Association of Sex With Frequent and Mild ABCA4 Alleles in Stargardt Disease
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem
Grantová podpora
P30 EY000331
NEI NIH HHS - United States
PubMed
32815999
PubMed Central
PMC7441467
DOI
10.1001/jamaophthalmol.2020.2990
PII: 2769559
Knihovny.cz E-zdroje
- MeSH
- ABC transportéry genetika metabolismus MeSH
- alely MeSH
- DNA genetika MeSH
- frekvence genu MeSH
- genotyp MeSH
- lidé středního věku MeSH
- lidé MeSH
- mutace * MeSH
- mutační analýza DNA MeSH
- průřezové studie MeSH
- rozložení podle pohlaví MeSH
- sexuální faktory MeSH
- Stargardtova nemoc diagnóza genetika MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ABC transportéry MeSH
- ABCA4 protein, human MeSH Prohlížeč
- DNA MeSH
IMPORTANCE: The mechanisms behind the phenotypic variability and reduced penetrance in autosomal recessive Stargardt disease (STGD1), often a blinding disease, are poorly understood. Identification of the unknown disease modifiers can improve patient and family counseling and provide valuable information for disease management. OBJECTIVE: To assess the association of incompletely penetrant ABCA4 alleles with sex in STGD1. DESIGN, SETTING, AND PARTICIPANTS: Genetic data for this cross-sectional study were obtained from 2 multicenter genetic studies of 1162 patients with clinically suspected STGD1. Unrelated patients with genetically confirmed STGD1 were selected. The data were collected from June 2016 to June 2019, and post hoc analysis was performed between July 2019 and January 2020. MAIN OUTCOMES AND MEASURES: Penetrance of reported mild ABCA4 variants was calculated by comparing the allele frequencies in the general population (obtained from the Genome Aggregation Database) with the genotyping data in the patient population (obtained from the ABCA4 Leiden Open Variation Database). The sex ratio among patients with and patients without an ABCA4 allele with incomplete penetrance was assessed. RESULTS: A total of 550 patients were included in the study, among which the mean (SD) age was 45.7 (18.0) years and most patients were women (311 [57%]). Five of the 5 mild ABCA4 alleles, including c.5603A>T and c.5882G>A, were calculated to have incomplete penetrance. The women to men ratio in the subgroup carrying c.5603A>T was 1.7 to 1; the proportion of women in this group was higher compared with the subgroup not carrying a mild allele (difference, 13%; 95% CI, 3%-23%; P = .02). The women to men ratio in the c.5882G>A subgroup was 2.1 to 1, and the women were overrepresented compared with the group carrying no mild allele (difference, 18%; 95% CI, 6%-30%; P = .005). CONCLUSIONS AND RELEVANCE: This study found an imbalance in observed sex ratio among patients harboring a mild ABCA4 allele, which concerns approximately 25% of all patients with STGD1, suggesting that STGD1 should be considered a polygenic or multifactorial disease rather than a disease caused by ABCA4 gene mutations alone. The findings suggest that sex should be considered as a potential disease-modifying variable in both basic research and clinical trials on STGD1.
Center for Biomedical Network Research on Rare Diseases Instituto de Salud Carlos 3 Madrid Spain
Department of Epidemiology Erasmus Medical Center Rotterdam the Netherlands
Department of Human Genetics Radboud University Medical Center Nijmegen the Netherlands
Department of Ophthalmology Erasmus Medical Center Rotterdam the Netherlands
Department of Ophthalmology Radboud University Medical Center Nijmegen the Netherlands
Institute of Human Genetics University of Regensburg Regensburg Germany
University Lille Inserm CHU Lille U1172 LilNCog Lille Neuroscience and Cognition Lille France
Zobrazit více v PubMed
Blacharski P. Fundus flavimaculatus. In: Newsome DA, ed. Retinal Dystrophies and Degenerations. Vol 135-159 Raven Press; 1988.
Allikmets R, Singh N, Sun H, et al. . A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet. 1997;15(3):236-246. doi:10.1038/ng0397-236 PubMed DOI
Rotenstreich Y, Fishman GA, Anderson RJ. Visual acuity loss and clinical observations in a large series of patients with Stargardt disease. Ophthalmology. 2003;110(6):1151-1158. doi:10.1016/S0161-6420(03)00333-6 PubMed DOI
Fujinami K, Zernant J, Chana RK, et al. . Clinical and molecular characteristics of childhood-onset Stargardt disease. Ophthalmology. 2015;122(2):326-334. doi:10.1016/j.ophtha.2014.08.012 PubMed DOI PMC
Lambertus S, van Huet RA, Bax NM, et al. . Early-onset Stargardt disease: phenotypic and genotypic characteristics. Ophthalmology. 2015;122(2):335-344. doi:10.1016/j.ophtha.2014.08.032 PubMed DOI
Westeneng-van Haaften SC, Boon CJ, Cremers FP, Hoefsloot LH, den Hollander AI, Hoyng CB. Clinical and genetic characteristics of late-onset Stargardt’s disease. Ophthalmology. 2012;119(6):1199-1210. doi:10.1016/j.ophtha.2012.01.005 PubMed DOI
Burke TR, Tsang SH, Zernant J, Smith RT, Allikmets R. Familial discordance in Stargardt disease. Mol Vis. 2012;18:227-233. PubMed PMC
Runhart EH, Valkenburg D, Cornelis SS, et al. . Late-onset Stargardt disease due to mild, deep-intronic ABCA4 alleles. Invest Ophthalmol Vis Sci. 2019;60(13):4249-4256. doi:10.1167/iovs.19-27524 PubMed DOI
Valkenburg D, Runhart EH, Bax NM, et al. . Highly variable disease courses in siblings with Stargardt disease. Ophthalmology. 2019;126(12):1712-1721. doi:10.1016/j.ophtha.2019.07.010 PubMed DOI
Zernant J, Lee W, Collison FT, et al. . Frequent hypomorphic alleles account for a significant fraction of ABCA4 disease and distinguish it from age-related macular degeneration. J Med Genet. 2017;54(6):404-412. doi:10.1136/jmedgenet-2017-104540 PubMed DOI PMC
Runhart EH, Sangermano R, Cornelis SS, et al. . The common ABCA4 Variant p.Asn1868Ile shows nonpenetrance and variable expression of Stargardt disease when present in trans with severe variants. Invest Ophthalmol Vis Sci. 2018;59(8):3220-3231. doi:10.1167/iovs.18-23881 PubMed DOI
Zernant J, Lee W, Nagasaki T, et al. . Extremely hypomorphic and severe deep intronic variants in the ABCA4 locus result in varying Stargardt disease phenotypes. Cold Spring Harb Mol Case Stud. 2018;4(4):a002733. doi:10.1101/mcs.a002733 PubMed DOI PMC
Cornelis SS, Bax NM, Zernant J, et al. . In silico functional meta-analysis of 5,962 ABCA4 variants in 3,928 retinal dystrophy cases. Hum Mutat. 2017;38(4):400-408. doi:10.1002/humu.23165 PubMed DOI
Sangermano R, Garanto A, Khan M, et al. . Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides. Genet Med. 2019;21(8):1751-1760. doi:10.1038/s41436-018-0414-9 PubMed DOI PMC
Cremers FPM, Cornelis SS, Runhart EH, Astuti GDN. Author response: penetrance of the ABCA4 p.Asn1868Ile allele in Stargardt disease. Invest Ophthalmol Vis Sci. 2018;59(13):5566-5568. doi:10.1167/iovs.18-25944 PubMed DOI
Cremers FPM, Lee W, Collin RWJ, Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog Retin Eye Res. 2020;100861. doi:10.1016/j.preteyeres.2020.100861 PubMed DOI PMC
Khan M, Cornelis SS, Khan MI, et al. . Cost-effective molecular inversion probe-based ABCA4 sequencing reveals deep-intronic variants in Stargardt disease. Hum Mutat. 2019;40(10):1749-1759. doi:10.1002/humu.23787 PubMed DOI
Khan M, Cornelis SS, Pozo-Valero MD, et al. . Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics. Genet Med. 2020;22(7):1235-1246. doi:10.1038/s41436-020-0787-4 PubMed DOI
World Medical Association World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191-2194. doi:10.1001/jama.2013.281053 PubMed DOI
Karczewski KJ, Francioli LC, Tiao G, et al. ; Genome Aggregation Database Consortium . The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434-443. doi:10.1038/s41586-020-2308-7 PubMed DOI PMC
Sangermano R, Khan M, Cornelis SS, et al. . ABCA4 midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease. Genome Res. 2018;28(1):100-110. doi:10.1101/gr.226621.117 PubMed DOI PMC
Pisano A, Preziuso C, Iommarini L, et al. . Targeting estrogen receptor β as preventive therapeutic strategy for Leber’s hereditary optic neuropathy. Hum Mol Genet. 2015;24(24):6921-6931. doi:10.1093/hmg/ddv396 PubMed DOI
Oostra RJ, Kemp S, Bolhuis PA, Bleeker-Wagemakers EM. No evidence for ‘skewed’ inactivation of the X-chromosome as cause of Leber’s hereditary optic neuropathy in female carriers. Hum Genet. 1996;97(4):500-505. doi:10.1007/BF02267075 PubMed DOI
Cremers FP, van de Pol DJ, van Driel M, et al. . Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum Mol Genet. 1998;7(3):355-362. doi:10.1093/hmg/7.3.355 PubMed DOI
van Driel MA, Maugeri A, Klevering BJ, Hoyng CB, Cremers FP. ABCR unites what ophthalmologists divide(s). Ophthalmic Genet. 1998;19(3):117-122. doi:10.1076/opge.19.3.117.2187 PubMed DOI
Maugeri A, van Driel MA, van de Pol DJ, et al. . The 2588G→C mutation in the ABCR gene is a mild frequent founder mutation in the Western European population and allows the classification of ABCR mutations in patients with Stargardt disease. Am J Hum Genet. 1999;64(4):1024-1035. doi:10.1086/302323 PubMed DOI PMC
Schulz HL, Grassmann F, Kellner U, et al. . Mutation spectrum of the ABCA4 gene in 335 Stargardt disease patients from a multicenter German cohort - impact of selected deep intronic variants and common SNPs. Invest Ophthalmol Vis Sci. 2017;58(1):394-403. doi:10.1167/iovs.16-19936 PubMed DOI PMC
Franconi F, Campesi I, Colombo D, Antonini P. Sex-gender variable: methodological recommendations for increasing scientific value of clinical studies. Cells. 2019;8(5):E476. doi:10.3390/cells8050476 PubMed DOI PMC
Gerdts E, Regitz-Zagrosek V. Sex differences in cardiometabolic disorders. Nat Med. 2019;25(11):1657-1666. doi:10.1038/s41591-019-0643-8 PubMed DOI
De Bellis A, De Angelis G, Fabris E, Cannatà A, Merlo M, Sinagra G. Gender-related differences in heart failure: beyond the “one-size-fits-all” paradigm. Heart Fail Rev. 2020;25(2):245-255. doi:10.1007/s10741-019-09824-y PubMed DOI
Billi AC, Kahlenberg JM, Gudjonsson JE. Sex bias in autoimmunity. Curr Opin Rheumatol. 2019;31(1):53-61. PubMed PMC
Ventura-Clapier R, Moulin M, Piquereau J, et al. . Mitochondria: a central target for sex differences in pathologies. Clin Sci (Lond). 2017;131(9):803-822. doi:10.1042/CS20160485 PubMed DOI
Sampathkumar NK, Bravo JI, Chen Y, et al. . Widespread sex dimorphism in aging and age-related diseases. Hum Genet. 2020;139(3):333-356. doi:10.1007/s00439-019-02082-w PubMed DOI PMC
Wickham LA, Gao J, Toda I, Rocha EM, Ono M, Sullivan DA. Identification of androgen, estrogen and progesterone receptor mRNAs in the eye. Acta Ophthalmol Scand. 2000;78(2):146-153. doi:10.1034/j.1600-0420.2000.078002146.x PubMed DOI
Marin-Castaño ME, Elliot SJ, Potier M, et al. . Regulation of estrogen receptors and MMP-2 expression by estrogens in human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2003;44(1):50-59. doi:10.1167/iovs.01-1276 PubMed DOI
Hulsman CA, Westendorp IC, Ramrattan RS, et al. . Is open-angle glaucoma associated with early menopause? The Rotterdam Study. Am J Epidemiol. 2001;154(2):138-144. doi:10.1093/aje/154.2.138 PubMed DOI
Prokai-Tatrai K, Xin H, Nguyen V, et al. . 17β-estradiol eye drops protect the retinal ganglion cell layer and preserve visual function in an in vivo model of glaucoma. Mol Pharm. 2013;10(8):3253-3261. doi:10.1021/mp400313u PubMed DOI PMC
Elliot SJ, Catanuto P, Espinosa-Heidmann DG, et al. . Estrogen receptor beta protects against in vivo injury in RPE cells. Exp Eye Res. 2010;90(1):10-16. doi:10.1016/j.exer.2009.09.001 PubMed DOI PMC
Du M, Mangold CA, Bixler GV, et al. . Retinal gene expression responses to aging are sexually divergent. Mol Vis. 2017;23:707-717. PubMed PMC
Li B, Gografe S, Munchow A, Lopez-Toledano M, Pan ZH, Shen W. Sex-related differences in the progressive retinal degeneration of the rd10 mouse. Exp Eye Res. 2019;187:107773. doi:10.1016/j.exer.2019.107773 PubMed DOI PMC
Guarneri R, Russo D, Cascio C, et al. . Retinal oxidation, apoptosis and age- and sex-differences in the mnd mutant mouse, a model of neuronal ceroid lipofuscinosis. Brain Res. 2004;1014(1-2):209-220. doi:10.1016/j.brainres.2004.04.040 PubMed DOI
Poloschek CM, Bach M, Lagrèze WA, et al. . ABCA4 and ROM1: implications for modification of the PRPH2-associated macular dystrophy phenotype. Invest Ophthalmol Vis Sci. 2010;51(8):4253-4265. doi:10.1167/iovs.09-4655 PubMed DOI
Lee W, Paavo M, Zernant J, et al. . Modification of the PROM1 disease phenotype by a mutation in ABCA4. Ophthalmic Genet. 2019;40(4):369-375. doi:10.1080/13816810.2019.1660382 PubMed DOI PMC