Pharmacogenomics to Predict Tumor Therapy Response: A Focus on ATP-Binding Cassette Transporters and Cytochromes P450
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
NV19-08-00113
Agentura Pro Zdravotnický Výzkum České Republiky
UNCE/MED/006
Grantová Agentura, Univerzita Karlova
GAUK 698119
Grantová Agentura, Univerzita Karlova
PubMed
32872162
PubMed Central
PMC7565825
DOI
10.3390/jpm10030108
PII: jpm10030108
Knihovny.cz E-resources
- Keywords
- ATP-binding cassette transporters, cancer therapy, cytochromes P450, omics, personalized medicine, pharmacogenomics, response,
- Publication type
- Journal Article MeSH
- Review MeSH
Pharmacogenomics is an evolving tool of precision medicine. Recently, due to the introduction of next-generation sequencing and projects generating "Big Data", a plethora of new genetic variants in pharmacogenes have been discovered. Cancer resistance is a major complication often preventing successful anticancer treatments. Pharmacogenomics of both somatic mutations in tumor cells and germline variants may help optimize targeted treatments and improve the response to conventional oncological therapy. In addition, integrative approaches combining copy number variations and long noncoding RNA profiling with germline and somatic variations seem to be a promising approach as well. In pharmacology, expression and enzyme activity are traditionally the more studied aspects of ATP-binding cassette transporters and cytochromes P450. In this review, we briefly introduce the field of pharmacogenomics and the advancements driven by next-generation sequencing and outline the possible roles of genetic variation in the two large pharmacogene superfamilies. Although the evidence needs further substantiation, somatic and copy number variants as well as rare variants and common polymorphisms in these genes could all affect response to cancer therapy. Regulation by long noncoding RNAs has also been shown to play a role. However, in all these areas, more comprehensive studies on larger sets of patients are needed.
3rd Faculty of Medicine Charles University 100 00 Prague Czech Republic
Toxicogenomics Unit National Institute of Public Health 100 00 Prague Czech Republic
See more in PubMed
Vogel F. Moderne Probleme der Humangenetik. Ergeb. Inn. Med. Kinderheilkd. 1959;12:52–125.
Daly A.K. Pharmacogenetics: A general review on progress to date. Br. Med. Bull. 2017;124:65–79. doi: 10.1093/bmb/ldx035. PubMed DOI
Barbarino J.M., Whirl-Carrillo M., Altman R.B., Klein T.E. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley Interdiscip. Rev. Syst. Biol. Med. 2018;10:e1417. doi: 10.1002/wsbm.1417. PubMed DOI PMC
Relling M.V., Evans W.E. Pharmacogenomics in the clinic. Nature. 2015;526:343–350. doi: 10.1038/nature15817. PubMed DOI PMC
Hyman D.M., Taylor B.S., Baselga J. Implementing Genome-Driven Oncology. Cell. 2017;168:584–599. doi: 10.1016/j.cell.2016.12.015. PubMed DOI PMC
Fujikura K., Ingelman-Sundberg M., Lauschke V.M. Genetic variation in the human cytochrome P450 supergene family. Pharmacogenet. Genom. 2015;25:584–594. doi: 10.1097/FPC.0000000000000172. PubMed DOI
Kozyra M., Ingelman-Sundberg M., Lauschke V.M. Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response. Genet. Med. 2017;19:20–29. doi: 10.1038/gim.2016.33. PubMed DOI
Ingelman-Sundberg M., Mkrtchian S., Zhou Y., Lauschke V.M. Integrating rare genetic variants into pharmacogenetic drug response predictions. Hum. Genom. 2018;12:26. doi: 10.1186/s40246-018-0157-3. PubMed DOI PMC
PubMed. [(accessed on 31 July 2020)]; Available online: https://pubmed.ncbi.nlm.nih.gov/
Hertz D.L., McLeod H.L. Use of pharmacogenetics for predicting cancer prognosis and treatment exposure, response and toxicity. J. Hum. Genet. 2013;58:346–352. doi: 10.1038/jhg.2013.42. PubMed DOI
McLeod H.L. Cancer pharmacogenomics: Early promise, but concerted effort needed. Science. 2013;339:1563–1566. doi: 10.1126/science.1234139. PubMed DOI PMC
Lam S.W., Frederiks C.N., van der Straaten T., Honkoop A.H., Guchelaar H.J., Boven E. Genotypes of CYP2C8 and FGD4 and their association with peripheral neuropathy or early dose reduction in paclitaxel-treated breast cancer patients. Br. J. Cancer Suppl. 2016;115:1335–1342. doi: 10.1038/bjc.2016.326. PubMed DOI PMC
Abraham J.E., Guo Q., Dorling L., Tyrer J., Ingle S., Hardy R., Vallier A.L., Hiller L., Burns R., Jones L., et al. Replication of Genetic Polymorphisms Reported to Be Associated with Taxane-Related Sensory Neuropathy in Patients with Early Breast Cancer Treated with Paclitaxel. Clin. Cancer Res. 2014;20:2466–2475. doi: 10.1158/1078-0432.CCR-13-3232. PubMed DOI
FDA. [(accessed on 4 May 2020)]; Available online: https://www.fda.gov/Drugs/ScienceResearch/ucm572698.htm.
Cascorbi I., Werk A.N. Advances and challenges in hereditary cancer pharmacogenetics. Expert Opin. Drug Metab. Toxicol. 2017;13:73–82. doi: 10.1080/17425255.2017.1233965. PubMed DOI
EMA. [(accessed on 4 May 2020)]; Available online: https://www.ema.europa.eu/
Pharmacogenomics Knowledgebase. [(accessed on 31 July 2020)]; Available online: https://www.pharmgkb.org/
Whirl-Carrillo M., McDonagh E.M., Hebert J.M., Gong L., Sangkuhl K., Thorn C.F., Altman R.B., Klein T.E. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 2012;92:414–417. doi: 10.1038/clpt.2012.96. PubMed DOI PMC
Drogemoller B.I., Wright G.E.B., Shih J., Monzon J.G., Gelmon K.A., Ross C.J.D., Amstutz U., Carleton B.C. CYP2D6 as a treatment decision aid for ER-positive non-metastatic breast cancer patients: A systematic review with accompanying clinical practice guidelines. Breast Cancer Res. Treat. 2019;173:521–532. doi: 10.1007/s10549-018-5027-0. PubMed DOI
Goetz M.P., Sangkuhl K., Guchelaar H.J., Schwab M., Province M., Whirl-Carrillo M., Symmans W.F., McLeod H.L., Ratain M.J., Zembutsu H., et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and Tamoxifen Therapy. Clin. Pharmacol. Ther. 2018;103:770–777. doi: 10.1002/cpt.1007. PubMed DOI PMC
Cronin-Fenton D.P., Damkier P., Lash T.L. Metabolism and transport of tamoxifen in relation to its effectiveness: New perspectives on an ongoing controversy. Future Oncol. 2014;10:107–122. doi: 10.2217/fon.13.168. PubMed DOI PMC
Lyon E., Gastier Foster J., Palomaki G.E., Pratt V.M., Reynolds K., Sabato M.F., Scott S.A., Vitazka P. Laboratory testing of CYP2D6 alleles in relation to tamoxifen therapy. Genet. Med. 2012;14:990–1000. doi: 10.1038/gim.2012.108. PubMed DOI
Shao X., Cai J., Zheng Y., Wang J., Feng J., Huang Y., Shi L., Chen Z., Guo Y., Wang X. S4646 polymorphism in CYP19A1 gene is associated with the efficacy of hormone therapy in early breast cancer. Int. J. Clin. Exp. Pathol. 2015;8:5309–5317. PubMed PMC
Shao X., Guo Y., Xu X., Zheng Y., Wang J., Chen Z., Huang J., Huang P., Cai J., Wang X. The CYP19 RS4646 polymorphism IS related to the prognosis of stage I-II and operable stage III breast cancer. PLoS ONE. 2015;10:e0121535. doi: 10.1371/journal.pone.0121535. PubMed DOI PMC
Scharfe C.P.I., Tremmel R., Schwab M., Kohlbacher O., Marks D.S. Genetic variation in human drug-related genes. Genome Med. 2017;9:117. doi: 10.1186/s13073-017-0502-5. PubMed DOI PMC
Xiao Q., Zhou Y., Winter S., Buttner F., Schaeffeler E., Schwab M., Lauschke V.M. Germline variant burden in multidrug resistance transporters is a therapy-specific predictor of survival in breast cancer patients. Int. J. Cancer. 2020;146:2475–2487. doi: 10.1002/ijc.32898. PubMed DOI
Menden M.P., Casale F.P., Stephan J., Bignell G.R., Iorio F., McDermott U., Garnett M.J., Saez-Rodriguez J., Stegle O. The germline genetic component of drug sensitivity in cancer cell lines. Nat. Commun. 2018;9:3385. doi: 10.1038/s41467-018-05811-3. PubMed DOI PMC
Caronia D., Patino-Garcia A., Perez-Martinez A., Pita G., Moreno L.T., Zalacain-Diez M., Molina B., Colmenero I., Sierrasesumaga L., Benitez J., et al. Effect of ABCB1 and ABCC3 polymorphisms on osteosarcoma survival after chemotherapy: A pharmacogenetic study. PLoS ONE. 2011;6:e26091. doi: 10.1371/journal.pone.0026091. PubMed DOI PMC
Kalra S., Kaur R.P., Ludhiadch A., Shafi G., Vashista R., Kumar R., Munshi A. Association of CYP2C19*2 and ALDH1A1*1/*2 variants with disease outcome in breast cancer patients: Results of a global screening array. Eur. J. Clin. Pharmacol. 2018;74:1291–1298. doi: 10.1007/s00228-018-2505-6. PubMed DOI
Green H., Soderkvist P., Rosenberg P., Horvath G., Peterson C. mdr-1 single nucleotide polymorphisms in ovarian cancer tissue: G2677T/A correlates with response to paclitaxel chemotherapy. Clin. Cancer Res. 2006;12:854–859. doi: 10.1158/1078-0432.CCR-05-0950. PubMed DOI
Chang H., Rha S.Y., Jeung H.C., Im C.K., Ahn J.B., Kwon W.S., Yoo N.C., Roh J.K., Chung H.C. Association of the ABCB1 gene polymorphisms 2677G>T/A and 3435C>T with clinical outcomes of paclitaxel monotherapy in metastatic breast cancer patients. Ann. Oncol. 2009;20:272–277. doi: 10.1093/annonc/mdn624. PubMed DOI
Chu Y.H., Li H., Tan H.S., Koh V., Lai J., Phyo W.M., Choudhury Y., Kanesvaran R., Chau N.M., Toh C.K., et al. Association of ABCB1 and FLT3 Polymorphisms with Toxicities and Survival in Asian Patients Receiving Sunitinib for Renal Cell Carcinoma. PLoS ONE. 2015;10:e0134102. doi: 10.1371/journal.pone.0134102. PubMed DOI PMC
Beuselinck B., Lambrechts D., Van Brussel T., Wolter P., Cardinaels N., Joniau S., Lerut E., Karadimou A., Couchy G., Sebe P., et al. Efflux pump ABCB1 single nucleotide polymorphisms and dose reductions in patients with metastatic renal cell carcinoma treated with sunitinib. Acta. Oncol. 2014;53:1413–1422. doi: 10.3109/0284186X.2014.918276. PubMed DOI
Harivenkatesh N., Kumar L., Bakhshi S., Sharma A., Kabra M., Velpandian T., Gogia A., Shastri S.S., Gupta Y.K. Do polymorphisms in MDR1 and CYP3A5 genes influence the risk of cytogenetic relapse in patients with chronic myeloid leukemia on imatinib therapy? Leuk. Lymphoma. 2017;58:1–9. doi: 10.1080/10428194.2017.1287359. PubMed DOI
Ben Hassine I., Gharbi H., Soltani I., Ben Hadj Othman H., Farrah A., Amouri H., Teber M., Ghedira H., Ben Youssef Y., Safra I., et al. Molecular study of ABCB1 gene and its correlation with imatinib response in chronic myeloid leukemia. Cancer Chemother. Pharmacol. 2017;80:829–839. doi: 10.1007/s00280-017-3424-4. PubMed DOI
Zheng Q., Wu H., Yu Q., Kim D.H., Lipton J.H., Angelini S., Soverini S., Vivona D., Takahashi N., Cao J. ABCB1 polymorphisms predict imatinib response in chronic myeloid leukemia patients: A systematic review and meta-analysis. Pharmacogenom. J. 2015;15:127–134. doi: 10.1038/tpj.2014.54. PubMed DOI
Kim D.H., Park J.Y., Sohn S.K., Lee N.Y., Baek J.H., Jeon S.B., Kim J.G., Suh J.S., Do Y.R., Lee K.B. Multidrug resistance-1 gene polymorphisms associated with treatment outcomes in de novo acute myeloid leukemia. Int. J. Cancer. 2006;118:2195–2201. doi: 10.1002/ijc.21666. PubMed DOI
Green H., Falk I.J., Lotfi K., Paul E., Hermansson M., Rosenquist R., Paul C., Nahi H. Association of ABCB1 polymorphisms with survival and in vitro cytotoxicty in de novo acute myeloid leukemia with normal karyotype. Pharmacogenom. J. 2012;12:111–118. doi: 10.1038/tpj.2010.79. PubMed DOI
Megias-Vericat J.E., Rojas L., Herrero M.J., Boso V., Montesinos P., Moscardo F., Poveda J.L., Sanz M.A., Alino S.F. Influence of ABCB1 polymorphisms upon the effectiveness of standard treatment for acute myeloid leukemia: A systematic review and meta-analysis of observational studies. Pharmacogenom. J. 2015;15:109–118. doi: 10.1038/tpj.2014.80. PubMed DOI
He H., Yin J., Li X., Zhang Y., Xu X., Zhai M., Chen J., Qian C., Zhou H., Liu Z. Association of ABCB1 polymorphisms with prognostic outcomes of anthracycline and cytarabine in Chinese patients with acute myeloid leukemia. Eur. J. Clin. Pharmacol. 2015;71:293–302. doi: 10.1007/s00228-014-1795-6. PubMed DOI
Yin J.Y., Huang Q., Zhao Y.C., Zhou H.H., Liu Z.Q. Meta-analysis on pharmacogenetics of platinum-based chemotherapy in non small cell lung cancer (NSCLC) patients. PLoS ONE. 2012;7:e38150. doi: 10.1371/journal.pone.0038150. PubMed DOI PMC
Jakobsen Falk I., Lund J., Green H., Gruber A., Alici E., Lauri B., Blimark C., Mellqvist U.H., Swedin A., Forsberg K., et al. Pharmacogenetic study of the impact of ABCB1 single-nucleotide polymorphisms on lenalidomide treatment outcomes in patients with multiple myeloma: Results from a phase IV observational study and subsequent phase II clinical trial. Cancer Chemother. Pharmacol. 2018;81:183–193. doi: 10.1007/s00280-017-3481-8. PubMed DOI PMC
Bray J., Sludden J., Griffin M.J., Cole M., Verrill M., Jamieson D., Boddy A.V. Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide. Br. J. Cancer. 2010;102:1003–1009. doi: 10.1038/sj.bjc.6605587. PubMed DOI PMC
Lal S., Wong Z.W., Sandanaraj E., Xiang X., Ang P.C., Lee E.J., Chowbay B. Influence of ABCB1 and ABCG2 polymorphisms on doxorubicin disposition in Asian breast cancer patients. Cancer Sci. 2008;99:816–823. doi: 10.1111/j.1349-7006.2008.00744.x. PubMed DOI PMC
Maggini V., Buda G., Martino A., Presciuttini S., Galimberti S., Orciuolo E., Barale R., Petrini M., Rossi A.M. MDR1 diplotypes as prognostic markers in multiple myeloma. Pharm. Genom. 2008;18:383–389. doi: 10.1097/FPC.0b013e3282f82297. PubMed DOI
Wu H., Kang H., Liu Y., Xiao Q., Zhang Y., Sun M., Liu D., Wang Z., Zhao H., Yao W., et al. Association of ABCB1 genetic polymorphisms with susceptibility to colorectal cancer and therapeutic prognosis. Pharmacogenomics. 2013;14:897–911. doi: 10.2217/pgs.13.78. PubMed DOI
Grau J.J., Caballero M., Campayo M., Jansa S., Vargas M., Alos L., Monzo M. Gene single nucleotide polymorphism accumulation improves survival in advanced head and neck cancer patients treated with weekly paclitaxel. Laryngoscope. 2009;119:1484–1490. doi: 10.1002/lary.20254. PubMed DOI
Hertz D.L., Motsinger-Reif A.A., Drobish A., Winham S.J., McLeod H.L., Carey L.A., Dees E.C. CYP2C8*3 predicts benefit/risk profile in breast cancer patients receiving neoadjuvant paclitaxel. Breast Cancer Res. Treat. 2012;134:401–410. doi: 10.1007/s10549-012-2054-0. PubMed DOI PMC
Angelini S., Soverini S., Ravegnini G., Barnett M., Turrini E., Thornquist M., Pane F., Hughes T.P., White D.L., Radich J., et al. Association between imatinib transporters and metabolizing enzymes genotype and response in newly diagnosed chronic myeloid leukemia patients receiving imatinib therapy. Haematologica. 2013;98:193–200. doi: 10.3324/haematol.2012.066480. PubMed DOI PMC
Adeagbo B.A., Bolaji O.O., Olugbade T.A., Durosinmi M.A., Bolarinwa R.A., Masimirembwa C. Influence of CYP3A5*3 and ABCB1 C3435T on clinical outcomes and trough plasma concentrations of imatinib in Nigerians with chronic myeloid leukaemia. J. Clin. Pharm. Ther. 2016;41:546–551. doi: 10.1111/jcpt.12424. PubMed DOI
Kafka A., Sauer G., Jaeger C., Grundmann R., Kreienberg R., Zeillinger R., Deissler H. Polymorphism C3435T of the MDR-1 gene predicts response to preoperative chemotherapy in locally advanced breast cancer. Int. J. Oncol. 2003;22:1117–1121. doi: 10.3892/ijo.22.5.1117. PubMed DOI
Narumiya K., Metzger R., Bollschweiler E., Alakus H., Brabender J., Drebber U., Holscher A.H., Warnecke-Eberz U. Impact of ABCB1 C3435T polymorphism on lymph node regression in multimodality treatment of locally advanced esophageal cancer. Pharmacogenomics. 2011;12:205–214. doi: 10.2217/pgs.10.174. PubMed DOI
McLeod H.L., Sargent D.J., Marsh S., Green E.M., King C.R., Fuchs C.S., Ramanathan R.K., Williamson S.K., Findlay B.P., Thibodeau S.N., et al. Pharmacogenetic predictors of adverse events and response to chemotherapy in metastatic colorectal cancer: Results from North American Gastrointestinal Intergroup Trial N9741. J. Clin. Oncol. 2010;28:3227–3233. doi: 10.1200/JCO.2009.21.7943. PubMed DOI PMC
Sensorn I., Sirachainan E., Chamnanphon M., Pasomsub E., Trachu N., Supavilai P., Sukasem C., Pinthong D. Association of CYP3A4/5, ABCB1 and ABCC2 polymorphisms and clinical outcomes of Thai breast cancer patients treated with tamoxifen. Pharmgenom. Pers. Med. 2013;6:93–98. doi: 10.2147/PGPM.S44006. PubMed DOI PMC
Ravegnini G., Urbini M., Simeon V., Genovese C., Astolfi A., Nannini M., Gatto L., Saponara M., Ianni M., Indio V., et al. An exploratory study by DMET array identifies a germline signature associated with imatinib response in gastrointestinal stromal tumor. Pharmacogenom. J. 2019;19:390–400. doi: 10.1038/s41397-018-0050-4. PubMed DOI
Li M., Seiser E.L., Baldwin R.M., Ramirez J., Ratain M.J., Innocenti F., Kroetz D.L. ABC transporter polymorphisms are associated with irinotecan pharmacokinetics and neutropenia. Pharmacogenom. J. 2018;18:35–42. doi: 10.1038/tpj.2016.75. PubMed DOI PMC
Kiyotani K., Mushiroda T., Imamura C.K., Hosono N., Tsunoda T., Kubo M., Tanigawara Y., Flockhart D.A., Desta Z., Skaar T.C., et al. Significant effect of polymorphisms in CYP2D6 and ABCC2 on clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients. J. Clin. Oncol. 2010;28:1287–1293. doi: 10.1200/JCO.2009.25.7246. PubMed DOI PMC
Ansari M., Sauty G., Labuda M., Gagne V., Rousseau J., Moghrabi A., Laverdiere C., Sinnett D., Krajinovic M. Polymorphism in multidrug resistance-associated protein gene 3 is associated with outcomes in childhood acute lymphoblastic leukemia. Pharmacogenom. J. 2012;12:386–394. doi: 10.1038/tpj.2011.17. PubMed DOI
Angelini S., Pantaleo M.A., Ravegnini G., Zenesini C., Cavrini G., Nannini M., Fumagalli E., Palassini E., Saponara M., Di Battista M., et al. Polymorphisms in OCTN1 and OCTN2 transporters genes are associated with prolonged time to progression in unresectable gastrointestinal stromal tumours treated with imatinib therapy. Pharmacol. Res. 2013;68:1–6. doi: 10.1016/j.phrs.2012.10.015. PubMed DOI
Han J.Y., Lee Y.S., Shin E.S., Hwang J.A., Nam S., Hong S.H., Ghang H.Y., Kim J.Y., Yoon S.J., Lee J.S. A genome-wide association study of survival in small-cell lung cancer patients treated with irinotecan plus cisplatin chemotherapy. Pharmacogenom. J. 2014;14:20–27. doi: 10.1038/tpj.2013.7. PubMed DOI
Zhao J., Li W., Zhu D., Yu Q., Zhang Z., Sun M., Cai S., Zhang W. Association of single nucleotide polymorphisms in MTHFR and ABCG2 with the different efficacy of first-line chemotherapy in metastatic colorectal cancer. Med. Oncol. 2014;31:802. doi: 10.1007/s12032-013-0802-6. PubMed DOI PMC
Delord M., Rousselot P., Cayuela J.M., Sigaux F., Guilhot J., Preudhomme C., Guilhot F., Loiseau P., Raffoux E., Geromin D., et al. High imatinib dose overcomes insufficient response associated with ABCG2 haplotype in chronic myelogenous leukemia patients. Oncotarget. 2013;4:1582–1591. doi: 10.18632/oncotarget.1050. PubMed DOI PMC
De Mattia E., Toffoli G., Polesel J., D’Andrea M., Corona G., Zagonel V., Buonadonna A., Dreussi E., Cecchin E. Pharmacogenetics of ABC and SLC transporters in metastatic colorectal cancer patients receiving first-line FOLFIRI treatment. Pharmacogenet. Genom. 2013;23:549–557. doi: 10.1097/FPC.0b013e328364b6cf. PubMed DOI
Limviphuvadh V., Tan C.S., Konishi F., Jenjaroenpun P., Xiang J.S., Kremenska Y., Mu Y.S., Syn N., Lee S.C., Soo R.A., et al. Discovering novel SNPs that are correlated with patient outcome in a Singaporean cancer patient cohort treated with gemcitabine-based chemotherapy. BMC Cancer. 2018;18:555. doi: 10.1186/s12885-018-4471-x. PubMed DOI PMC
Dong N., Yu J., Wang C., Zheng X., Wang Z., Di L., Song G., Zhu B., Che L., Jia J., et al. Pharmacogenetic assessment of clinical outcome in patients with metastatic breast cancer treated with docetaxel plus capecitabine. J. Cancer Res. Clin. Oncol. 2012;138:1197–1203. doi: 10.1007/s00432-012-1183-5. PubMed DOI PMC
Verboom M.C., Kloth J.S.L., Swen J.J., Sleijfer S., Reyners A.K.L., Steeghs N., Mathijssen R.H.J., Gelderblom H., Guchelaar H.J. Genetic polymorphisms in ABCG2 and CYP1A2 are associated with imatinib dose reduction in patients treated for gastrointestinal stromal tumors. Pharmacogenom. J. 2019;19:473–479. doi: 10.1038/s41397-019-0079-z. PubMed DOI
Le Morvan V., Litiere S., Laroche-Clary A., Ait-Ouferoukh S., Bellott R., Messina C., Cameron D., Bonnefoi H., Robert J. Identification of SNPs associated with response of breast cancer patients to neoadjuvant chemotherapy in the EORTC-10994 randomized phase III trial. Pharmacogenom. J. 2015;15:63–68. doi: 10.1038/tpj.2014.24. PubMed DOI
Wang H., Bian T., Liu D., Jin T., Chen Y., Lin A., Chen C. Association analysis of CYP2A6 genotypes and haplotypes with 5-fluorouracil formation from tegafur in human liver microsomes. Pharmacogenomics. 2011;12:481–492. doi: 10.2217/pgs.10.202. PubMed DOI
Kassogue Y., Quachouh M., Dehbi H., Quessar A., Benchekroun S., Nadifi S. Functional polymorphism of CYP2B6 G15631T is associated with hematologic and cytogenetic response in chronic myeloid leukemia patients treated with imatinib. Med. Oncol. 2014;31:782. doi: 10.1007/s12032-013-0782-6. PubMed DOI
Johnson G.G., Lin K., Cox T.F., Oates M., Sibson D.R., Eccles R., Lloyd B., Gardiner L.J., Carr D.F., Pirmohamed M., et al. CYP2B6*6 is an independent determinant of inferior response to fludarabine plus cyclophosphamide in chronic lymphocytic leukemia. Blood. 2013;122:4253–4258. doi: 10.1182/blood-2013-07-516666. PubMed DOI
Damkier P., Kjaersgaard A., Barker K.A., Cronin-Fenton D., Crawford A., Hellberg Y., Janssen E.A.M., Langefeld C., Ahern T.P., Lash T.L. CYP2C19*2 and CYP2C19*17 variants and effect of tamoxifen on breast cancer recurrence: Analysis of the International Tamoxifen Pharmacogenomics Consortium dataset. Sci. Rep. 2017;7:7727. doi: 10.1038/s41598-017-08091-x. PubMed DOI PMC
Suzumura T., Kimura T., Kudoh S., Umekawa K., Nagata M., Matsuura K., Tanaka H., Mitsuoka S., Yoshimura N., Kira Y., et al. Reduced CYP2D6 function is associated with gefitinib-induced rash in patients with non-small cell lung cancer. BMC Cancer. 2012;12:568. doi: 10.1186/1471-2407-12-568. PubMed DOI PMC
Sugiyama E., Umemura S., Nomura S., Kirita K., Matsumoto S., Yoh K., Niho S., Ohmatsu H., Tsuboi M., Ohe Y., et al. Impact of single nucleotide polymorphisms on severe hepatotoxicity induced by EGFR tyrosine kinase inhibitors in patients with non-small cell lung cancer harboring EGFR mutations. Lung Cancer. 2015;90:307–313. doi: 10.1016/j.lungcan.2015.08.004. PubMed DOI
Takimoto T., Kijima T., Otani Y., Nonen S., Namba Y., Mori M., Yokota S., Minami S., Komuta K., Uchida J., et al. Polymorphisms of CYP2D6 gene and gefitinib-induced hepatotoxicity. Clin. Lung Cancer. 2013;14:502–507. doi: 10.1016/j.cllc.2013.03.003. PubMed DOI
Kobayashi H., Sato K., Niioka T., Miura H., Ito H., Miura M. Relationship Among Gefitinib Exposure, Polymorphisms of Its Metabolizing Enzymes and Transporters, and Side Effects in Japanese Patients with Non-Small-Cell Lung Cancer. Clin. Lung Cancer. 2015;16:274–281. doi: 10.1016/j.cllc.2014.12.004. PubMed DOI
Kijima T., Shimizu T., Nonen S., Furukawa M., Otani Y., Minami T., Takahashi R., Hirata H., Nagatomo I., Takeda Y., et al. Safe and successful treatment with erlotinib after gefitinib-induced hepatotoxicity: Difference in metabolism as a possible mechanism. J. Clin. Oncol. 2011;29:e588–e590. doi: 10.1200/JCO.2010.34.3368. PubMed DOI
Hirose T., Fujita K., Kusumoto S., Oki Y., Murata Y., Sugiyama T., Ishida H., Shirai T., Nakashima M., Yamaoka T., et al. Association of pharmacokinetics and pharmacogenomics with safety and efficacy of gefitinib in patients with EGFR mutation positive advanced non-small cell lung cancer. Lung Cancer. 2016;93:69–76. doi: 10.1016/j.lungcan.2016.01.005. PubMed DOI
Swaisland H.C., Cantarini M.V., Fuhr R., Holt A. Exploring the relationship between expression of cytochrome P450 enzymes and gefitinib pharmacokinetics. Clin. Pharmacokinet. 2006;45:633–644. doi: 10.2165/00003088-200645060-00006. PubMed DOI
Khrunin A., Ivanova F., Moisseev A., Khokhrin D., Sleptsova Y., Gorbunova V., Limborska S. Pharmacogenomics of cisplatin-based chemotherapy in ovarian cancer patients of different ethnic origins. Pharmacogenomics. 2012;13:171–178. doi: 10.2217/pgs.11.140. PubMed DOI
Nakajima Y., Yoshitani T., Fukushima-Uesaka H., Saito Y., Kaniwa N., Kurose K., Ozawa S., Aoyagi N., Kamatani N., Yamamoto N., et al. Impact of the haplotype CYP3A4*16B harboring the Thr185Ser substitution on paclitaxel metabolism in Japanese patients with cancer. Clin. Pharmacol. Ther. 2006;80:179–191. doi: 10.1016/j.clpt.2006.04.012. PubMed DOI
The Cancer Genome Atlas (TCGA) [(accessed on 31 July 2020)]; Available online: https://www.cancer.gov/tcga/
Robey R.W., Pluchino K.M., Hall M.D., Fojo A.T., Bates S.E., Gottesman M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer. 2018;18:452–464. doi: 10.1038/s41568-018-0005-8. PubMed DOI PMC
Tate J.G., Bamford S., Jubb H.C., Sondka Z., Beare D.M., Bindal N., Boutselakis H., Cole C.G., Creatore C., Dawson E., et al. COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019;47:D941–D947. doi: 10.1093/nar/gky1015. PubMed DOI PMC
Sondka Z., Bamford S., Cole C.G., Ward S.A., Dunham I., Forbes S.A. The COSMIC Cancer Gene Census: Describing genetic dysfunction across all human cancers. Nat. Rev. Cancer. 2018;18:696–705. doi: 10.1038/s41568-018-0060-1. PubMed DOI PMC
Jensen K.H., Izarzugaza J.M.G., Juncker A.S., Hansen R.B., Hansen T.F., Timshel P., Blondal T., Jensen T.S., Rygaard-Hjalsted E., Mouritzen P., et al. Analysis of a gene panel for targeted sequencing of colorectal cancer samples. Oncotarget. 2018;9:9043–9060. doi: 10.18632/oncotarget.24138. PubMed DOI PMC
McCawley N., Clancy C., O’Neill B.D., Deasy J., McNamara D.A., Burke J.P. Mucinous Rectal Adenocarcinoma Is Associated with a Poor Response to Neoadjuvant Chemoradiotherapy: A Systematic Review and Meta-analysis. Dis. Colon Rectum. 2016;59:1200–1208. doi: 10.1097/DCR.0000000000000635. PubMed DOI
Reynolds I.S., O’Connell E., Fichtner M., McNamara D.A., Kay E.W., Prehn J.H.M., Furney S.J., Burke J.P. Mucinous adenocarcinoma is a pharmacogenomically distinct subtype of colorectal cancer. Pharmacogenom. J. 2019;20:524–532. doi: 10.1038/s41397-019-0137-6. PubMed DOI
Li Y., Roberts N.D., Wala J.A., Shapira O., Schumacher S.E., Kumar K., Khurana E., Waszak S., Korbel J.O., Haber J.E., et al. Patterns of somatic structural variation in human cancer genomes. Nature. 2020;578:112–121. doi: 10.1038/s41586-019-1913-9. PubMed DOI PMC
Gerstung M., Jolly C., Leshchiner I., Dentro S.C., Gonzalez S., Rosebrock D., Mitchell T.J., Rubanova Y., Anur P., Yu K., et al. The evolutionary history of 2,658 cancers. Nature. 2020;578:122–128. doi: 10.1038/s41586-019-1907-7. PubMed DOI PMC
Smith J.C., Sheltzer J.M. Systematic identification of mutations and copy number alterations associated with cancer patient prognosis. eLife. 2018;7:e39217. doi: 10.7554/eLife.39217. PubMed DOI PMC
Santos M., Niemi M., Hiratsuka M., Kumondai M., Ingelman-Sundberg M., Lauschke V.M., Rodriguez-Antona C. Novel copy-number variations in pharmacogenes contribute to interindividual differences in drug pharmacokinetics. Genet. Med. 2018;20:622–629. doi: 10.1038/gim.2017.156. PubMed DOI
Ahmed J.H., Makonnen E., Fotoohi A., Aseffa A., Howe R., Aklillu E. CYP2D6 Genotype Predicts Plasma Concentrations of Tamoxifen Metabolites in Ethiopian Breast Cancer Patients. Cancers. 2019;11:1353. doi: 10.3390/cancers11091353. PubMed DOI PMC
Petrovic J., Pesic V., Lauschke V.M. Frequencies of clinically important CYP2C19 and CYP2D6 alleles are graded across Europe. Eur. J. Hum. Genet. 2020;28:88–94. doi: 10.1038/s41431-019-0480-8. PubMed DOI PMC
Cavallari L.H., Van Driest S.L., Prows C.A., Bishop J.R., Limdi N.A., Pratt V.M., Ramsey L.B., Smith D.M., Tuteja S., Duong B.Q., et al. Multi-site investigation of strategies for the clinical implementation of CYP2D6 genotyping to guide drug prescribing. Genet. Med. 2019;21:2255–2263. doi: 10.1038/s41436-019-0484-3. PubMed DOI PMC
Goetz M.P., Sun J.X., Suman V.J., Silva G.O., Perou C.M., Nakamura Y., Cox N.J., Stephens P.J., Miller V.A., Ross J.S., et al. Loss of heterozygosity at the CYP2D6 locus in breast cancer: Implications for germline pharmacogenetic studies. J. Natl. Cancer Inst. Monogr. 2014;107 doi: 10.1093/jnci/dju401. PubMed DOI PMC
Ng D., Hong C.S., Singh L.N., Johnston J.J., Mullikin J.C., Biesecker L.G. Assessing the capability of massively parallel sequencing for opportunistic pharmacogenetic screening. Genet. Med. 2017;19:357–361. doi: 10.1038/gim.2016.105. PubMed DOI PMC
Magnani L., Frige G., Gadaleta R.M., Corleone G., Fabris S., Kempe M.H., Verschure P.J., Barozzi I., Vircillo V., Hong S.P., et al. Acquired CYP19A1 amplification is an early specific mechanism of aromatase inhibitor resistance in ERalpha metastatic breast cancer. Nat. Genet. 2017;49:444–450. doi: 10.1038/ng.3773. PubMed DOI PMC
Lavrov A.V., Ustaeva O.A., Adilgereeva E.P., Smirnikhina S.A., Chelysheva E.Y., Shukhov O.A., Shatokhin Y.V., Mordanov S.V., Turkina A.G., Kutsev S.I. Copy number variation analysis in cytochromes and glutathione S-transferases may predict efficacy of tyrosine kinase inhibitors in chronic myeloid leukemia. PLoS ONE. 2017;12:e0182901. doi: 10.1371/journal.pone.0182901. PubMed DOI PMC
Genovese I., Ilari A., Assaraf Y.G., Fazi F., Colotti G. Not only P-glycoprotein: Amplification of the ABCB1-containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resist. Updat. 2017;32:23–46. doi: 10.1016/j.drup.2017.10.003. PubMed DOI
Hansen S.N., Ehlers N.S., Zhu S., Thomsen M.B., Nielsen R.L., Liu D., Wang G., Hou Y., Zhang X., Xu X., et al. The stepwise evolution of the exome during acquisition of docetaxel resistance in breast cancer cells. BMC Genom. 2016;17:442. doi: 10.1186/s12864-016-2749-4. PubMed DOI PMC
Spitzwieser M., Pirker C., Koblmuller B., Pfeiler G., Hacker S., Berger W., Heffeter P., Cichna-Markl M. Promoter methylation patterns of ABCB1, ABCC1 and ABCG2 in human cancer cell lines, multidrug-resistant cell models and tumor, tumor-adjacent and tumor-distant tissues from breast cancer patients. Oncotarget. 2016;7:73347–73369. doi: 10.18632/oncotarget.12332. PubMed DOI PMC
Sun Y., Shi N., Lu H., Zhang J., Ma Y., Qiao Y., Mao Y., Jia K., Han L., Liu F., et al. ABCC4 copy number variation is associated with susceptibility to esophageal squamous cell carcinoma. Carcinogenesis. 2014;35:1941–1950. doi: 10.1093/carcin/bgu043. PubMed DOI
Lek M., Karczewski K.J., Minikel E.V., Samocha K.E., Banks E., Fennell T., O’Donnell-Luria A.H., Ware J.S., Hill A.J., Cummings B.B., et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291. doi: 10.1038/nature19057. PubMed DOI PMC
Firth H.V., Richards S.M., Bevan A.P., Clayton S., Corpas M., Rajan D., Van Vooren S., Moreau Y., Pettett R.M., Carter N.P. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am. J. Hum. Genet. 2009;84:524–533. doi: 10.1016/j.ajhg.2009.03.010. PubMed DOI PMC
Clinvar. [(accessed on 31 July 2020)]; Available online: https://www.ncbi.nlm.nih.gov/clinvar/
Nath A., Lau E.Y.T., Lee A.M., Geeleher P., Cho W.C.S., Huang R.S. Discovering long noncoding RNA predictors of anticancer drug sensitivity beyond protein-coding genes. Proc. Natl. Acad. Sci. USA. 2019;116:22020–22029. doi: 10.1073/pnas.1909998116. PubMed DOI PMC
Wang Y., Fang Z., Hong M., Yang D., Xie W. Long-noncoding RNAs (lncRNAs) in drug metabolism and disposition, implications in cancer chemo-resistance. Acta. Pharm. Sin. B. 2020;10:105–112. doi: 10.1016/j.apsb.2019.09.011. PubMed DOI PMC
Zhang X., Yang H. Research Progress on Long Non-coding RNAs and Drug Resistance of Breast Cancer. Clin. Breast Cancer. 2020;20:275–282. doi: 10.1016/j.clbc.2019.11.001. PubMed DOI
Kansara S., Pandey V., Lobie P.E., Sethi G., Garg M., Pandey A.K. Mechanistic Involvement of Long Non-Coding RNAs in Oncotherapeutics Resistance in Triple-Negative Breast Cancer. Cells. 2020;9:1511. doi: 10.3390/cells9061511. PubMed DOI PMC
Fang Z., Chen W., Yuan Z., Liu X., Jiang H. LncRNA-MALAT1 contributes to the cisplatin-resistance of lung cancer by upregulating MRP1 and MDR1 via STAT3 activation. Biomed. Pharmacother. 2018;101:536–542. doi: 10.1016/j.biopha.2018.02.130. PubMed DOI
Meseure D., Vacher S., Lallemand F., Alsibai K.D., Hatem R., Chemlali W., Nicolas A., De Koning L., Pasmant E., Callens C., et al. Prognostic value of a newly identified MALAT1 alternatively spliced transcript in breast cancer. Br. J. Cancer Suppl. 2016;114:1395–1404. doi: 10.1038/bjc.2016.123. PubMed DOI PMC
Lee S.P., Hsieh P.L., Fang C.Y., Chu P.M., Liao Y.W., Yu C.H., Yu C.C., Tsai L.L. LINC00963 Promotes Cancer Stemness, Metastasis, and Drug Resistance in Head and Neck Carcinomas via ABCB5 Regulation. Cancers. 2020;12:1073. doi: 10.3390/cancers12051073. PubMed DOI PMC
Chen L., Bao Y., Piekos S.C., Zhu K., Zhang L., Zhong X.B. A Transcriptional Regulatory Network Containing Nuclear Receptors and Long Noncoding RNAs Controls Basal and Drug-Induced Expression of Cytochrome P450s in HepaRG Cells. Mol. Pharmacol. 2018;94:749–759. doi: 10.1124/mol.118.112235. PubMed DOI PMC
Chen L., Bao Y., Jiang S., Zhong X.B. The Roles of Long Noncoding RNAs HNF1alpha-AS1 and HNF4alpha-AS1 in Drug Metabolism and Human Diseases. Non-Coding RNA. 2020;6:24. doi: 10.3390/ncrna6020024. PubMed DOI PMC
Hu Y., Zhu Q.N., Deng J.L., Li Z.X., Wang G., Zhu Y.S. Emerging role of long non-coding RNAs in cisplatin resistance. Onco. Targets Ther. 2018;11:3185–3194. doi: 10.2147/OTT.S158104. PubMed DOI PMC
Nekvindova J., Mrkvicova A., Zubanova V., Hyrslova Vaculova A., Anzenbacher P., Soucek P., Radova L., Slaby O., Kiss I., Vondracek J., et al. Hepatocellular carcinoma: Gene expression profiling and regulation of xenobiotic-metabolizing cytochromes P450. Biochem. Pharmacol. 2020;177:113912. doi: 10.1016/j.bcp.2020.113912. PubMed DOI
Role of Genetic Variation in Cytochromes P450 in Breast Cancer Prognosis and Therapy Response