Tail-Oxidized Cholesterol Enhances Membrane Permeability for Small Solutes
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32804507
PubMed Central
PMC7482392
DOI
10.1021/acs.langmuir.0c01590
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cholesterol renders mammalian cell membranes more compact by reducing the amount of voids in the membrane structure. Because of this, cholesterol is known to regulate the ability of cell membranes to prevent the permeation of water and water-soluble molecules through the membranes. Meanwhile, it is also known that even seemingly tiny modifications in the chemical structure of cholesterol can lead to notable changes in membrane properties. The question is, how significantly do these small changes in cholesterol structure affect the permeability barrier function of cell membranes? In this work, we applied fluorescence methods as well as atomistic molecular dynamics simulations to characterize changes in lipid membrane permeability induced by cholesterol oxidation. The studied 7β-hydroxycholesterol (7β-OH-chol) and 27-hydroxycholesterol (27-OH-chol) represent two distinct groups of oxysterols, namely, ring- and tail-oxidized cholesterols, respectively. Our previous research showed that the oxidation of the cholesterol tail has only a marginal effect on the structure of a lipid bilayer; however, oxidation was found to disturb membrane dynamics by introducing a mechanism that allows sterol molecules to move rapidly back and forth across the membrane-bobbing. Herein, we show that bobbing of 27-OH-chol accelerates fluorescence quenching of NBD-lipid probes in the inner leaflet of liposomes by dithionite added to the liposomal suspension. Systematic experiments using fluorescence quenching spectroscopy and microscopy led to the conclusion that the presence of 27-OH-chol increases membrane permeability to the dithionite anion. Atomistic molecular dynamics simulations demonstrated that 27-OH-chol also facilitates water transport across the membrane. The results support the view that oxysterol bobbing gives rise to successive perturbations to the hydrophobic core of the membrane, and these perturbations promote the permeation of water and small water-soluble molecules through a lipid bilayer. The observed impairment of permeability can have important consequences for eukaryotic organisms. The effects described for 27-OH-chol were not observed for 7β-OH-chol which represents ring-oxidized sterols.
Computational Physics Laboratory Tampere University P O Box 692 FI 33014 Tampere Finland
Department of Physics University of Helsinki P O Box 64 FI 00014 Helsinki Finland
Faculty of Biotechnology University of Wrocław Joliot Curie 14A 50 383 Wrocław Poland
Zobrazit více v PubMed
Finkelstein A.; Cass A. Effect of cholesterol on water permeability of thin lipid membranes. Nature 1967, 216 (5116), 717–718. 10.1038/216717a0. PubMed DOI
Mathai J. C.; Tristram-Nagle S.; Nagle J. F.; Zeidel M. L. Structural determinants of water permeability through the lipid membrane. J. Gen. Physiol. 2008, 131 (1), 69–76. 10.1085/jgp.200709848. PubMed DOI PMC
Subczynski W. K.; Wisniewska A.; Yin J. J.; Hyde J. S.; Kusumi A. Hydrophobic barriers of lipid bilayer - Membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol. Biochemistry 1994, 33 (24), 7670–7681. 10.1021/bi00190a022. PubMed DOI
Marsh D. Polarity and permeation profiles in lipid membranes. Proc. Natl. Acad. Sci. U. S. A. 2001, 98 (14), 7777–7782. 10.1073/pnas.131023798. PubMed DOI PMC
Shinoda W. Permeability across lipid membranes. Biochim. Biophys. Acta, Biomembr. 2016, 1858 (10), 2254–2265. 10.1016/j.bbamem.2016.03.032. PubMed DOI
Saito Y.; Yoshida Y.; Niki E. Cholesterol is more susceptible to oxidation than linoleates in cultured cells under oxidative stress induced by selenium deficiency and free radicals. FEBS Lett. 2007, 581 (22), 4349–4354. 10.1016/j.febslet.2007.08.010. PubMed DOI
Hong C.; Tieleman D. P.; Wang Y. Microsecond Molecular Dynamics Simulations of Lipid Mixing. Langmuir 2014, 30 (40), 11993–12001. 10.1021/la502363b. PubMed DOI PMC
Haines T. H. Water transport across biological membranes. FEBS Lett. 1994, 346 (1), 115–122. 10.1016/0014-5793(94)00470-6. PubMed DOI
Waldeck A. R.; Nouri-Sorkhabi M. H.; Sullivan D. R.; Kuchel P. W. Effects of cholesterol on transmembrane water diffusion in human erythrocytes measured using pulsed field gradient NMR. Biophys. Chem. 1995, 55 (3), 197–208. 10.1016/0301-4622(95)00007-K. PubMed DOI
Kitson N.; Thewalt J.; Lafleur M.; Bloom M. A Model Membrane Approach to the Epidermal Permeability Barrier. Biochemistry 1994, 33 (21), 6707–6715. 10.1021/bi00187a042. PubMed DOI
Papahadjopoulos D.; Nir S.; Ohki S. Permeability properties of phospholipid membranes - Effect of cholesterol and temperature. Biochim. Biophys. Acta, Biomembr. 1972, 266 (3), 561–583. 10.1016/0005-2736(72)90354-9. PubMed DOI
Demel R.A.; Bruckdorfer K.R.; Van Deenen L. L. M. Effect of sterol structure on permeability of liposomes to glucose, glycerol and Rb+. Biochim. Biophys. Acta, Biomembr. 1972, 255 (1), 321–330. 10.1016/0005-2736(72)90031-4. PubMed DOI
Ranadive G. N.; Lala A. K. Sterol-phospholipid interaction in model membranes - Role of C5-C6 double-bond in cholesterol. Biochemistry 1987, 26 (9), 2426–2431. 10.1021/bi00383a005. PubMed DOI
Subczynski W. K.; Hyde J. S.; Kusumi A. Effect if alkyl chain unsaturation and cholesterol intercalation on oxygen-transport in membranes - A pulse ESR spin labeling study. Biochemistry 1991, 30 (35), 8578–8590. 10.1021/bi00099a013. PubMed DOI
Shea R.; Smith C.; Pias S. C. Chapter 6: Magnification of Cholesterol-Induced Membrane Resistance on the Tissue Level: Implications for Hypoxia. Adv. Exp. Med. Biol. 2016, 923, 43–50. 10.1007/978-3-319-38810-6_6. PubMed DOI PMC
Khajeh A.; Modarress H. The influence of cholesterol on interactions and dynamics of ibuprofen in a lipid bilayer. Biochim. Biophys. Acta, Biomembr. 2014, 1838 (10), 2431–2438. 10.1016/j.bbamem.2014.05.029. PubMed DOI
Khajeh A.; Modarress H. Effect of cholesterol on behavior of 5-fluorouracil (5-FU) in a DMPC lipid bilayer, a molecular dynamics study. Biophys. Chem. 2014, 187, 43–50. 10.1016/j.bpc.2014.01.004. PubMed DOI
Sun D.; Lin X.; Gu N. Cholesterol affects C 60 translocation across lipid bilayers. Soft Matter 2014, 10 (13), 2160–2168. 10.1039/C3SM52211C. PubMed DOI
Deng D.; Jiang N.; Hao S.-J.; Sun H.; Zhang G.-j. Loss of membrane cholesterol influences lysosomal permeability to potassium ions and protons. Biochim. Biophys. Acta, Biomembr. 2009, 1788 (2), 470–476. 10.1016/j.bbamem.2008.11.018. PubMed DOI
Ohvo-Rekila H.; Ramstedt B.; Leppimaki P.; Slotte J. P. Cholesterol interactions with phospholipids in membranes. Prog. Lipid Res. 2002, 41 (1), 66–97. 10.1016/S0163-7827(01)00020-0. PubMed DOI
Róg T.; Vattulainen I. Cholesterol, sphingolipids, and glycolipids: What do we know about their role in raft-like membranes?. Chem. Phys. Lipids 2014, 184 (0), 82–104. 10.1016/j.chemphyslip.2014.10.004. PubMed DOI
Venable R. M.; Krämer A.; Pastor R. W. Molecular Dynamics Simulations of Membrane Permeability. Chem. Rev. 2019, 119 (9), 5954–5997. 10.1021/acs.chemrev.8b00486. PubMed DOI PMC
Paula S.; Volkov A.; Van Hoek A.; Haines T.; Deamer D. W. Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys. J. 1996, 70 (1), 339–348. 10.1016/S0006-3495(96)79575-9. PubMed DOI PMC
Xiang T.-X.; Anderson B. D. Phospholipid surface density determines the partitioning and permeability of acetic acid in DMPC: cholesterol bilayers. J. Membr. Biol. 1995, 148 (2), 157–167. 10.1007/BF00207271. PubMed DOI
van Meer G.; Voelker D. R.; Feigenson G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008, 9 (2), 112–124. 10.1038/nrm2330. PubMed DOI PMC
Wertz P. W.; van den Bergh B. The physical, chemical and functional properties of lipids in the skin and other biological barriers. Chem. Phys. Lipids 1998, 91 (2), 85–96. 10.1016/S0009-3084(97)00108-4. PubMed DOI
Kitson N.; Monck M.; Wong K.; Thewalt J.; Cullis P. The influence of cholesterol 3-sulphate on phase behaviour and hydrocarbon order in model membrane systems. Biochim. Biophys. Acta, Biomembr. 1992, 1111 (1), 127–133. 10.1016/0005-2736(92)90282-Q. PubMed DOI
Zhang J.; Liu Q. Cholesterol metabolism and homeostasis in the brain. Protein Cell 2015, 6 (4), 254–264. 10.1007/s13238-014-0131-3. PubMed DOI PMC
Bunker A.; Magarkar A.; Viitala T. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. Biochim. Biophys. Acta, Biomembr. 2016, 1858 (10), 2334–2352. 10.1016/j.bbamem.2016.02.025. PubMed DOI
Dhawan V.; Magarkar A.; Joshi G.; Makhija D.; Jain A.; Shah J.; Reddy B. V. V.; Krishnapriya M.; Rog T.; Bunker A.; Jagtap A.; Nagarsenker M. Stearylated cycloarginine nanosystems for intracellular delivery-simulations, formulation and proof of concept. RSC Adv. 2016, 6 (114), 113538–113550. 10.1039/C6RA16432C. DOI
Pathak P.; Dhawan V.; Magarkar A.; Danne R.; Govindarajan S.; Ghosh S.; Steiniger F.; Chaudhari P.; Gopal V.; Bunker A.; et al. Design of cholesterol arabinogalactan anchored liposomes for asialoglycoprotein receptor mediated targeting to hepatocellular carcinoma: In silico modeling, in vitro and in vivo evaluation. Int. J. Pharm. 2016, 509 (1-2), 149–158. 10.1016/j.ijpharm.2016.05.041. PubMed DOI
Mayer L. D.; Bally M. B.; Cullis P. R. Strategies for optimizing liposomal doxorubicin. J. Liposome Res. 1990, 1 (4), 463–480. 10.3109/08982109009036008. DOI
Barenholz Y. C. Doxil®—the first FDA-approved nano-drug: lessons learned. J. Controlled Release 2012, 160 (2), 117–134. 10.1016/j.jconrel.2012.03.020. PubMed DOI
Gill S.; Chow R.; Brown A. J. Sterol regulators of cholesterol homeostasis and beyond: The oxysterol hypothesis revisited and revised. Prog. Lipid Res. 2008, 47 (6), 391–404. 10.1016/j.plipres.2008.04.002. PubMed DOI
Kulig W.; Cwiklik L.; Jurkiewicz P.; Rog T.; Vattulainen I. Cholesterol oxidation products and their biological importance. Chem. Phys. Lipids 2016, 199, 144–160. 10.1016/j.chemphyslip.2016.03.001. PubMed DOI
Boissonneault G. A.; Heiniger H.-J. 25-Hydroxycholesterol-induced elevations in 45Ca uptake: Permeability changes in P815 cells. J. Cell. Physiol. 1985, 125 (3), 471–475. 10.1002/jcp.1041250316. PubMed DOI
Theunissen J. J. H.; Jackson R. L.; Kempen H. J. M.; Demel R. A. Membrane properties of oxysterols. Interfacial orientation, influence on membrane permeability and redistribution between membranes. Biochim. Biophys. Acta, Biomembr. 1986, 860 (1), 66–74. 10.1016/0005-2736(86)90499-2. PubMed DOI
Parra-Ortiz E.; Browning K. L.; Damgaard L. S. E.; Nordström R.; Micciulla S.; Bucciarelli S.; Malmsten M. Effects of oxidation on the physicochemical properties of polyunsaturated lipid membranes. J. Colloid Interface Sci. 2019, 538, 404–419. 10.1016/j.jcis.2018.12.007. PubMed DOI
Kulig W.; Olżyńska A.; Jurkiewicz P.; Kantola A. M.; Komulainen S.; Manna M.; Pourmousa M.; Vazdar M.; Cwiklik L.; Rog T.; Khelashvili G.; Harries D.; Telkki V.-V.; Hof M.; Vattulainen I.; Jungwirth P. Cholesterol under oxidative stress—How lipid membranes sense oxidation as cholesterol is being replaced by oxysterols. Free Radical Biol. Med. 2015, 84, 30–41. 10.1016/j.freeradbiomed.2015.03.006. PubMed DOI
Enkavi G.; Javanainen M.; Kulig W.; Róg T.; Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem. Rev. 2019, 119 (9), 5607–5774. 10.1021/acs.chemrev.8b00538. PubMed DOI PMC
Angelova M.; Soléau S.; Méléard P.; Faucon F.; Bothorel P.. Preparation of giant vesicles by external AC electric fields. Kinetics and applications. In Trends in Colloid and Interface Science VI; Springer: 1992; pp 127–131.
Koukalová A.; Pokorná Š.; Fišer R.; Kopecký V.; Humpolíčková J.; Černý J.; Hof M. Membrane activity of the pentaene macrolide didehydroroflamycoin in model lipid bilayers. Biochim. Biophys. Acta, Biomembr. 2015, 1848 (2), 444–452. 10.1016/j.bbamem.2014.10.038. PubMed DOI
Jorgensen W. L.; Maxwell D. S.; TiradoRives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118 (45), 11225–11236. 10.1021/ja9621760. DOI
Kaminski G. A.; Friesner R. A.; Tirado-Rives J.; Jorgensen W. L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 2001, 105 (28), 6474–6487. 10.1021/jp003919d. DOI
Maciejewski A.; Pasenkiewicz-Gierula M.; Cramariuc O.; Vattulainen I.; Rog T. Refined OPLS All-Atom Force Field for Saturated Phosphatidylcholine Bilayers at Full Hydration. J. Phys. Chem. B 2014, 118 (17), 4571–4581. 10.1021/jp5016627. PubMed DOI
Kulig W.; Pasenkiewicz-Gierula M.; Róg T. Topologies, structures and parameter files for lipid simulations in GROMACS with the OPLS-aa force field: DPPC, POPC, DOPC, PEPC, and cholesterol. Data in Brief 2015, 5, 333–336. 10.1016/j.dib.2015.09.013. PubMed DOI PMC
Hess B.; Bekker H.; Berendsen H. J. C.; Fraaije J. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18 (12), 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Miyamoto S.; Kollman P. A. SETTLE - An Analytical Version of the SHAKE and RATTLE Algorithm for Rigid Water Models. J. Comput. Chem. 1992, 13 (8), 952–962. 10.1002/jcc.540130805. DOI
Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103 (19), 8577–8593. 10.1063/1.470117. DOI
Nose S. A Molecular-Dynamics Method for Simulations in the Canonical Ensemble. Mol. Phys. 1984, 52 (2), 255–268. 10.1080/00268978400101201. DOI
Hoover W. G. Canonical Dynamics - Equilibrium Phase-Space Distribution. Phys. Rev. A: At., Mol., Opt. Phys. 1985, 31 (3), 1695–1697. 10.1103/PhysRevA.31.1695. PubMed DOI
Parrinello M.; Rahman A. Polymorphic Transitions in Single-Crystals - A New Molecular-Dynamics Method. J. Appl. Phys. 1981, 52 (12), 7182–7190. 10.1063/1.328693. DOI
Berendsen H. J.; van der Spoel D.; van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995, 91 (1–3), 43–56. 10.1016/0010-4655(95)00042-E. DOI
Hess B.; Kutzner C.; van der Spoel D.; Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4 (3), 435–447. 10.1021/ct700301q. PubMed DOI
Nakano M.; Fukuda M.; Kudo T.; Matsuzaki N.; Azuma T.; Sekine K.; Endo H.; Handa T. Flip-flop of phospholipids in vesicles: kinetic analysis with time-resolved small-angle neutron scattering. J. Phys. Chem. B 2009, 113 (19), 6745–6748. 10.1021/jp900913w. PubMed DOI
McConnell H. M.; Kornberg R. D. Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry 1971, 10 (7), 1111–1120. 10.1021/bi00783a003. PubMed DOI
Kulig W.; Mikkolainen H.; Olżyńska A.; Jurkiewicz P.; Cwiklik L.; Hof M.; Vattulainen I.; Jungwirth P.; Rog T. Bobbing of Oxysterols: Molecular Mechanism for Translocation of Tail-Oxidized Sterols through Biological Membranes. J. Phys. Chem. Lett. 2018, 9 (5), 1118–1123. 10.1021/acs.jpclett.8b00211. PubMed DOI
Holmes R. P.; Yoss N. L. 25-Hydroxysterols increase the permeability of liposomes to Ca2+ and other cations. Biochim. Biophys. Acta, Biomembr. 1984, 770 (1), 15–21. 10.1016/0005-2736(84)90067-1. PubMed DOI