Role of Genetic Variation in Cytochromes P450 in Breast Cancer Prognosis and Therapy Response

. 2021 Mar 10 ; 22 (6) : . [epub] 20210310

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu klinické zkoušky, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33802237

Grantová podpora
NV19-08-00113 Czech Medical Council
INTER-EXCELLENCE LTA-USA no. 19032 Czech Ministry of Education, Youth and Sports
Progress Q39 Charles University Research Fund

Breast cancer is the most frequent cancer in the female population worldwide. The role of germline genetic variability in cytochromes P450 (CYP) in breast cancer prognosis and individualized therapy awaits detailed elucidation. In the present study, we used the next-generation sequencing to assess associations of germline variants in the coding and regulatory sequences of all human CYP genes with response of the patients to the neoadjuvant cytotoxic chemotherapy and disease-free survival (n = 105). A total of 22 prioritized variants associating with a response or survival in the above evaluation phase were then analyzed by allelic discrimination in the large confirmation set (n = 802). Associations of variants in CYP1B1, CYP4F12, CYP4X1, and TBXAS1 with the response to the neoadjuvant cytotoxic chemotherapy were replicated by the confirmation phase. However, just association of variant rs17102977 in CYP4X1 passed the correction for multiple testing and can be considered clinically and statistically validated. Replicated associations for variants in CYP4X1, CYP24A1, and CYP26B1 with disease-free survival of all patients or patients stratified to subgroups according to therapy type have not passed a false discovery rate test. Although statistically not confirmed by the present study, the role of CYP genes in breast cancer prognosis should not be ruled out. In conclusion, the present study brings replicated association of variant rs17102977 in CYP4X1 with the response of patients to the neoadjuvant cytotoxic chemotherapy and warrants further research of genetic variation CYPs in breast cancer.

Zobrazit více v PubMed

Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI

Heer E., Harper A., Escandor N., Sung H., McCormack V., Fidler-Benaoudia M.M. Global burden and trends in premenopausal and postmenopausal breast cancer: A population-based study. Lancet Glob. Health. 2020;8:e1027–e1037. doi: 10.1016/S2214-109X(20)30215-1. PubMed DOI

Ingelman-Sundberg M., Mkrtchian S., Zhou Y., Lauschke V.M. Integrating rare genetic variants into pharmacogenetic drug response predictions. Hum. Genom. 2018;12:1–12. doi: 10.1186/s40246-018-0157-3. PubMed DOI PMC

Hlaváč V., Holý P., Souček P. Pharmacogenomics to predict tumor therapy response: A focus on atp-binding cassette transporters and cytochromes P450. J. Pers. Med. 2020;10:108. doi: 10.3390/jpm10030108. PubMed DOI PMC

Nelson D.R. The Cytochrome P450 Homepage. Hum. Genom. 2009;4:59–65. doi: 10.1186/1479-7364-4-1-59. PubMed DOI PMC

Gaedigk A., Ingelman-Sundberg M., Miller N.A., Leeder J.S., Whirl-Carrillo M., Klein T.E. The PharmVar steering committee the pharmacogene variation (PharmVar) consortium: Incorporation of the human cytochrome P450 (CYP) allele nomenclature database. Clin. Pharmacol. Ther. 2018;103:399–401. doi: 10.1002/cpt.910. PubMed DOI PMC

Rendic S.P., Guengerich F.P. Human cytochrome P450 enzymes 5–51 as targets of drugs and natural and environmental compounds: Mechanisms, induction, and inhibition—Toxic effects and benefits. Drug Metab. Rev. 2018;50:256–342. doi: 10.1080/03602532.2018.1483401. PubMed DOI PMC

Guengerich F.P. Human Cytochrome P450 Enzymes. In: Ortiz de Montellano P.R., editor. Cytochrome P450: Structure, Mechanism, and Biochemistry. Springer International Publishing; Cham, Switzerland: 2015. pp. 523–785.

Guengerich F.P. A history of the roles of cytochrome P450 enzymes in the toxicity of drugs. Toxicol. Res. 2021;37:1–23. doi: 10.1007/s43188-020-00056-z. PubMed DOI PMC

Samavat H., Kurzer M.S. Estrogen metabolism and breast cancer. Cancer Lett. 2015;356:231–243. doi: 10.1016/j.canlet.2014.04.018. PubMed DOI PMC

Artigalás O., Vanni T., Hutz M.H., Ashton-Prolla P., Schwartz I.V. Influence of CYP19A1 polymorphisms on the treatment of breast cancer with aromatase inhibitors: A systematic review and meta-analysis. BMC Med. 2015;13:139. doi: 10.1186/s12916-015-0373-9. PubMed DOI PMC

Hlavac V., Kovacova M., Elsnerova K., Brynychova V., Kozevnikovova R., Raus K., Kopeckova K., Mestakova S., Vrana D., Gatek J., et al. Use of germline genetic variability for prediction of chemoresistance and prognosis of breast cancer patients. Cancers. 2018;10:511. doi: 10.3390/cancers10120511. PubMed DOI PMC

Stark K., Guengerich F.P. Characterization of orphan human cytochromes P450. Drug Metab. Rev. 2007;39:627–637. doi: 10.1080/03602530701467708. PubMed DOI

Guengerich F.P., Cheng Q. Orphans in the human cytochrome p450 superfamily: Approaches to discovering functions and relevance in pharmacology. Pharmacol. Rev. 2011;63:684–699. doi: 10.1124/pr.110.003525. PubMed DOI PMC

Stark K., Dostalek M., Guengerich F.P. Expression and purification of orphan cytochrome P450 4X1 and oxidation of anandamide. FEBS J. 2008;275:3706–3717. doi: 10.1111/j.1742-4658.2008.06518.x. PubMed DOI PMC

Kumar S. Computational identification and binding analysis of orphan human cytochrome P450 4X1 enzyme with substrates. BMC Res. Notes. 2015;8:9. doi: 10.1186/s13104-015-0976-4. PubMed DOI PMC

GeneCards® Home Page. [(accessed on 1 August 2012)]; Available online: http://www.genecards.org/

Murray G., Patimalla S., Stewart K.N., Miller I.D., Heys S.D. Profiling the expression of cytochrome P450 in breast cancer. Histopathology. 2010;57:202–211. doi: 10.1111/j.1365-2559.2010.03606.x. PubMed DOI

Zhang Y., Yuan Z., Shen R., Jiang Y., Xu W., Gu M., Gu X. Identification of biomarkers predicting the chemotherapeutic outcomes of capecitabine and oxaliplatin in patients with gastric cancer. Oncol. Lett. 2020;20:1. doi: 10.3892/ol.2020.12153. PubMed DOI PMC

Poleggi A., Van Der Lee S., Capellari S., Puopolo M., Ladogana A., De Pascali E., Lia D., Formato A., Bartoletti-Stella A., Parchi P., et al. Age at onset of genetic (E200K) and sporadic Creutzfeldt-Jakob diseases is modulated by the CYP4X1 gene. J. Neurol. Neurosurg. Psychiatry. 2018;89:1243–1249. doi: 10.1136/jnnp-2018-318756. PubMed DOI

Guindon J., Hohmann A.G. The endocannabinoid system and cancer: Therapeutic implication. Br. J. Pharmacol. 2011;163:1447–1463. doi: 10.1111/j.1476-5381.2011.01327.x. PubMed DOI PMC

Chang J., Zhong R., Tian J., Li J., Zhai K., Ke J., Lou J., Chen W., Zhu B., Shen N., et al. Exome-wide analyses identify low-frequency variant in CYP26B1 and additional coding variants associated with esophageal squamous cell carcinoma. Nat. Genet. 2018;50:338–343. doi: 10.1038/s41588-018-0045-8. PubMed DOI

Trubicka J., Grabowska-Kłujszo E., Suchy J., Masojć B., Serrano-Fernández P., Kurzawski G., Cybulski C., Górski B., Huzarski T., Byrski T., et al. Variant alleles of the CYP1B1 gene are associated with colorectal cancer susceptibility. BMC Cancer. 2010;10:420. doi: 10.1186/1471-2407-10-420. PubMed DOI PMC

Kamiza A.B., You J.-F., Wang W.-C., Tang R., Chang C.-Y., Chien H.-T., Lai C.-H., Chiu L.-L., Lo T.-P., Hung K.-Y., et al. Polymorphisms of xenobiotic-metabolizing genes and colorectal cancer risk in patients with lynch syndrome: A retrospective cohort study in Taiwan. Environ. Mol. Mutagen. 2018;59:69–78. doi: 10.1002/em.22113. PubMed DOI

Reding K.W., Weiss N.S., Chen C., Li C.I., Carlson C.S., Wilkerson H.-W., Farin F.M., Thummel K.E., Daling J.R., Malone K.E. Genetic polymorphisms in the catechol estrogen metabolism pathway and breast cancer risk. Cancer Epidemiol. Biomark. Prev. 2009;18:1461–1467. doi: 10.1158/1055-9965.EPI-08-0917. PubMed DOI PMC

Wang Z., Li M., Li L., Sun H., Lin X. Association of single nucleotide polymorphisms in the CYP1B1 gene with the risk of primary open-angle glaucoma: A meta-analysis. Genet. Mol. Res. 2015;14:17262–17272. doi: 10.4238/2015.December.16.26. PubMed DOI

Shimada T., Hayes C.L., Yamazaki H., Amin S., Hecht S.S., Guengerich F.P., Sutter T.R. Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res. 1996;56:2979–2984. PubMed

Watkins G., Douglas-Jones A., Mansel R.E., Jiang W.G. Expression of thromboxane synthase, TBXAS1 and the thromboxane A2 receptor, TBXA2R, in human breast cancer. Int. Semin. Surg. Oncol. 2005;2:23. doi: 10.1186/1477-7800-2-23. PubMed DOI PMC

Wang S., Jin F., Fan W., Liu F., Zou Y., Hu X., Xu H., Han P. Gene expression meta-analysis in diffuse low-grade glioma and the corresponding histological subtypes. Sci. Rep. 2017;7:11741. doi: 10.1038/s41598-017-12087-y. PubMed DOI PMC

Liu X., Wang G., Hong X., Wang D., Tsai H.-J., Zhang S., Arguelles L., Kumar R., Wang H., Liu R., et al. Gene-vitamin D interactions on food sensitization: A prospective birth cohort study. Allergy. 2011;66:1442–1448. doi: 10.1111/j.1398-9995.2011.02681.x. PubMed DOI PMC

Fuhrman B.J., Freedman D.M., Bhatti P., Doody M.M., Fu Y.P., Chang S.C., Linet M.S., Sigurdson A.J. Sunlight, Poly-morphisms of vitamin d-related genes and risk of breast cancer. Anticancer. Res. 2013;33:543–551. PubMed PMC

Yang W., Ma F., Wang L., He X., Zhang H., Zheng J., Wang Y., Jin T., Yuan D., He Y. The association analysis between CYP24A1 genetic polymorphisms and the risk of ischemic stroke in Chinese Han population. Brain Behav. 2019;10:e01503. doi: 10.1002/brb3.1503. PubMed DOI PMC

Bao Q., Wang D., Zhang Y., Bao L., Jia H. The impact of CYP24A1 polymorphisms on hypertension susceptibility. Kidney Blood Press. Res. 2020;45:28–37. doi: 10.1159/000503925. PubMed DOI

Hlaváč V., Brynychová V., Václavíková R., Ehrlichová M., Vrána D., Pecha V., Koževnikovová R., Trnková M., Gatěk J., Kopperová D., et al. The expression profile of ATP-binding cassette transporter genes in breast carcinoma. Pharmacogenomics. 2013;14:515–529. doi: 10.2217/pgs.13.26. PubMed DOI

Schwartz L.H., Litière S., De Vries E., Ford R., Gwyther S., Mandrekar S., Shankar L., Bogaerts J., Chen A., Dancey J., et al. RECIST 1.1—Update and clarification: From the RECIST committee. Eur. J. Cancer. 2016;62:132–137. doi: 10.1016/j.ejca.2016.03.081. PubMed DOI PMC

Li H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics. 2014;30:2843–2851. doi: 10.1093/bioinformatics/btu356. PubMed DOI PMC

Van Der Auwera G.A., Carneiro M.O., Hartl C., Poplin R., Del Angel G., Levy-Moonshine A., Jordan T., Shakir K., Roazen D., Thibault J., et al. From FastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013;43:11.10.1–11.10.33. doi: 10.1002/0471250953.bi1110s43. PubMed DOI PMC

Wang K., Li M., Hakonarson H. Annovar: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. doi: 10.1093/nar/gkq603. PubMed DOI PMC

Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Benjamini Y., Hochberg Y. Controlling the false discovery rate—A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...