Tail-Oxidized Cholesterol Enhances Membrane Permeability for Small Solutes

. 2020 Sep 08 ; 36 (35) : 10438-10447. [epub] 20200828

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32804507

Cholesterol renders mammalian cell membranes more compact by reducing the amount of voids in the membrane structure. Because of this, cholesterol is known to regulate the ability of cell membranes to prevent the permeation of water and water-soluble molecules through the membranes. Meanwhile, it is also known that even seemingly tiny modifications in the chemical structure of cholesterol can lead to notable changes in membrane properties. The question is, how significantly do these small changes in cholesterol structure affect the permeability barrier function of cell membranes? In this work, we applied fluorescence methods as well as atomistic molecular dynamics simulations to characterize changes in lipid membrane permeability induced by cholesterol oxidation. The studied 7β-hydroxycholesterol (7β-OH-chol) and 27-hydroxycholesterol (27-OH-chol) represent two distinct groups of oxysterols, namely, ring- and tail-oxidized cholesterols, respectively. Our previous research showed that the oxidation of the cholesterol tail has only a marginal effect on the structure of a lipid bilayer; however, oxidation was found to disturb membrane dynamics by introducing a mechanism that allows sterol molecules to move rapidly back and forth across the membrane-bobbing. Herein, we show that bobbing of 27-OH-chol accelerates fluorescence quenching of NBD-lipid probes in the inner leaflet of liposomes by dithionite added to the liposomal suspension. Systematic experiments using fluorescence quenching spectroscopy and microscopy led to the conclusion that the presence of 27-OH-chol increases membrane permeability to the dithionite anion. Atomistic molecular dynamics simulations demonstrated that 27-OH-chol also facilitates water transport across the membrane. The results support the view that oxysterol bobbing gives rise to successive perturbations to the hydrophobic core of the membrane, and these perturbations promote the permeation of water and small water-soluble molecules through a lipid bilayer. The observed impairment of permeability can have important consequences for eukaryotic organisms. The effects described for 27-OH-chol were not observed for 7β-OH-chol which represents ring-oxidized sterols.

Zobrazit více v PubMed

Finkelstein A.; Cass A. Effect of cholesterol on water permeability of thin lipid membranes. Nature 1967, 216 (5116), 717–718. 10.1038/216717a0. PubMed DOI

Mathai J. C.; Tristram-Nagle S.; Nagle J. F.; Zeidel M. L. Structural determinants of water permeability through the lipid membrane. J. Gen. Physiol. 2008, 131 (1), 69–76. 10.1085/jgp.200709848. PubMed DOI PMC

Subczynski W. K.; Wisniewska A.; Yin J. J.; Hyde J. S.; Kusumi A. Hydrophobic barriers of lipid bilayer - Membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol. Biochemistry 1994, 33 (24), 7670–7681. 10.1021/bi00190a022. PubMed DOI

Marsh D. Polarity and permeation profiles in lipid membranes. Proc. Natl. Acad. Sci. U. S. A. 2001, 98 (14), 7777–7782. 10.1073/pnas.131023798. PubMed DOI PMC

Shinoda W. Permeability across lipid membranes. Biochim. Biophys. Acta, Biomembr. 2016, 1858 (10), 2254–2265. 10.1016/j.bbamem.2016.03.032. PubMed DOI

Saito Y.; Yoshida Y.; Niki E. Cholesterol is more susceptible to oxidation than linoleates in cultured cells under oxidative stress induced by selenium deficiency and free radicals. FEBS Lett. 2007, 581 (22), 4349–4354. 10.1016/j.febslet.2007.08.010. PubMed DOI

Hong C.; Tieleman D. P.; Wang Y. Microsecond Molecular Dynamics Simulations of Lipid Mixing. Langmuir 2014, 30 (40), 11993–12001. 10.1021/la502363b. PubMed DOI PMC

Haines T. H. Water transport across biological membranes. FEBS Lett. 1994, 346 (1), 115–122. 10.1016/0014-5793(94)00470-6. PubMed DOI

Waldeck A. R.; Nouri-Sorkhabi M. H.; Sullivan D. R.; Kuchel P. W. Effects of cholesterol on transmembrane water diffusion in human erythrocytes measured using pulsed field gradient NMR. Biophys. Chem. 1995, 55 (3), 197–208. 10.1016/0301-4622(95)00007-K. PubMed DOI

Kitson N.; Thewalt J.; Lafleur M.; Bloom M. A Model Membrane Approach to the Epidermal Permeability Barrier. Biochemistry 1994, 33 (21), 6707–6715. 10.1021/bi00187a042. PubMed DOI

Papahadjopoulos D.; Nir S.; Ohki S. Permeability properties of phospholipid membranes - Effect of cholesterol and temperature. Biochim. Biophys. Acta, Biomembr. 1972, 266 (3), 561–583. 10.1016/0005-2736(72)90354-9. PubMed DOI

Demel R.A.; Bruckdorfer K.R.; Van Deenen L. L. M. Effect of sterol structure on permeability of liposomes to glucose, glycerol and Rb+. Biochim. Biophys. Acta, Biomembr. 1972, 255 (1), 321–330. 10.1016/0005-2736(72)90031-4. PubMed DOI

Ranadive G. N.; Lala A. K. Sterol-phospholipid interaction in model membranes - Role of C5-C6 double-bond in cholesterol. Biochemistry 1987, 26 (9), 2426–2431. 10.1021/bi00383a005. PubMed DOI

Subczynski W. K.; Hyde J. S.; Kusumi A. Effect if alkyl chain unsaturation and cholesterol intercalation on oxygen-transport in membranes - A pulse ESR spin labeling study. Biochemistry 1991, 30 (35), 8578–8590. 10.1021/bi00099a013. PubMed DOI

Shea R.; Smith C.; Pias S. C. Chapter 6: Magnification of Cholesterol-Induced Membrane Resistance on the Tissue Level: Implications for Hypoxia. Adv. Exp. Med. Biol. 2016, 923, 43–50. 10.1007/978-3-319-38810-6_6. PubMed DOI PMC

Khajeh A.; Modarress H. The influence of cholesterol on interactions and dynamics of ibuprofen in a lipid bilayer. Biochim. Biophys. Acta, Biomembr. 2014, 1838 (10), 2431–2438. 10.1016/j.bbamem.2014.05.029. PubMed DOI

Khajeh A.; Modarress H. Effect of cholesterol on behavior of 5-fluorouracil (5-FU) in a DMPC lipid bilayer, a molecular dynamics study. Biophys. Chem. 2014, 187, 43–50. 10.1016/j.bpc.2014.01.004. PubMed DOI

Sun D.; Lin X.; Gu N. Cholesterol affects C 60 translocation across lipid bilayers. Soft Matter 2014, 10 (13), 2160–2168. 10.1039/C3SM52211C. PubMed DOI

Deng D.; Jiang N.; Hao S.-J.; Sun H.; Zhang G.-j. Loss of membrane cholesterol influences lysosomal permeability to potassium ions and protons. Biochim. Biophys. Acta, Biomembr. 2009, 1788 (2), 470–476. 10.1016/j.bbamem.2008.11.018. PubMed DOI

Ohvo-Rekila H.; Ramstedt B.; Leppimaki P.; Slotte J. P. Cholesterol interactions with phospholipids in membranes. Prog. Lipid Res. 2002, 41 (1), 66–97. 10.1016/S0163-7827(01)00020-0. PubMed DOI

Róg T.; Vattulainen I. Cholesterol, sphingolipids, and glycolipids: What do we know about their role in raft-like membranes?. Chem. Phys. Lipids 2014, 184 (0), 82–104. 10.1016/j.chemphyslip.2014.10.004. PubMed DOI

Venable R. M.; Krämer A.; Pastor R. W. Molecular Dynamics Simulations of Membrane Permeability. Chem. Rev. 2019, 119 (9), 5954–5997. 10.1021/acs.chemrev.8b00486. PubMed DOI PMC

Paula S.; Volkov A.; Van Hoek A.; Haines T.; Deamer D. W. Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys. J. 1996, 70 (1), 339–348. 10.1016/S0006-3495(96)79575-9. PubMed DOI PMC

Xiang T.-X.; Anderson B. D. Phospholipid surface density determines the partitioning and permeability of acetic acid in DMPC: cholesterol bilayers. J. Membr. Biol. 1995, 148 (2), 157–167. 10.1007/BF00207271. PubMed DOI

van Meer G.; Voelker D. R.; Feigenson G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008, 9 (2), 112–124. 10.1038/nrm2330. PubMed DOI PMC

Wertz P. W.; van den Bergh B. The physical, chemical and functional properties of lipids in the skin and other biological barriers. Chem. Phys. Lipids 1998, 91 (2), 85–96. 10.1016/S0009-3084(97)00108-4. PubMed DOI

Kitson N.; Monck M.; Wong K.; Thewalt J.; Cullis P. The influence of cholesterol 3-sulphate on phase behaviour and hydrocarbon order in model membrane systems. Biochim. Biophys. Acta, Biomembr. 1992, 1111 (1), 127–133. 10.1016/0005-2736(92)90282-Q. PubMed DOI

Zhang J.; Liu Q. Cholesterol metabolism and homeostasis in the brain. Protein Cell 2015, 6 (4), 254–264. 10.1007/s13238-014-0131-3. PubMed DOI PMC

Bunker A.; Magarkar A.; Viitala T. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. Biochim. Biophys. Acta, Biomembr. 2016, 1858 (10), 2334–2352. 10.1016/j.bbamem.2016.02.025. PubMed DOI

Dhawan V.; Magarkar A.; Joshi G.; Makhija D.; Jain A.; Shah J.; Reddy B. V. V.; Krishnapriya M.; Rog T.; Bunker A.; Jagtap A.; Nagarsenker M. Stearylated cycloarginine nanosystems for intracellular delivery-simulations, formulation and proof of concept. RSC Adv. 2016, 6 (114), 113538–113550. 10.1039/C6RA16432C. DOI

Pathak P.; Dhawan V.; Magarkar A.; Danne R.; Govindarajan S.; Ghosh S.; Steiniger F.; Chaudhari P.; Gopal V.; Bunker A.; et al. Design of cholesterol arabinogalactan anchored liposomes for asialoglycoprotein receptor mediated targeting to hepatocellular carcinoma: In silico modeling, in vitro and in vivo evaluation. Int. J. Pharm. 2016, 509 (1-2), 149–158. 10.1016/j.ijpharm.2016.05.041. PubMed DOI

Mayer L. D.; Bally M. B.; Cullis P. R. Strategies for optimizing liposomal doxorubicin. J. Liposome Res. 1990, 1 (4), 463–480. 10.3109/08982109009036008. DOI

Barenholz Y. C. Doxil®—the first FDA-approved nano-drug: lessons learned. J. Controlled Release 2012, 160 (2), 117–134. 10.1016/j.jconrel.2012.03.020. PubMed DOI

Gill S.; Chow R.; Brown A. J. Sterol regulators of cholesterol homeostasis and beyond: The oxysterol hypothesis revisited and revised. Prog. Lipid Res. 2008, 47 (6), 391–404. 10.1016/j.plipres.2008.04.002. PubMed DOI

Kulig W.; Cwiklik L.; Jurkiewicz P.; Rog T.; Vattulainen I. Cholesterol oxidation products and their biological importance. Chem. Phys. Lipids 2016, 199, 144–160. 10.1016/j.chemphyslip.2016.03.001. PubMed DOI

Boissonneault G. A.; Heiniger H.-J. 25-Hydroxycholesterol-induced elevations in 45Ca uptake: Permeability changes in P815 cells. J. Cell. Physiol. 1985, 125 (3), 471–475. 10.1002/jcp.1041250316. PubMed DOI

Theunissen J. J. H.; Jackson R. L.; Kempen H. J. M.; Demel R. A. Membrane properties of oxysterols. Interfacial orientation, influence on membrane permeability and redistribution between membranes. Biochim. Biophys. Acta, Biomembr. 1986, 860 (1), 66–74. 10.1016/0005-2736(86)90499-2. PubMed DOI

Parra-Ortiz E.; Browning K. L.; Damgaard L. S. E.; Nordström R.; Micciulla S.; Bucciarelli S.; Malmsten M. Effects of oxidation on the physicochemical properties of polyunsaturated lipid membranes. J. Colloid Interface Sci. 2019, 538, 404–419. 10.1016/j.jcis.2018.12.007. PubMed DOI

Kulig W.; Olżyńska A.; Jurkiewicz P.; Kantola A. M.; Komulainen S.; Manna M.; Pourmousa M.; Vazdar M.; Cwiklik L.; Rog T.; Khelashvili G.; Harries D.; Telkki V.-V.; Hof M.; Vattulainen I.; Jungwirth P. Cholesterol under oxidative stress—How lipid membranes sense oxidation as cholesterol is being replaced by oxysterols. Free Radical Biol. Med. 2015, 84, 30–41. 10.1016/j.freeradbiomed.2015.03.006. PubMed DOI

Enkavi G.; Javanainen M.; Kulig W.; Róg T.; Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem. Rev. 2019, 119 (9), 5607–5774. 10.1021/acs.chemrev.8b00538. PubMed DOI PMC

Angelova M.; Soléau S.; Méléard P.; Faucon F.; Bothorel P.. Preparation of giant vesicles by external AC electric fields. Kinetics and applications. In Trends in Colloid and Interface Science VI; Springer: 1992; pp 127–131.

Koukalová A.; Pokorná Š.; Fišer R.; Kopecký V.; Humpolíčková J.; Černý J.; Hof M. Membrane activity of the pentaene macrolide didehydroroflamycoin in model lipid bilayers. Biochim. Biophys. Acta, Biomembr. 2015, 1848 (2), 444–452. 10.1016/j.bbamem.2014.10.038. PubMed DOI

Jorgensen W. L.; Maxwell D. S.; TiradoRives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118 (45), 11225–11236. 10.1021/ja9621760. DOI

Kaminski G. A.; Friesner R. A.; Tirado-Rives J.; Jorgensen W. L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 2001, 105 (28), 6474–6487. 10.1021/jp003919d. DOI

Maciejewski A.; Pasenkiewicz-Gierula M.; Cramariuc O.; Vattulainen I.; Rog T. Refined OPLS All-Atom Force Field for Saturated Phosphatidylcholine Bilayers at Full Hydration. J. Phys. Chem. B 2014, 118 (17), 4571–4581. 10.1021/jp5016627. PubMed DOI

Kulig W.; Pasenkiewicz-Gierula M.; Róg T. Topologies, structures and parameter files for lipid simulations in GROMACS with the OPLS-aa force field: DPPC, POPC, DOPC, PEPC, and cholesterol. Data in Brief 2015, 5, 333–336. 10.1016/j.dib.2015.09.013. PubMed DOI PMC

Hess B.; Bekker H.; Berendsen H. J. C.; Fraaije J. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18 (12), 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI

Miyamoto S.; Kollman P. A. SETTLE - An Analytical Version of the SHAKE and RATTLE Algorithm for Rigid Water Models. J. Comput. Chem. 1992, 13 (8), 952–962. 10.1002/jcc.540130805. DOI

Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103 (19), 8577–8593. 10.1063/1.470117. DOI

Nose S. A Molecular-Dynamics Method for Simulations in the Canonical Ensemble. Mol. Phys. 1984, 52 (2), 255–268. 10.1080/00268978400101201. DOI

Hoover W. G. Canonical Dynamics - Equilibrium Phase-Space Distribution. Phys. Rev. A: At., Mol., Opt. Phys. 1985, 31 (3), 1695–1697. 10.1103/PhysRevA.31.1695. PubMed DOI

Parrinello M.; Rahman A. Polymorphic Transitions in Single-Crystals - A New Molecular-Dynamics Method. J. Appl. Phys. 1981, 52 (12), 7182–7190. 10.1063/1.328693. DOI

Berendsen H. J.; van der Spoel D.; van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995, 91 (1–3), 43–56. 10.1016/0010-4655(95)00042-E. DOI

Hess B.; Kutzner C.; van der Spoel D.; Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4 (3), 435–447. 10.1021/ct700301q. PubMed DOI

Nakano M.; Fukuda M.; Kudo T.; Matsuzaki N.; Azuma T.; Sekine K.; Endo H.; Handa T. Flip-flop of phospholipids in vesicles: kinetic analysis with time-resolved small-angle neutron scattering. J. Phys. Chem. B 2009, 113 (19), 6745–6748. 10.1021/jp900913w. PubMed DOI

McConnell H. M.; Kornberg R. D. Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry 1971, 10 (7), 1111–1120. 10.1021/bi00783a003. PubMed DOI

Kulig W.; Mikkolainen H.; Olżyńska A.; Jurkiewicz P.; Cwiklik L.; Hof M.; Vattulainen I.; Jungwirth P.; Rog T. Bobbing of Oxysterols: Molecular Mechanism for Translocation of Tail-Oxidized Sterols through Biological Membranes. J. Phys. Chem. Lett. 2018, 9 (5), 1118–1123. 10.1021/acs.jpclett.8b00211. PubMed DOI

Holmes R. P.; Yoss N. L. 25-Hydroxysterols increase the permeability of liposomes to Ca2+ and other cations. Biochim. Biophys. Acta, Biomembr. 1984, 770 (1), 15–21. 10.1016/0005-2736(84)90067-1. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...