The Role of Dietary Phenolic Compounds in Epigenetic Modulation Involved in Inflammatory Processes

. 2020 Aug 03 ; 9 (8) : . [epub] 20200803

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32756302

Grantová podpora
68081707 Akademie Věd České Republiky
LQ1605 Ministerstvo Školství, Mládeže a Tělovýchovy

A better understanding of the interactions between dietary phenolic compounds and the epigenetics of inflammation may impact pathological conditions and their treatment. Phenolic compounds are well-known for their antioxidant, anti-inflammatory, anti-angiogenic, and anti-cancer properties, with potential benefits in the treatment of various human diseases. Emerging studies bring evidence that nutrition may play an essential role in immune system modulation also by altering gene expression. This review discusses epigenetic mechanisms such as DNA methylation, post-translational histone modification, and non-coding microRNA activity that regulate the gene expression of molecules involved in inflammatory processes. Special attention is paid to the molecular basis of NF-κB modulation by dietary phenolic compounds. The regulation of histone acetyltransferase and histone deacetylase activity, which all influence NF-κB signaling, seems to be a crucial mechanism of the epigenetic control of inflammation by phenolic compounds. Moreover, chronic inflammatory processes are reported to be closely connected to the major stages of carcinogenesis and other non-communicable diseases. Therefore, dietary phenolic compounds-targeted epigenetics is becoming an attractive approach for disease prevention and intervention.

Zobrazit více v PubMed

Owona B.A., Ebrahimi A., Schluesenner H. Epigenetic effects of natural polyphenols: A focus on SIRT1-mediated mechanisms. Mol. Nutr. Food Res. 2013;58:22–32. doi: 10.1002/mnfr.201300195. PubMed DOI

Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004;79:727–747. doi: 10.1093/ajcn/79.5.727. PubMed DOI

Bravo L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998;56:317–333. doi: 10.1111/j.1753-4887.1998.tb01670.x. PubMed DOI

Scalbert A., Manach C., Morand C., Rémésy C., Jimenez L. Dietary Polyphenols and the Prevention of Diseases. Crit. Rev. Food Sci. Nutr. 2005;45:287–306. doi: 10.1080/1040869059096. PubMed DOI

Číž M., Čížová H., Denev P., Kratchanova M., Slavov A., Lojek A. Different methods for control and comparison of the antioxidant properties of vegetables. Food Control. 2010;21:518–523. doi: 10.1016/j.foodcont.2009.07.017. DOI

Denev P., Kratchanov C.G., Ciz M., Lojek A., Kratchanova M.G. Bioavailability and Antioxidant Activity of Black Chokeberry (Aronia melanocarpa) Polyphenols: in vitro and in vivo Evidences and Possible Mechanisms of Action: A Review. Compr. Rev. Food Sci. Food Saf. 2012;11:471–489. doi: 10.1111/j.1541-4337.2012.00198.x. DOI

Denev P., Kratchanova M., Číž M., Lojek A., Vasicek O., Nedelcheva P., Blazheva D., Toshkova R., Gardeva E., Yossifova L., et al. Biological activities of selected polyphenol-rich fruits related to immunity and gastrointestinal health. Food Chem. 2014;157:37–44. doi: 10.1016/j.foodchem.2014.02.022. PubMed DOI

Cory H., Passarelli S., Szeto J., Tamez M., Mattei J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018;5:87. doi: 10.3389/fnut.2018.00087. PubMed DOI PMC

Zhang H., Tsao R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016;8:33–42. doi: 10.1016/j.cofs.2016.02.002. DOI

Joven J., Micol V., Segura-Carretero A., Alonso-Villaverde C., Menendez J.A., Platform B.F.C. Polyphenols and the Modulation of Gene Expression Pathways: Can We Eat Our Way Out of the Danger of Chronic Disease? Crit. Rev. Food Sci. Nutr. 2014;54:985–1001. doi: 10.1080/10408398.2011.621772. PubMed DOI

Hardy T.M., Tollefsbol T.O. Epigenetic diet: Impact on the epigenome and cancer. Epigenomics. 2011;3:503–518. doi: 10.2217/epi.11.71. PubMed DOI PMC

Kiss A.K., Granica S., Stolarczyk M., Melzig M.F. Epigenetic modulation of mechanisms involved in inflammation: Influence of selected polyphenolic substances on histone acetylation state. Food Chem. 2012;131:1015–1020. doi: 10.1016/j.foodchem.2011.09.109. DOI

Blaze J., Wang J., Ho L., Mendelev N., Haghighi F., Pasinetti G.M. Polyphenolic Compounds Alter Stress-Induced Patterns of Global DNA Methylation in Brain and Blood. Mol. Nutr. Food Res. 2018;62 doi: 10.1002/mnfr.201700722. PubMed DOI PMC

Kim H.J., Kim S.H., Yun J.-M. Fisetin Inhibits Hyperglycemia-Induced Proinflammatory Cytokine Production by Epigenetic Mechanisms. Evidence-Based Complement. Altern. Med. 2012;2012:1–10. doi: 10.1155/2012/639469. PubMed DOI PMC

Xiao X., Shi D., Liu L., Wang J., Xie X., Kang T., Deng W. Quercetin Suppresses Cyclooxygenase-2 Expression and Angiogenesis through Inactivation of P300 Signaling. PLoS ONE. 2011;6:e22934. doi: 10.1371/journal.pone.0022934. PubMed DOI PMC

Kim H.J., Lee W., Yun J.-M. Luteolin Inhibits Hyperglycemia-Induced Proinflammatory Cytokine Production and Its Epigenetic Mechanism in Human Monocytes. Phytotherapy Res. 2014;28:1383–1391. doi: 10.1002/ptr.5141. PubMed DOI

Zhang H.P., Zhao Z.X., Pang X.F., Yang J., Yu H.X., Zhang Y.H., Zhou H., Zhao J.H. Genistein Protects Against Ox-LDL-Induced Inflammation Through MicroRNA-155/SOCS1-Mediated Repression of NF-AB Signaling Pathway in HUVECs. Inflammation. 2017;40:1450–1459. doi: 10.1007/s10753-017-0588-3. PubMed DOI

Yousefi H., Alihemmati A., Karimi P., Alipour M.R., Habibi P., Ahmadiasl N. Effect of genistein on expression of pancreatic SIRT1, inflammatory cytokines and histological changes in ovariectomized diabetic rat. Iran. J. Basic Med. Sci. 2017;20:423–429. PubMed PMC

Majid S., Dar A.A., Shahryari V., Hirata H., Ahmad A., Saini S., Tanaka Y., Dahiya A.V., Dahiya R. Genistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene B-Cell translocation gene 3 in prostate cancer. Cancer. 2009;116:66–76. doi: 10.1002/cncr.24662. PubMed DOI PMC

Fang M.Z., Wang Y., Ai N., Hou Z., Sun Y., Lu H., Welsh W., Yang C.S. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003;63:7563–7570. PubMed

Choi K.C., Jung M.G., Lee Y.H., Yoon J.C., Kwon S.H., Kang H.B., Kim M.J., Cha J.H., Kim Y.J., Jun W.J., et al. Epigallocatechin-3-Gallate, a Histone Acetyltransferase Inhibitor, Inhibits EBV-Induced B Lymphocyte Transformation via Suppression of ReIA Acetylation. Cancer Res. 2009;69:583–592. doi: 10.1158/0008-5472.CAN-08-2442. PubMed DOI

Cordero-Herrera I., Chen X.P., Ramos S., Devaraj S. (-)-Epicatechin attenuates high-glucose-induced inflammation by epigenetic modulation in human monocytes. Eur. J. Nutr. 2017;56:1369–1373. doi: 10.1007/s00394-015-1136-2. PubMed DOI

Borra M.T., Smith B.C., Denu J.M. Mechanism of Human SIRT1 Activation by Resveratrol. J. Boil. Chem. 2005;280:17187–17195. doi: 10.1074/jbc.M501250200. PubMed DOI

Pan W., Yu H., Huang S., Zhu P.-L. Resveratrol Protects against TNF-α-Induced Injury in Human Umbilical Endothelial Cells through Promoting Sirtuin-1-Induced Repression of NF-KB and p38 MAPK. PLoS ONE. 2016;11:e0147034. doi: 10.1371/journal.pone.0147034. PubMed DOI PMC

Lou X.-D., Wang H., Xia S.-J., Skog S., Sun J. Effects of Resveratrol on the Expression and DNA Methylation of Cytokine Genes in Diabetic Rat Aortas. Arch. Immunol. Ther. Exp. 2014;62:329–340. doi: 10.1007/s00005-014-0271-4. PubMed DOI

Kumar A., Rimando A.M., Levenson A.S. Resveratrol and pterostilbene as a microRNA-mediated chemopreventive and therapeutic strategy in prostate cancer. Ann. NY Acad. Sci. 2017;1403:15–26. doi: 10.1111/nyas.13372. PubMed DOI

Neckers L., Trepel J., Lee S., Chung E.-J., Lee M.-J., Jung Y.-J., Marcu M.G. Curcumin is an Inhibitor of p300 Histone Acetylatransferase. Med. Chem. 2006;2:169–174. doi: 10.2174/157340606776056133. PubMed DOI

Sun M., Estrov Z., Ji Y., Coombes K.R., Harris D.H., Kurzrock R. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol. Cancer Ther. 2008;7:464–473. doi: 10.1158/1535-7163.MCT-07-2272. PubMed DOI

Guo Y., Shu L., Zhang C., Su Z.-Y., Kong A.-N. Curcumin inhibits anchorage-independent growth of HT29 human colon cancer cells by targeting epigenetic restoration of the tumor suppressor gene DLEC1. Biochem. Pharmacol. 2015;94:69–78. doi: 10.1016/j.bcp.2015.01.009. PubMed DOI PMC

Maugeri A., Mazzone M.G., Giuliano F., Vinciguerra M., Basile G., Barchitta M., Agodi A. Curcumin Modulates DNA Methyltransferase Functions in a Cellular Model of Diabetic Retinopathy. Oxidative Med. Cell. Longev. 2018;2018:1–12. doi: 10.1155/2018/5407482. PubMed DOI PMC

Vattem D., Shetty K. biological functionality of ellagic acid: A review. J. Food Biochem. 2005;29:234–266. doi: 10.1111/j.1745-4514.2005.00031.x. DOI

Crupi P., Bleve G., Tufariello M., Corbo F., Clodoveo M.L., Tarricone L. Comprehensive identification and quantification of chlorogenic acids in sweet cherry by tandem mass spectrometry techniques. J. Food Compos. Anal. 2018;73:103–111. doi: 10.1016/j.jfca.2018.06.013. DOI

Fonayet J.V., Millán S., Martí M.P., Borràs E., Arola L. Advanced separation methods of food anthocyanins, isoflavones and flavanols. J. Chromatogr. A. 2009;1216:7143–7172. doi: 10.1016/j.chroma.2009.07.030. PubMed DOI

Harborne J.B., A Williams C. Advances in flavonoid research since 1992. Phytochemistry. 2000;55:481–504. doi: 10.1016/S0031-9422(00)00235-1. PubMed DOI

Coward L., Smith M., Kirk M., Barnes S. Chemical modification of isoflavones in soyfoods during cooking and processing. Am. J. Clin. Nutr. 1998;68:1486S–1491S. doi: 10.1093/ajcn/68.6.1486S. PubMed DOI

Setchell K.D.R., Brown N.M., Lydeking-Olsen E. The Clinical Importance of the Metabolite Equol—A Clue to the Effectiveness of Soy and Its Isoflavones. J. Nutr. 2002;132:3577–3584. doi: 10.1093/jn/132.12.3577. PubMed DOI

Lakenbrink C., Lapczynski S., Maiwald B., Engelhardt U.H. Flavonoids and other polyphenols in consumer brews of tea and other caffeinated beverages. J. Agric. Food Chem. 2000;48:2848–2852. doi: 10.1021/jf9908042. PubMed DOI

Graham H.N. Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 1992;21:334–350. doi: 10.1016/0091-7435(92)90041-F. PubMed DOI

Guyot S., Marnet N., Drilleau J.-F. Thiolysis-HPLC characterization of apple procyanidins covering a large range of polymerization states. J. Agric. Food Chem. 2001;49:14–20. doi: 10.1021/jf000814z. PubMed DOI

Thompson L.U., Robb P., Serraino M., Cheung F. Mammalian lignan production from various foods. Nutr. Cancer. 1991;16:43–52. doi: 10.1080/01635589109514139. PubMed DOI

Adlercreutz H., Mazur W. Phyto-oestrogens and Western diseases. Ann. Med. 1997;29:95–120. doi: 10.3109/07853899709113696. PubMed DOI

Heinonen S., Salonen J.T., Liukkonen K., Poutanen K., Wähälä K., Deyama T., Nishibe S., Adlercreutz H. In vitro metabolism of plant lignans: New precursors of mammalian lignans enterolactone and enterodiol. J. Agric. Food Chem. 2001;49:3178–3186. doi: 10.1021/jf010038a. PubMed DOI

Bavaresco L. Role of viticultural factors on stilbene concentrations of grapes and wine. Drugs Under Exp. Clin. Res. 2003;29:181–187. PubMed

Delmas D., Lançon A., Colin D., Jannin B., Latruffe N. Resveratrol as a Chemopreventive Agent: A Promising Molecule for Fighting Cancer. Curr. Drug Targets. 2006;7:423–442. doi: 10.2174/138945006776359331. PubMed DOI

Das D.K., Mukherjee S., Ray D. Resveratrol and red wine, healthy heart and longevity. Hear. Fail. Rev. 2010;15:467–477. doi: 10.1007/s10741-010-9163-9. PubMed DOI

Lee P.-S., Chiou Y.-S., Ho C.-T., Pan M.-H. Chemoprevention by resveratrol and pterostilbene: Targeting on epigenetic regulation. BioFactors. 2017;44:26–35. doi: 10.1002/biof.1401. PubMed DOI

Cabrini L., Barzanti V., Cipollone M., Fiorentini D., Grossi G., Tolomelli B., Zambonin L., Landi L. Antioxidants and total peroxyl radical-trapping ability of olive and seed oils. J. Agric. Food Chem. 2001;49:6026–6032. doi: 10.1021/jf010837t. PubMed DOI

Covas M.I., Miró-Casas E., Fitó M., Farré-Albadalejo M., Gimeno E., Marrugat J., De La Torre R. Bioavailability of tyrosol, an antioxidant phenolic compound present in wine and olive oil, in humans. Drugs Under Exp. Clin. Res. 2003;29:203–206. PubMed

De La Torre R., Covas M.I., Pujadas M.A., Fitó M., Farré M. Is dopamine behind the health benefits of red wine? Eur. J. Nutr. 2006;45:307–310. doi: 10.1007/s00394-006-0596-9. PubMed DOI

Amalraj A., Pius A., Gopi S., Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives—A review. J. Tradit. Complement. Med. 2016;7:205–233. doi: 10.1016/j.jtcme.2016.05.005. PubMed DOI PMC

Pan M.-H., Lai C.-S., Wu J.-C., Ho C.-T. Epigenetic and disease targets by polyphenols. Curr. Pharm. Des. 2013;19:6156–6185. doi: 10.2174/1381612811319340010. PubMed DOI

Suárez-Álvarez B., Raneros A.B., Ortega F., López-Soto A. Epigenetic modulation of the immune function: A potential target for tolerance. Epigenetics. 2013;8:694–702. doi: 10.4161/epi.25201. PubMed DOI PMC

Ospelt C., Gay S., Klein K. Epigenetics in the pathogenesis of RA. Semin. Immunopathol. 2017;39:409–419. doi: 10.1007/s00281-017-0621-5. PubMed DOI

Fuhrmann J., Thompson P.R. Protein Arginine Methylation and Citrullination in Epigenetic Regulation. ACS Chem. Boil. 2015;11:654–668. doi: 10.1021/acschembio.5b00942. PubMed DOI PMC

Morandini A.C., Santos C.F., Yilmaz O. Role of epigenetics in modulation of immune response at the junction of host–pathogen interaction and danger molecule signaling. Pathog. Dis. 2016;74 doi: 10.1093/femspd/ftw082. PubMed DOI PMC

Gibney E.R., Nolan C.M. Epigenetics and gene expression. Heredity. 2010;105:4–13. doi: 10.1038/hdy.2010.54. PubMed DOI

Castillo-Aguilera O., Depreux P., Halby L., Arimondo P.B., Goossens L. DNA Methylation Targeting: The DNMT/HMT Crosstalk Challenge. Biomolecules. 2017;7:3. doi: 10.3390/biom7010003. PubMed DOI PMC

Fernandes G.F.S., Silva G.D.B., Pavan A.R., Chiba D.E., Chin C.M., Dos Santos J.L. Epigenetic Regulatory Mechanisms Induced by Resveratrol. Nutrients. 2017;9:1201. doi: 10.3390/nu9111201. PubMed DOI PMC

Leshner M., Wang S., Lewis C., Zheng H., Chen X.A., Santy L., Wang Y. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front. Immunol. 2012;3 doi: 10.3389/fimmu.2012.00307. PubMed DOI PMC

Chuang J.C., Jones P.A. Epigenetics and microRNAs. Pediatr. Res. 2007;61:24r–29r. doi: 10.1203/pdr.0b013e3180457684. PubMed DOI

Xu Y.-M., Du J.-Y., Lau A.T.Y. Posttranslational modifications of human histone H3: An update. Proteomics. 2014;14:2047–2060. doi: 10.1002/pmic.201300435. PubMed DOI

Frías-Lasserre D., Villagra C.A. The Importance of ncRNAs as Epigenetic Mechanisms in Phenotypic Variation and Organic Evolution. Front. Microbiol. 2017;8 doi: 10.3389/fmicb.2017.02483. PubMed DOI PMC

Yekta S., Shih I.-H., Bartel B. MicroRNA-Directed Cleavage of HOXB8 mRNA. Science. 2004;304:594–596. doi: 10.1126/science.1097434. PubMed DOI

Agrawal N., Dasaradhi P.V.N., Mohmmed A., Malhotra P., Bhatnagar R.K., Mukherjee S.K. RNA Interference: Biology, Mechanism, and Applications. Microbiol. Mol. Boil. Rev. 2003;67:657–685. doi: 10.1128/MMBR.67.4.657-685.2003. PubMed DOI PMC

Muniz L., Egloff S., Kiss T. RNA elements directing in vivo assembly of the 7SK/MePCE/Larp7 transcriptional regulatory snRNP. Nucleic Acids Res. 2013;41:4686–4698. doi: 10.1093/nar/gkt159. PubMed DOI PMC

Siomi M.C., Sato K., Pezic D., Aravin A.A. PIWI-interacting small RNAs: The vanguard of genome defence. Nat. Rev. Mol. Cell Boil. 2011;12:246–258. doi: 10.1038/nrm3089. PubMed DOI

Milagro F.I., Mansego M.L., De Miguel C., Martínez J.A. Dietary factors, epigenetic modifications and obesity outcomes: Progresses and perspectives. Mol. Asp. Med. 2013;34:782–812. doi: 10.1016/j.mam.2012.06.010. PubMed DOI

Adler V., Yin Z., Tew K.D., Ronai Z.A. Role of redox potential and reactive oxygen species in stress signaling. Oncogene. 1999;18:6104–6111. doi: 10.1038/sj.onc.1203128. PubMed DOI

Olefsky J.M. IKK epsilon: A Bridge between Obesity and Inflammation. Cell. 2009;138:834–836. doi: 10.1016/j.cell.2009.08.018. PubMed DOI

Yun J.-M., Jialal I., Devaraj S. Epigenetic regulation of high glucose-induced proinflammatory cytokine production in monocytes by curcumin. J. Nutr. Biochem. 2011;22:450–458. doi: 10.1016/j.jnutbio.2010.03.014. PubMed DOI PMC

Shakibaei M., Buhrmann C., Mobasheri A. Resveratrol-mediated SIRT-1 Interactions with p300 Modulate Receptor Activator of NF-kappa B Ligand (RANKL) Activation of NF-kappa B Signaling and Inhibit Osteoclastogenesis in Bone-derived Cells. J. Biol. Chem. 2011;286:11492–11505. doi: 10.1074/jbc.M110.198713. PubMed DOI PMC

Cuevas A., Saavedra N., Salazar L.A., Abdalla D.S. Modulation of Immune Function by Polyphenols: Possible Contribution of Epigenetic Factors. Nutrients. 2013;5:2314–2332. doi: 10.3390/nu5072314. PubMed DOI PMC

Chen S., Jiang H., Wu X., Fang J. Therapeutic Effects of Quercetin on Inflammation, Obesity, and Type 2 Diabetes. Mediat. Inflamm. 2016;2016:1–5. doi: 10.1155/2016/9340637. PubMed DOI PMC

Yuan Z., Syed M.A., Panchal D., Rogers D., Joo M., Sadikot R.T. Curcumin mediated epigenetic modulation inhibits TREM-1 expression in response to lipopolysaccharide. Int. J. Biochem. Cell Boil. 2012;44:2032–2043. doi: 10.1016/j.biocel.2012.08.001. PubMed DOI

Boyanapalli S.S., Huang Y., Su Z.-Y., Cheng D., Zhang C., Guo Y., Rao R., Androulakis I.P., Kong A.-N. Pharmacokinetics and Pharmacodynamics of Curcumin in regulating anti-inflammatory and epigenetic gene expression. Biopharm. Drug Dispos. 2018;39:289–297. doi: 10.1002/bdd.2136. PubMed DOI PMC

Bo S., Togliatto G., Gambino R., Ponzo V., Lombardo G., Rosato R., Cassader M., Brizzi M.F. Impact of sirtuin-1 expression on H3K56 acetylation and oxidative stress: A double-blind randomized controlled trial with resveratrol supplementation. Acta Diabetol. 2018;55:331–340. doi: 10.1007/s00592-017-1097-4. PubMed DOI PMC

Crescenti A., Solà R., Valls R.M., Caimari A., Del Bas J.M., Anguera A., Anglès N., Arola L. Cocoa Consumption Alters the Global DNA Methylation of Peripheral Leukocytes in Humans with Cardiovascular Disease Risk Factors: A Randomized Controlled Trial. PLoS ONE. 2013;8:e65744. doi: 10.1371/journal.pone.0065744. PubMed DOI PMC

Uddin M., Aiello A.E., Wildman D.E., Koenen K.C., Pawelec G., Santos R.D.L., Goldmann E., Galea S. Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc. Natl. Acad. Sci. USA. 2010;107:9470–9475. doi: 10.1073/pnas.0910794107. PubMed DOI PMC

Klengel T., Mehta D., Anacker C., Rex-Haffner M., Pruessner J.C., Pariante C.M., Pace T.W.W., Mercer K.B., Mayberg H.S., Bradley B., et al. Faculty of 1000 evaluation for Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat. Neurosci. 2013;16:33–41. doi: 10.1038/nn.3275. PubMed DOI PMC

Gao Y., Tollefsbol T.O. Impact of Epigenetic Dietary Components on Cancer through Histone Modifications. Curr. Med. Chem. 2015;22:2051–2064. doi: 10.2174/0929867322666150420102641. PubMed DOI PMC

Ding S., Jang H., Fang J. Regulation of Immune Function by Polyphenols. J. Immunol. Res. 2018;2018:1–8. doi: 10.1155/2018/1264074. PubMed DOI PMC

Maugeri A., Barchitta M., Mazzone M.G., Giuliano F., Basile G., Agodi A. Resveratrol Modulates SIRT1 and DNMT Functions and Restores LINE-1 Methylation Levels in ARPE-19 Cells under Oxidative Stress and Inflammation. Int. J. Mol. Sci. 2018;19:2118. doi: 10.3390/ijms19072118. PubMed DOI PMC

Kong S., Yeung P., Fang D. The class III histone deacetylase sirtuin 1 in immune suppression and its therapeutic potential in rheumatoid arthritis. J. Genet. Genom. 2013;40:347–354. doi: 10.1016/j.jgg.2013.04.001. PubMed DOI PMC

Kala R., Shah H.N., Martin S.L., Tollefsbol T.O. Epigenetic-based combinatorial resveratrol and pterostilbene alters DNA damage response by affecting SIRT1 and DNMT enzyme expression, including SIRT1-dependent γ-H2AX and telomerase regulation in triple-negative breast cancer. BMC Cancer. 2015;15:672. doi: 10.1186/s12885-015-1693-z. PubMed DOI PMC

Yang H., Zhang W., Pan H., Feldser H.G., Lainez E., Miller C., Leung S., Zhong Z., Zhao H., Sweitzer S., et al. SIRT1 Activators Suppress Inflammatory Responses through Promotion of p65 Deacetylation and Inhibition of NF-κB Activity. PLoS ONE. 2012;7:e46364. doi: 10.1371/journal.pone.0046364. PubMed DOI PMC

Schug T.T., Xu Q., Gao H., Peres-Da-Silva A., Draper D.W., Fessler M.B., Purushotham A., Li X. Myeloid Deletion of SIRT1 Induces Inflammatory Signaling in Response to Environmental Stress. Mol. Cell. Boil. 2010;30:4712–4721. doi: 10.1128/MCB.00657-10. PubMed DOI PMC

Tili E., Michaille J.-J. Promiscuous Effects of Some Phenolic Natural Products on Inflammation at Least in Part Arise from Their Ability to Modulate the Expression of Global Regulators, Namely microRNAs. Molecules. 2016;21:1263. doi: 10.3390/molecules21091263. PubMed DOI PMC

Tseng B., Lee W.-J., Chen Y.-R., Tseng T.-H. Quercetin induces FasL-related apoptosis, in part, through promotion of histone H3 acetylation in human leukemia HL-60 cells. Oncol. Rep. 2011;25:583–591. doi: 10.3892/or.2010.1097. PubMed DOI

Abdulla A., Zhao X., Yang F. Natural Polyphenols Inhibit Lysine-Specific Demethylase-1 in vitro. J. Biochem. Pharmacol. Res. 2013;1:56–63. PubMed PMC

Ruiz P.A., Braune A., Hölzlwimmer G., Quintanilla-Fend L., Haller D. Quercetin inhibits TNF-induced NF-kappaB transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells. J. Nutr. 2007;137:1208–1215. doi: 10.1093/jn/137.5.1208. PubMed DOI

Reichard J.F., Motz G.T., Puga A. Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1. Nucleic Acids Res. 2007;35:7074–7086. doi: 10.1093/nar/gkm638. PubMed DOI PMC

Rangarajan P., Karthikeyan A., Dheen S.T. Role of dietary phenols in mitigating microglia-mediated neuroinflammation. Neuromolecular Med. 2016;18:453–464. doi: 10.1007/s12017-016-8430-x. PubMed DOI

Kim A., Yun J.-M. Combination Treatments with Luteolin and Fisetin Enhance Anti-Inflammatory Effects in High Glucose-Treated THP-1 Cells Through Histone Acetyltransferase/Histone Deacetylase Regulation. J. Med. Food. 2017;20:782–789. doi: 10.1089/jmf.2017.3968. PubMed DOI

Liu D., Perkins J.T., Hennig B. EGCG prevents PCB-126-induced endothelial cell inflammation via epigenetic modifications of NF-κB target genes in human endothelial cells. J. Nutr. Biochem. 2015;28:164–170. doi: 10.1016/j.jnutbio.2015.10.003. PubMed DOI PMC

Yun J.-M., Jialal I., Devaraj S. Effects of epigallocatechin gallate on regulatory T cell number and function in obese v. lean volunteers. Br. J. Nutr. 2010;103:1771–1777. doi: 10.1017/S000711451000005X. PubMed DOI

Kim M., Long T.I., Arakawa K., Wang R., Yu M.C., Laird P.W. DNA Methylation as a Biomarker for Cardiovascular Disease Risk. PLoS ONE. 2010;5:e9692. doi: 10.1371/journal.pone.0009692. PubMed DOI PMC

Zhao J.Y., Goldberg J., Bremner J.D., Vaccarino V. Global DNA Methylation Is Associated with Insulin Resistance A Monozygotic Twin Study. Diabetes. 2012;61:542–546. doi: 10.2337/db11-1048. PubMed DOI PMC

Zhang Y., Chen H. Genistein, an epigenome modifier during cancer prevention. Epigenetics. 2011;6:888–891. doi: 10.4161/epi.6.7.16315. PubMed DOI

Boyanapalli S.S.S., Kong A.-N.T. “Curcumin, the King of Spices”: Epigenetic Regulatory Mechanisms in the Prevention of Cancer, Neurological, and Inflammatory Diseases. Curr. Pharmacol. Rep. 2015;1:129–139. doi: 10.1007/s40495-015-0018-x. PubMed DOI PMC

Wada T.T., Araki Y., Sato K., Aizaki Y., Yokota K., Kim Y.T., Oda H., Kurokawa R., Mimura T. Aberrant histone acetylation contributes to elevated interleukin-6 production in rheumatoid arthritis synovial fibroblasts. Biochem. Biophys. Res. Commun. 2014;444:682–686. doi: 10.1016/j.bbrc.2014.01.195. PubMed DOI

Karunaweera N., Raju R., Gyengesi E., Munch G. Plant polyphenols as inhibitors of NF-kappa B induced cytokine production a potential anti-inflammatory treatment for Alzheimer’s disease? Front. Mol. Neurosci. 2015;8 doi: 10.3389/fnmol.2015.00024. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...