Harsh environments promote alloparental care across human societies
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32811302
PubMed Central
PMC7482265
DOI
10.1098/rspb.2020.0758
Knihovny.cz E-resources
- Keywords
- alloparent, cooperative breeding, ecology, plasticity, social evolution,
- MeSH
- Biological Evolution MeSH
- Phylogeny MeSH
- Humans MeSH
- Social Behavior * MeSH
- Environment * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Alloparental care is central to human life history, which integrates exceptionally short interbirth intervals and large birth size with an extended period of juvenile dependency and increased longevity. Formal models, previous comparative research, and palaeoanthropological evidence suggest that humans evolved higher levels of cooperative childcare in response to increasingly harsh environments. Although this hypothesis remains difficult to test directly, the relative importance of alloparental care varies across human societies, providing an opportunity to assess how local social and ecological factors influence the expression of this behaviour. We therefore, investigated associations between alloparental infant care and socioecology across 141 non-industrialized societies. We predicted increased alloparental care in harsher environments, due to the fitness benefits of cooperation in response to shared ecological challenges. We also predicted that starvation would decrease alloparental care, due to prohibitive energetic costs. Using Bayesian phylogenetic multilevel models, we tested these predictions while accounting for potential confounds as well as for population history. Consistent with our hypotheses, we found increased alloparental infant care in regions characterized by both reduced climate predictability and relatively lower average temperatures and precipitation. We also observed reduced alloparental care under conditions of high starvation. These results provide evidence of plasticity in human alloparenting in response to ecological contexts, comparable to previously observed patterns across avian and mammalian cooperative breeders. This suggests convergent social evolutionary processes may underlie both inter- and intraspecific variation in alloparental care.
Department of Anthropology Emory University Atlanta GA USA
Department of Zoology University of South Bohemia Ceske Budejovice Jihočeský Czechia
Human Ecology Group Institute of Evolutionary Medicine University of Zurich Zurich Switzerland
See more in PubMed
Jaeggi AV, Gurven M. 2013. Natural cooperators: food sharing in humans and other primates. Evol. Anthropol. 22, 186–195. (10.1002/evan.21364) PubMed DOI
Kramer KL. 2010. Cooperative breeding and its significance to the demographic success of humans. Annu. Rev. Anthropol. 39, 417–436. (10.1146/annurev.anthro.012809.105054) DOI
Boyd R, Richerson PJ, Henrich J. 2011. The cultural niche: why social learning is essential for human adaptation. Proc. Natl Acad. Sci. USA 108, 10 918–10 925. (10.1073/pnas.1100290108) PubMed DOI PMC
Tomasello M, et al. 2012. Two key steps in the evolution of human cooperation: the interdependence hypothesis. Curr. Anthropol. 53, 673–692. (10.1086/668207) DOI
Hooper PL, Demps K, Gurven M, Gerkey D, Kaplan HS. 2015. Skills, division of labour and economies of scale among Amazonian hunters and South Indian honey collectors. Phil. Trans. R. Soc. B 370, 20150008 (10.1098/rstb.2015.0008) PubMed DOI PMC
Gurven M, Hill K. 2009. Why do men hunt? A reevaluation of ‘man the hunter’ and the sexual division of labor. Curr. Anthropol. 50, 51–74. (10.1086/595620) PubMed DOI
Hill KR, et al. 2011. Co-residence patterns in hunter-gatherer societies show unique human social structure. Science 331, 1286–1289. (10.1126/science.1199071) PubMed DOI
Ross CT, Hooper PL, Borgerhoff Mulder M. 2015. Data on the frequency of non-reproductive adults in a cross-cultural sample of small-scale human societies. bioRxiv 032318 (10.1101/032318) DOI
Burkart JM, et al. 2014. The evolutionary origin of human hyper-cooperation. Nat. Commun. 5, ncomms5747 (10.1038/ncomms5747) PubMed DOI
Miller IF, Churchill SE, Nunn CL. 2019. Speeding in the slow lane: phylogenetic comparative analyses reveal that not all human life history traits are exceptional. J. Hum. Evol. 130, 36–44. (10.1016/j.jhevol.2018.12.007) PubMed DOI
Kaplan H, Hill K, Lancaster J, Hurtado AM. 2000. A theory of human life history evolution: diet, intelligence, and longevity. Evol. Anthropol. 9, 156–185. (10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7) DOI
Isler K, Van Schaik CP. 2012. How our ancestors broke through the gray ceiling: comparative evidence for cooperative breeding in early homo. Curr. Anthropol. 53, S453–S465. (10.1086/667623) DOI
Kaplan H, Gurven M, Hill K, Hurtado AM. 2005. The natural history of human food sharing and cooperation: a review and a new multi-individual approach to the negotiation of norms. In Moral sentiments and material interests: the foundations of cooperation in economic life, pp. 75–113. Cambridge, MA: MIT Press.
Hewlett BS, Winn S. 2014. Allomaternal nursing in humans. Curr. Anthropol. 55, 200–229. (10.1086/675657) PubMed DOI
Kramer KL, Veile A. 2018. Infant allocare in traditional societies. Physiol. Behav. 193, 117–126. (10.1016/j.physbeh.2018.02.054) PubMed DOI
Meehan CL. 2009. Maternal time allocation in two cooperative childrearing societies. Hum. Nat. 20, 375–393. (10.1007/s12110-009-9076-2) DOI
Meehan CL, Quinlan R, Malcom CD. 2013. Cooperative breeding and maternal energy expenditure among Aka foragers. Am. J. Hum. Biol. 25, 42–57. (10.1002/ajhb.22336) PubMed DOI
Isler K, Van Schaik CP. 2014. How humans evolved large brains: comparative evidence. Evol. Anthropol. 23, 65–75. (10.1002/evan.21403) PubMed DOI
Quinlan RJ. 2008. Human pair-bonds: evolutionary functions, ecological variation, and adaptive development. Evol. Anthropol. 17, 227–238. (10.1002/evan.20191) DOI
Hrdy SB. 2009. Mothers and others. Cambridge, MA: Harvard University Press.
Gurven M, Kaplan H, Gutierrez M. 2006. How long does it take to become a proficient hunter? Implications for the evolution of extended development and long life span. J. Hum. Evol. 51, 454–470. (10.1016/j.jhevol.2006.05.003) PubMed DOI
Emmott EH, Page AE. 2019. Alloparenting. In Encyclopedia of evolutionary psychological science (eds Shackelford T, Weekes-Shackelford V). Cham, Switzerland: Springer.
Antón SC, Potts R, Aiello LC. 2014. Evolution of early Homo: an integrated biological perspective. Science 345, 1236828 (10.1126/science.1236828) PubMed DOI
Potts R. 2013. Hominin evolution in settings of strong environmental variability. Quat. Sci. Rev. 73, 1–13. (10.1016/j.quascirev.2013.04.003) DOI
Wynn JG. 2004. Influence of Plio-Pleistocene aridification on human evolution: evidence from paleosols of the Turkana Basin, Kenya. Am. J. Phys. Anthropol. 123, 106–118. (10.1002/ajpa.10317) PubMed DOI
Maslin MA, Susanne S, Martin HT. 2015. A synthesis of the theories and concepts of early human evolution. Phil. Trans. R. Soc. B 370, 20140064 (10.1098/rstb.2014.0064) PubMed DOI PMC
Owen RB, et al. 2018. Progressive aridification in East Africa over the last half million years and implications for human evolution. Proc. Natl Acad. Sci. USA 115, 11 174–11 179. (10.1073/pnas.1801357115) PubMed DOI PMC
Pereda M, Zurro D, Santos JI, Godino IB, Álvarez M, Caro J, Galán JM. 2017. Emergence and evolution of cooperation under resource pressure. Sci. Rep. 7, 45574 (10.1038/srep45574) PubMed DOI PMC
Smaldino PE, Schank JC, McElreath R. 2013. Increased costs of cooperation help cooperators in the long run. Am. Nat. 181, 451–463. (10.1086/669615) PubMed DOI
Smaldino PE, Newson L, Schank JC, Richerson PJ. 2013. Simulating the evolution of the human family: Cooperative breeding increases in harsh environments. PLoS ONE 8, e80753 (10.1371/journal.pone.0080753) PubMed DOI PMC
Shen SF, Emlen ST, Koenig WD, Rubenstein DR. 2017. The ecology of cooperative breeding behaviour. Ecol. Lett. 20, 708–720. (10.1111/ele.12774) PubMed DOI
Mesterton-Gibbons M, Dugatkin LA. 1992. Cooperation among unrelated individuals: evolutionary factors. Q Rev. Biol. 67, 267–281. (10.1086/417658) DOI
Green JP, Freckleton RP, Hatchwell BJ. 2016. Variation in helper effort among cooperatively breeding bird species is consistent with Hamilton's Rule. Nat. Commun. 7, 12663 (10.1038/ncomms12663) PubMed DOI PMC
Briga M, Pen I, Wright J. 2012. Care for kin: within-group relatedness and allomaternal care are positively correlated and conserved throughout the mammalian phylogeny. Biol. Lett. 8, 533–536. (10.1098/rsbl.2012.0159) PubMed DOI PMC
Komdeur J. 1992. Importance of habitat saturation and territory quality for evolution of cooperative breeding in the Seychelles warbler. Nature 358, 493–495. (10.1038/358493a0) DOI
Rubenstein DR, Lovette IJ. 2007. Temporal environmental variability drives the evolution of cooperative breeding in birds. Curr. Biol. 17, 1414–1419. (10.1016/j.cub.2007.07.032) PubMed DOI
Lin YH, Chan SF, Rubenstein DR, Liu M, Shen SF. 2019. Resolving the paradox of environmental quality and sociality: the ecological causes and consequences of cooperative breeding in two lineages of birds. Am. Nat. 194, 207–216. (10.1086/704090) PubMed DOI
Jetz W, Rubenstein DR. 2011. Environmental uncertainty and the global biogeography of cooperative breeding in birds. Curr. Biol. 21, 72–78. (10.1016/j.cub.2010.11.075) PubMed DOI
Cornwallis CK, Botero CA, Rubenstein DR, Downing PA, West SA, Griffin AS. 2017. Cooperation facilitates the colonization of harsh environments. Nat. Ecol. Evol. 1, 0057 (10.1038/s41559-016-0057) PubMed DOI
Lukas D, Clutton-Brock T. 2017. Climate and the distribution of cooperative breeding in mammals. R. Soc. Open Sci. 4, 160897 (10.1098/rsos.160897) PubMed DOI PMC
Roberts G. 2005. Cooperation through interdependence. Anim. Behav. 70, 901–908. (10.1016/j.anbehav.2005.02.006) DOI
Clutton-Brock T. 2002. Breeding together: kin selection and mutualism in cooperative vertebrates. Science 296, 69–72. (10.1126/science.296.5565.69) PubMed DOI
Kokko H, Johnstone RA. 2001. The evolution of cooperative breeding through group augmentation. Proc. R. Soc. B 268, 187–196. (10.1098/rspb.2000.1349) PubMed DOI PMC
Covas R, Doutrelant C, du Plessis MA. 2004. Experimental evidence of a link between breeding conditions and the decision to breed or to help in a colonial cooperative bird. Proc. R. Soc. B 271, 827–832. (10.1098/rspb.2003.2652) PubMed DOI PMC
Baglione V, Canestrari D, Marcos JM, Griesser M, Ekman J. 2002. History, environment and social behaviour: experimentally induced cooperative breeding in the carrion crow. Proc. R. Soc. B 269, 1247–1251. (10.1098/rspb.2002.2016) PubMed DOI PMC
Guindre-Parker S, Rubenstein DR. 2018. Multiple benefits of alloparental care in a fluctuating environment. R. Soc. Open Sci. 5, 172406 (10.1098/rsos.172406) PubMed DOI PMC
Hawkes K, Coxworth JE. 2013. Grandmothers and the evolution of human longevity: a review of findings and future directions. Evol. Anthrop. 22, 294–302. (10.1002/evan.21382) PubMed DOI
Sear R, Mace R. 2008. Who keeps children alive? A review of the effects of kin on child survival. Evol. Hum. Behav. 29, 1–18. (10.1016/j.evolhumbehav.2007.10.001) DOI
Kramer KL. 2014. Why what juveniles do matters in the evolution of cooperative breeding. Hum. Nat. 25, 49–65. (10.1007/s12110-013-9189-5) PubMed DOI
Quinlan RJ. 2006. Human parental effort and environmental risk. Proc. R. Soc. B 274, 121–125. (10.1098/rspb.2006.3690) PubMed DOI PMC
Jaeggi AV, Hooper PL, Beheim BA, Kaplan H, Gurven M. 2016. Reciprocal exchange patterned by market forces helps explain cooperation in a small-scale society. Curr. Biol. 26, 2180–2187. (10.1016/j.cub.2016.06.019) PubMed DOI
Page AE, et al. 2019. Testing adaptive hypotheses of alloparenting in Agta foragers. Nat. Hum. Behav. 3, 1154–1163. (10.1038/s41562-019-0679-2) PubMed DOI PMC
Murdock GP, White DR. 1969. Standard cross-cultural sample. Ethnology 8, 329–369. (10.2307/3772907) DOI
Barry H III, Paxson LM. 1971. Infancy and early childhood: cross-cultural codes 2. Ethnology 10, 466–508. (10.2307/3773177) DOI
Kirby KR, et al. 2016. D-PLACE: a global database of cultural, linguistic and environmental diversity. PLoS ONE 11, e0158391 (10.1371/journal.pone.0158391) PubMed DOI PMC
Dufour DL, Sauther ML. 2002. Comparative and evolutionary dimensions of the energetics of human pregnancy and lactation. Am. J. Hum. Biol. 14, 584–602. (10.1002/ajhb.10071) PubMed DOI
Konner M. 2018. Nonmaternal care: a half-century of research. Physiol. Behav. 193, 179–186. (10.1016/j.physbeh.2018.03.025) PubMed DOI
Colwell RK. 1974. Predictability, constancy, and contingency of periodic phenomena. Ecology 1, 1148–1153. (10.2307/1940366) DOI
Lima-Ribeiro MS, Varela S, González-Hernández J, de Oliveira G, Diniz-Filho JAF, Terribile LC. 2015. EcoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodivers. Inform. 10, 1–21.
Revell LJ. 2009. Size-correction and principal components for interspecific comparative studies. Evolution 63, 3258–3268. (10.1111/j.1558-5646.2009.00804.x) PubMed DOI
Jackson JE. 2005. Quartimax Rotation. In Encyclopedia of biostatistics (eds Armitrage P, Colton T). Hoboken, NJ: John Wiley & Sons.
Dirks R. 1993. Starvation and famine: cross-cultural codes and some hypothesis tests. Cross-Cult. Res. 27, 28–69. (10.1177/106939719302700103) DOI
Murdock GP, Provost C. 1973. Measurement of cultural complexity. Ethnology 12, 379–392. (10.2307/3773367) DOI
Page AE, et al. 2016. Reproductive trade-offs in extant hunter-gatherers suggest adaptive mechanism for the Neolithic expansion. Proc. Natl Acad. Sci. USA 113, 4694–4699. (10.1073/pnas.1524031113) PubMed DOI PMC
Murdock GP, Morrow DO. 1970. Subsistence economy and supportive practices: cross-cultural codes 1. Ethnology 9, 302–330. (10.2307/3773028) DOI
Ringen EJ, Duda P, Jaeggi AV. 2019. The evolution of daily food sharing: a Bayesian phylogenetic analysis. Evol. Hum. Behav. 40, 375–384. (10.1016/j.evolhumbehav.2019.04.003) DOI
Barry H, Schlegel A. 1982. Cross-cultural codes on contributions by women to subsistence. Ethnology 21, 165–188. (10.2307/3773435) DOI
Low BS. 1994. Pathogen intensity cross-culturally. World Cult. 8, 24–34.
Olson DM, et al. 2001. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938. (10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2) DOI
Heldstab SA, Isler K, Burkart JM, van Schaik CP. 2019. Allomaternal care, brains and fertility in mammals: who cares matters. Behav. Ecol. Sociobiol. 73, 71 (10.1007/s00265-019-2684-x) DOI
Duda P, Zrzavý J. 2016. Human population history revealed by a supertree approach. Sci. Rep. 6, 29890 (10.1038/srep29890) PubMed DOI PMC
Duda P, Zrzavý J. 2019. Towards a global phylogeny of human populations based on genetic and linguistic data. In Modern human origins and dispersal, words, bones, genes, tools: DFG center for advanced studies series (eds Sahle Y, Reyes-Centeno H, Bentz C), pp. 331–359. Tübingen, Germany: Kerns Verlag.
Minocher R, Duda P, Jaeggi AV. 2019. Explaining marriage patterns in a globally representative sample through socio-ecology and population history: a Bayesian phylogenetic analysis using a new supertree. Evol. Hum. Behav. 40, 176–187. (10.1016/j.evolhumbehav.2018.11.003) DOI
Blows MW, Brooks R. 2003. Measuring nonlinear selection. Am. Nat. 162, 815–820. (10.1086/378905) PubMed DOI
Myers RH, Montgomery DC, Anderson-Cook CM. 2016. Response surface methodology: process and product optimization using designed experiments, 4th edn Hoboken, NJ: John Wiley & Sons.
Bürkner PC. 2017. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28. (10.18637/jss.v080.i01) DOI
Hadfield JD, Nakagawa S. 2010. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508. (10.1111/j.1420-9101.2009.01915.x) PubMed DOI
McElreath R. 2016. Statistical rethinking: a Bayesian course with examples in R and stan. Boca Raton, FL: CRC Press.
Bürkner PC, Charpentier E. In press. Modelling monotonic effects of ordinal predictors in Bayesian regression models. Br. J. Math. Statist. Psychol. (10.1111/bmsp.12195) PubMed DOI
Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. 2013. Bayesian data analysis. Boca Raton, FL: CRC Press.
McShane BB, Gal D, Gelman A, Robert C, Tackett JL. 2019. Abandon statistical significance. Am. Stat. 73, 235–245. (10.1080/00031305.2018.1527253) DOI
Gelman A, Hwang J, Vehtari A. 2014. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016. (10.1007/s11222-013-9416-2) DOI
Ember CR, Skoggard I, Ringen EJ, Farrer M. 2018. Our better nature: does resource stress predict beyond-household sharing? Evol. Hum. Behav. 39, 380–391. (10.1016/j.evolhumbehav.2018.03.001) DOI
Glowacki L, von Rueden C. 2015. Leadership solves collective action problems in small-scale societies. Phil. Trans. R. Soc. B 370, 20150010 (10.1098/rstb.2015.0010) PubMed DOI PMC
Botero CA, Gardner B, Kirby KR, Bulbulia J, Gavin MC, Gray RD. 2014. The ecology of religious beliefs. Proc. Natl Acad. Sci. USA 111, 16 784–16 789. (10.1073/pnas.1408701111) PubMed DOI PMC
Schiefenhovel W. 1989. Reproduction and sex-ratio manipulation through preferential female infanticide among the Eipo, in the Highlands of Western New Guinea. In The sociobiology of sexual and reproductive strategies (eds Rasa AE, Vogel C, Voland E), pp. 170–193. New York, NY: Chapman and Hall.
Firman RC, Rubenstein DR, Moran JM, Rowe KC, Buzatto BA. 2020. Extreme and variable climatic conditions drive the evolution of sociality in Australian Rodents. Curr. Biol. 30, 691–697. (10.1016/j.cub.2019.12.012) PubMed DOI
Peters MK, et al. 2016. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 7, 1–11. PubMed PMC
Tallavaara M, Eronen JT, Luoto M. 2018. Productivity, biodiversity, and pathogens influence the global hunter-gatherer population density. Proc. Natl Acad. Sci. USA 115, 1232–1237. (10.1073/pnas.1715638115) PubMed DOI PMC
Griesser M, Drobniak SM, Nakagawa S, Botero CA. 2017. Family living sets the stage for cooperative breeding and ecological resilience in birds. PLoS Biol. 15, e2000483 (10.1371/journal.pbio.2000483) PubMed DOI PMC
Rubenstein DR, Abbot P (Eds.) 2017. Comparative social evolution. Cambridge, UK: Cambridge University Press.
Bourke AF. 2011. Principles of social evolution. Oxford, UK: Oxford University Press.
Burkart JM, van Schaik C, Griesser M. 2017. Looking for unity in diversity: human cooperative childcare in comparative perspective. Proc. R. Soc. B 284, 20171184 (10.1098/rspb.2017.1184) PubMed DOI PMC
Global phylogenetic analysis reveals multiple origins and correlates of genital mutilation/cutting
figshare
10.6084/m9.figshare.c.5089508