacetylase Regulation. J. Med. Food. 2017;20:782–789. doi: 10.1089/jmf.2017.3968. PubMed DOI
Liu D., Perkins J.T., Hennig B. EGCG prevents PCB-126-induced endothelial cell inflammation via epigenetic modifications of NF-κB target genes in human endothelial cells. J. Nutr. Biochem. 2015;28:164–170. doi: 10.1016/j.jnutbio.2015.10.003. PubMed DOI PMC
Yun J.-M., Jialal I., Devaraj S. Effects of epigallocatechin gallate on regulatory T cell number and function in obese v. lean volunteers. Br. J. Nutr. 2010;103:1771–1777. doi: 10.1017/S000711451000005X. PubMed DOI
Kim M., Long T.I., Arakawa K., Wang R., Yu M.C., Laird P.W. DNA Methylation as a Biomarker for Cardiovascular Disease Risk. PLoS ONE. 2010;5:e9692. doi: 10.1371/journal.pone.0009692. PubMed DOI PMC
Zhao J.Y., Goldberg J., Bremner J.D., Vaccarino V. Global DNA Methylation Is Associated with Insulin Resistance A Monozygotic Twin Study. Diabetes. 2012;61:542–546. doi: 10.2337/db11-1048. PubMed DOI PMC
Zhang Y., Chen H. Genistein, an epigenome modifier during cancer prevention. Epigenetics. 2011;6:888–891. doi: 10.4161/epi.6.7.16315. PubMed DOI
Boyanapalli S.S.S., Kong A.-N.T. “Curcumin, the King of Spices”: Epigenetic Regulatory Mechanisms in the Prevention of Cancer, Neurological, and Inflammatory Diseases. Curr. Pharmacol. Rep. 2015;1:129–139. doi: 10.1007/s40495-015-0018-x. PubMed DOI PMC
Wada T.T., Araki Y., Sato K., Aizaki Y., Yokota K., Kim Y.T., Oda H., Kurokawa R., Mimura T. Aberrant histone acetylation contributes to elevated interleukin-6 production in rheumatoid arthritis synovial fibroblasts. Biochem. Biophys. Res. Commun. 2014;444:682–686. doi: 10.1016/j.bbrc.2014.01.195. PubMed DOI
Karunaweera N., Raju R., Gyengesi E., Munch G. Plant polyphenols as inhibitors of NF-kappa B induced cytokine production a potential anti-inflammatory treatment for Alzheimer’s disease? Front. Mol. Neurosci. 2015;8 doi: 10.3389/fnmol.2015.00024. PubMed DOI PMC