Association of Sex With Frequent and Mild ABCA4 Alleles in Stargardt Disease

. 2020 Oct 01 ; 138 (10) : 1035-1042.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32815999

Grantová podpora
P30 EY000331 NEI NIH HHS - United States

IMPORTANCE: The mechanisms behind the phenotypic variability and reduced penetrance in autosomal recessive Stargardt disease (STGD1), often a blinding disease, are poorly understood. Identification of the unknown disease modifiers can improve patient and family counseling and provide valuable information for disease management. OBJECTIVE: To assess the association of incompletely penetrant ABCA4 alleles with sex in STGD1. DESIGN, SETTING, AND PARTICIPANTS: Genetic data for this cross-sectional study were obtained from 2 multicenter genetic studies of 1162 patients with clinically suspected STGD1. Unrelated patients with genetically confirmed STGD1 were selected. The data were collected from June 2016 to June 2019, and post hoc analysis was performed between July 2019 and January 2020. MAIN OUTCOMES AND MEASURES: Penetrance of reported mild ABCA4 variants was calculated by comparing the allele frequencies in the general population (obtained from the Genome Aggregation Database) with the genotyping data in the patient population (obtained from the ABCA4 Leiden Open Variation Database). The sex ratio among patients with and patients without an ABCA4 allele with incomplete penetrance was assessed. RESULTS: A total of 550 patients were included in the study, among which the mean (SD) age was 45.7 (18.0) years and most patients were women (311 [57%]). Five of the 5 mild ABCA4 alleles, including c.5603A>T and c.5882G>A, were calculated to have incomplete penetrance. The women to men ratio in the subgroup carrying c.5603A>T was 1.7 to 1; the proportion of women in this group was higher compared with the subgroup not carrying a mild allele (difference, 13%; 95% CI, 3%-23%; P = .02). The women to men ratio in the c.5882G>A subgroup was 2.1 to 1, and the women were overrepresented compared with the group carrying no mild allele (difference, 18%; 95% CI, 6%-30%; P = .005). CONCLUSIONS AND RELEVANCE: This study found an imbalance in observed sex ratio among patients harboring a mild ABCA4 allele, which concerns approximately 25% of all patients with STGD1, suggesting that STGD1 should be considered a polygenic or multifactorial disease rather than a disease caused by ABCA4 gene mutations alone. The findings suggest that sex should be considered as a potential disease-modifying variable in both basic research and clinical trials on STGD1.

Australian Inherited Retinal Disease Registry and DNA Bank Department of Medical Technology and Physics Sir Charles Gairdner Hospital Nedlands Western Australia Australia

Center for Biomedical Network Research on Rare Diseases Instituto de Salud Carlos 3 Madrid Spain

Centre for Ophthalmology and Visual Science The University of Western Australia Nedlands Western Australia Australia

Department of Epidemiology Erasmus Medical Center Rotterdam the Netherlands

Department of Genetics Instituto de Investigación Sanitaria Fundación Jiménez Díaz University Hospital Universidad Autónoma de Madrid Madrid Spain

Department of Human Genetics Radboud University Medical Center Nijmegen the Netherlands

Department of Ophthalmology 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Department of Ophthalmology Erasmus Medical Center Rotterdam the Netherlands

Department of Ophthalmology Radboud University Medical Center Nijmegen the Netherlands

Donders Institute for Brain Cognition and Behavior Radboud University Medical Center Nijmegen the Netherlands

Institute of Human Genetics University of Regensburg Regensburg Germany

Research Unit for Rare Diseases Department of Pediatrics and Adolescent Medicine 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

University Lille Inserm CHU Lille U1172 LilNCog Lille Neuroscience and Cognition Lille France

University of Cape Town MRC Genomic and Precision Medicine Research Unit Division of Human Genetics Department of Pathology Institute of Infectious Disease and Molecular Medicine Faculty of Health Sciences University of Cape Town Cape Town South Africa

Erratum v

PubMed

Zobrazit více v PubMed

Blacharski P. Fundus flavimaculatus. In: Newsome DA, ed. Retinal Dystrophies and Degenerations. Vol 135-159 Raven Press; 1988.

Allikmets R, Singh N, Sun H, et al. . A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet. 1997;15(3):236-246. doi:10.1038/ng0397-236 PubMed DOI

Rotenstreich Y, Fishman GA, Anderson RJ. Visual acuity loss and clinical observations in a large series of patients with Stargardt disease. Ophthalmology. 2003;110(6):1151-1158. doi:10.1016/S0161-6420(03)00333-6 PubMed DOI

Fujinami K, Zernant J, Chana RK, et al. . Clinical and molecular characteristics of childhood-onset Stargardt disease. Ophthalmology. 2015;122(2):326-334. doi:10.1016/j.ophtha.2014.08.012 PubMed DOI PMC

Lambertus S, van Huet RA, Bax NM, et al. . Early-onset Stargardt disease: phenotypic and genotypic characteristics. Ophthalmology. 2015;122(2):335-344. doi:10.1016/j.ophtha.2014.08.032 PubMed DOI

Westeneng-van Haaften SC, Boon CJ, Cremers FP, Hoefsloot LH, den Hollander AI, Hoyng CB. Clinical and genetic characteristics of late-onset Stargardt’s disease. Ophthalmology. 2012;119(6):1199-1210. doi:10.1016/j.ophtha.2012.01.005 PubMed DOI

Burke TR, Tsang SH, Zernant J, Smith RT, Allikmets R. Familial discordance in Stargardt disease. Mol Vis. 2012;18:227-233. PubMed PMC

Runhart EH, Valkenburg D, Cornelis SS, et al. . Late-onset Stargardt disease due to mild, deep-intronic ABCA4 alleles. Invest Ophthalmol Vis Sci. 2019;60(13):4249-4256. doi:10.1167/iovs.19-27524 PubMed DOI

Valkenburg D, Runhart EH, Bax NM, et al. . Highly variable disease courses in siblings with Stargardt disease. Ophthalmology. 2019;126(12):1712-1721. doi:10.1016/j.ophtha.2019.07.010 PubMed DOI

Zernant J, Lee W, Collison FT, et al. . Frequent hypomorphic alleles account for a significant fraction of ABCA4 disease and distinguish it from age-related macular degeneration. J Med Genet. 2017;54(6):404-412. doi:10.1136/jmedgenet-2017-104540 PubMed DOI PMC

Runhart EH, Sangermano R, Cornelis SS, et al. . The common ABCA4 Variant p.Asn1868Ile shows nonpenetrance and variable expression of Stargardt disease when present in trans with severe variants. Invest Ophthalmol Vis Sci. 2018;59(8):3220-3231. doi:10.1167/iovs.18-23881 PubMed DOI

Zernant J, Lee W, Nagasaki T, et al. . Extremely hypomorphic and severe deep intronic variants in the ABCA4 locus result in varying Stargardt disease phenotypes. Cold Spring Harb Mol Case Stud. 2018;4(4):a002733. doi:10.1101/mcs.a002733 PubMed DOI PMC

Cornelis SS, Bax NM, Zernant J, et al. . In silico functional meta-analysis of 5,962 ABCA4 variants in 3,928 retinal dystrophy cases. Hum Mutat. 2017;38(4):400-408. doi:10.1002/humu.23165 PubMed DOI

Sangermano R, Garanto A, Khan M, et al. . Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides. Genet Med. 2019;21(8):1751-1760. doi:10.1038/s41436-018-0414-9 PubMed DOI PMC

Cremers FPM, Cornelis SS, Runhart EH, Astuti GDN. Author response: penetrance of the ABCA4 p.Asn1868Ile allele in Stargardt disease. Invest Ophthalmol Vis Sci. 2018;59(13):5566-5568. doi:10.1167/iovs.18-25944 PubMed DOI

Cremers FPM, Lee W, Collin RWJ, Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog Retin Eye Res. 2020;100861. doi:10.1016/j.preteyeres.2020.100861 PubMed DOI PMC

Khan M, Cornelis SS, Khan MI, et al. . Cost-effective molecular inversion probe-based ABCA4 sequencing reveals deep-intronic variants in Stargardt disease. Hum Mutat. 2019;40(10):1749-1759. doi:10.1002/humu.23787 PubMed DOI

Khan M, Cornelis SS, Pozo-Valero MD, et al. . Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics. Genet Med. 2020;22(7):1235-1246. doi:10.1038/s41436-020-0787-4 PubMed DOI

World Medical Association World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191-2194. doi:10.1001/jama.2013.281053 PubMed DOI

Karczewski KJ, Francioli LC, Tiao G, et al. ; Genome Aggregation Database Consortium . The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434-443. doi:10.1038/s41586-020-2308-7 PubMed DOI PMC

Sangermano R, Khan M, Cornelis SS, et al. . ABCA4 midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease. Genome Res. 2018;28(1):100-110. doi:10.1101/gr.226621.117 PubMed DOI PMC

Pisano A, Preziuso C, Iommarini L, et al. . Targeting estrogen receptor β as preventive therapeutic strategy for Leber’s hereditary optic neuropathy. Hum Mol Genet. 2015;24(24):6921-6931. doi:10.1093/hmg/ddv396 PubMed DOI

Oostra RJ, Kemp S, Bolhuis PA, Bleeker-Wagemakers EM. No evidence for ‘skewed’ inactivation of the X-chromosome as cause of Leber’s hereditary optic neuropathy in female carriers. Hum Genet. 1996;97(4):500-505. doi:10.1007/BF02267075 PubMed DOI

Cremers FP, van de Pol DJ, van Driel M, et al. . Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum Mol Genet. 1998;7(3):355-362. doi:10.1093/hmg/7.3.355 PubMed DOI

van Driel MA, Maugeri A, Klevering BJ, Hoyng CB, Cremers FP. ABCR unites what ophthalmologists divide(s). Ophthalmic Genet. 1998;19(3):117-122. doi:10.1076/opge.19.3.117.2187 PubMed DOI

Maugeri A, van Driel MA, van de Pol DJ, et al. . The 2588G→C mutation in the ABCR gene is a mild frequent founder mutation in the Western European population and allows the classification of ABCR mutations in patients with Stargardt disease. Am J Hum Genet. 1999;64(4):1024-1035. doi:10.1086/302323 PubMed DOI PMC

Schulz HL, Grassmann F, Kellner U, et al. . Mutation spectrum of the ABCA4 gene in 335 Stargardt disease patients from a multicenter German cohort - impact of selected deep intronic variants and common SNPs. Invest Ophthalmol Vis Sci. 2017;58(1):394-403. doi:10.1167/iovs.16-19936 PubMed DOI PMC

Franconi F, Campesi I, Colombo D, Antonini P. Sex-gender variable: methodological recommendations for increasing scientific value of clinical studies. Cells. 2019;8(5):E476. doi:10.3390/cells8050476 PubMed DOI PMC

Gerdts E, Regitz-Zagrosek V. Sex differences in cardiometabolic disorders. Nat Med. 2019;25(11):1657-1666. doi:10.1038/s41591-019-0643-8 PubMed DOI

De Bellis A, De Angelis G, Fabris E, Cannatà A, Merlo M, Sinagra G. Gender-related differences in heart failure: beyond the “one-size-fits-all” paradigm. Heart Fail Rev. 2020;25(2):245-255. doi:10.1007/s10741-019-09824-y PubMed DOI

Billi AC, Kahlenberg JM, Gudjonsson JE. Sex bias in autoimmunity. Curr Opin Rheumatol. 2019;31(1):53-61. PubMed PMC

Ventura-Clapier R, Moulin M, Piquereau J, et al. . Mitochondria: a central target for sex differences in pathologies. Clin Sci (Lond). 2017;131(9):803-822. doi:10.1042/CS20160485 PubMed DOI

Sampathkumar NK, Bravo JI, Chen Y, et al. . Widespread sex dimorphism in aging and age-related diseases. Hum Genet. 2020;139(3):333-356. doi:10.1007/s00439-019-02082-w PubMed DOI PMC

Wickham LA, Gao J, Toda I, Rocha EM, Ono M, Sullivan DA. Identification of androgen, estrogen and progesterone receptor mRNAs in the eye. Acta Ophthalmol Scand. 2000;78(2):146-153. doi:10.1034/j.1600-0420.2000.078002146.x PubMed DOI

Marin-Castaño ME, Elliot SJ, Potier M, et al. . Regulation of estrogen receptors and MMP-2 expression by estrogens in human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2003;44(1):50-59. doi:10.1167/iovs.01-1276 PubMed DOI

Hulsman CA, Westendorp IC, Ramrattan RS, et al. . Is open-angle glaucoma associated with early menopause? The Rotterdam Study. Am J Epidemiol. 2001;154(2):138-144. doi:10.1093/aje/154.2.138 PubMed DOI

Prokai-Tatrai K, Xin H, Nguyen V, et al. . 17β-estradiol eye drops protect the retinal ganglion cell layer and preserve visual function in an in vivo model of glaucoma. Mol Pharm. 2013;10(8):3253-3261. doi:10.1021/mp400313u PubMed DOI PMC

Elliot SJ, Catanuto P, Espinosa-Heidmann DG, et al. . Estrogen receptor beta protects against in vivo injury in RPE cells. Exp Eye Res. 2010;90(1):10-16. doi:10.1016/j.exer.2009.09.001 PubMed DOI PMC

Du M, Mangold CA, Bixler GV, et al. . Retinal gene expression responses to aging are sexually divergent. Mol Vis. 2017;23:707-717. PubMed PMC

Li B, Gografe S, Munchow A, Lopez-Toledano M, Pan ZH, Shen W. Sex-related differences in the progressive retinal degeneration of the rd10 mouse. Exp Eye Res. 2019;187:107773. doi:10.1016/j.exer.2019.107773 PubMed DOI PMC

Guarneri R, Russo D, Cascio C, et al. . Retinal oxidation, apoptosis and age- and sex-differences in the mnd mutant mouse, a model of neuronal ceroid lipofuscinosis. Brain Res. 2004;1014(1-2):209-220. doi:10.1016/j.brainres.2004.04.040 PubMed DOI

Poloschek CM, Bach M, Lagrèze WA, et al. . ABCA4 and ROM1: implications for modification of the PRPH2-associated macular dystrophy phenotype. Invest Ophthalmol Vis Sci. 2010;51(8):4253-4265. doi:10.1167/iovs.09-4655 PubMed DOI

Lee W, Paavo M, Zernant J, et al. . Modification of the PROM1 disease phenotype by a mutation in ABCA4. Ophthalmic Genet. 2019;40(4):369-375. doi:10.1080/13816810.2019.1660382 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...