Aberrant Methylation of LINE-1 Transposable Elements: A Search for Cancer Biomarkers
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
32887319
PubMed Central
PMC7563416
DOI
10.3390/cells9092017
PII: cells9092017
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, LINE-1 (L1), cell-free DNA, epigenetic cancer biomarker,
- MeSH
- analýza přežití MeSH
- antitumorózní látky terapeutické užití MeSH
- dlouhé rozptýlené jaderné elementy * MeSH
- epigeneze genetická MeSH
- lidé MeSH
- metylace DNA MeSH
- nádorové biomarkery krev genetika MeSH
- nádory diagnóza farmakoterapie genetika mortalita MeSH
- nestabilita genomu MeSH
- prognóza MeSH
- progrese nemoci MeSH
- regulace genové exprese u nádorů * MeSH
- signální transdukce MeSH
- tekutá biopsie MeSH
- transpozibilní elementy DNA * MeSH
- volné cirkulující nukleové kyseliny krev genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antitumorózní látky MeSH
- nádorové biomarkery MeSH
- transpozibilní elementy DNA * MeSH
- volné cirkulující nukleové kyseliny MeSH
Cancer remains one of the main causes of human mortality despite significant progress in its diagnostics and therapy achieved in the past decade. Massive hypomethylation of retrotransposons, in particular LINE-1, is considered a hallmark of most malignant transformations as it results in the reactivation of retroelements and subsequent genomic instability. Accumulating data on LINE-1 aberrant methylation in different tumor types indicates its significant role in cancer initiation and progression. However, direct evidence that LINE-1 activation can be used as a cancer biomarker is still limited. The objective of this review was to critically evaluate the published results regarding the diagnostic/prognostic potential of the LINE-1 methylation status in cancer. Our analysis indicates that LINE-1 hypomethylation is a promising candidate biomarker of cancer development, which, however, needs validation in both clinical and laboratory studies to confirm its applicability to different cancer types and/or stages. As LINE-1 is present in multiple cell-free copies in blood, it has advantages over single-copy genes regarding perspectives of using its methylation status as an epigenetic cancer biomarker for cell-free DNA liquid biopsy.
Cancer Research Institute Tomsk National Research Medical Center 634009 Tomsk Russia
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Zobrazit více v PubMed
Hotchkiss R.D. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J. Biol. Chem. 1948;175:315–332. PubMed
Bird A.P. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 1980;8:1499–1504. doi: 10.1093/nar/8.7.1499. PubMed DOI PMC
Deaton A.M., Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25:1010–1022. doi: 10.1101/gad.2037511. PubMed DOI PMC
Lander E.S., Linton L.M., Birren B., Nusbaum C., Zody M.C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W., et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. doi: 10.1038/35057062. PubMed DOI
Zhu J., He F., Hu S., Yu J. On the nature of human housekeeping genes. Trends Genet. 2008;24:481–484. doi: 10.1016/j.tig.2008.08.004. PubMed DOI
Saxonov S., Berg P., Brutlag D.L. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl. Acad. Sci. USA. 2006;103:1412–1417. doi: 10.1073/pnas.0510310103. PubMed DOI PMC
Venter J.C., Adams M.D., Myers E.W., Li P.W., Mural R.J., Sutton G.G., Smith H.O., Yandell M., Evans C.A., Holt R.A., et al. The sequence of the human genome. Science. 2001;291:1304–1351. doi: 10.1126/science.1058040. PubMed DOI
Li E., Zhang Y. DNA methylation in mammals. Cold Spring Harb. Perspect. Biol. 2014;6:a019133. doi: 10.1101/cshperspect.a019133. PubMed DOI PMC
Yoder J.A., Walsh C.P., Bestor T.H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997;13:335–340. doi: 10.1016/S0168-9525(97)01181-5. PubMed DOI
Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
Hao X., Luo H., Krawczyk M., Wei W., Wang W., Wang J., Flagg K., Hou J., Zhang H., Yi S., et al. DNA methylation markers for diagnosis and prognosis of common cancers. Proc. Natl. Acad. Sci. USA. 2017;114:7414–7419. doi: 10.1073/pnas.1703577114. PubMed DOI PMC
Locke W.J., Guanzon D., Ma C., Liew Y.J., Duesing K.R., Fung K.Y.C., Ross J.P. DNA Methylation Cancer Biomarkers: Translation to the Clinic. Front. Genet. 2019;10:1150. doi: 10.3389/fgene.2019.01150. PubMed DOI PMC
Bouras E., Karakioulaki M., Bougioukas K.I., Aivaliotis M., Tzimagiorgis G., Chourdakis M. Gene promoter methylation and cancer: An umbrella review. Gene. 2019;710:333–340. doi: 10.1016/j.gene.2019.06.023. PubMed DOI
Leal A., Sidransky D., Brait M. Tissue and Cell-Free DNA-Based Epigenomic Approaches for Cancer Detection. Clin. Chem. 2020;66:105–116. doi: 10.1373/clinchem.2019.303594. PubMed DOI
Dunn B.K. Hypomethylation: One side of a larger picture. Ann. N. Y. Acad. Sci. 2003;983:28–42. doi: 10.1111/j.1749-6632.2003.tb05960.x. PubMed DOI
Babaian A., Mager D.L. Endogenous retroviral promoter exaptation in human cancer. Mob. DNA. 2016;7:24. doi: 10.1186/s13100-016-0080-x. PubMed DOI PMC
Burns K.H. Transposable elements in cancer. Nat. Rev. Cancer. 2017;17:415–424. doi: 10.1038/nrc.2017.35. PubMed DOI
Deininger P.L., Batzer M.A. Mammalian retroelements. Genome Res. 2002;12:1455–1465. doi: 10.1101/gr.282402. PubMed DOI
Kazazian H.H., Jr. Genetics. L1 retrotransposons shape the mammalian genome. Science. 2000;289:1152–1153. doi: 10.1126/science.289.5482.1152. PubMed DOI
Lavasanifar A., Sharp C.N., Korte E.A., Yin T., Hosseinnejad K., Jortani S.A. Long interspersed nuclear element-1 mobilization as a target in cancer diagnostics, prognostics and therapeutics. Clin. Chim. Acta. 2019;493:52–62. doi: 10.1016/j.cca.2019.02.015. PubMed DOI
Burns K.H. Our Conflict with Transposable Elements and Its Implications for Human Disease. Annu. Rev. Pathol. Mech. Dis. 2020;15:51–70. doi: 10.1146/annurev-pathmechdis-012419-032633. PubMed DOI
Luan D.D., Korman M.H., Jakubczak J.L., Eickbush T.H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition. Cell. 1993;72:595–605. doi: 10.1016/0092-8674(93)90078-5. PubMed DOI
Denli A.M., Narvaiza I., Kerman B.E., Pena M., Benner C., Marchetto M.C., Diedrich J.K., Aslanian A., Ma J., Moresco J.J., et al. Primate-specific ORF0 contributes to retrotransposon-mediated diversity. Cell. 2015;163:583–593. doi: 10.1016/j.cell.2015.09.025. PubMed DOI
Rodic N. LINE-1 activity and regulation in cancer. Front. Biosci. (Landmark Ed.) 2018;23:1680–1686. doi: 10.2741/4666. PubMed DOI
Beck C.R., Collier P., Macfarlane C., Malig M., Kidd J.M., Eichler E.E., Badge R.M., Moran J.V. LINE-1 retrotransposition activity in human genomes. Cell. 2010;141:1159–1170. doi: 10.1016/j.cell.2010.05.021. PubMed DOI PMC
Brouha B., Schustak J., Badge R.M., Lutz-Prigge S., Farley A.H., Moran J.V., Kazazian H.H. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl. Acad. Sci. USA. 2003;100:5280–5285. doi: 10.1073/pnas.0831042100. PubMed DOI PMC
Pfeifer G.P. Defining driver DNA methylation changes in human cancer. Int. J. Mol. Sci. 2018;19:1166. doi: 10.3390/ijms19041166. PubMed DOI PMC
Cajuso T., Sulo P., Tanskanen T., Katainen R., Taira A., Hänninen U.A., Kondelin J., Forsström L., Välimäki N., Aavikko M. Retrotransposon insertions can initiate colorectal cancer and are associated with poor survival. Nat. Commun. 2019;10:1–9. doi: 10.1038/s41467-019-11770-0. PubMed DOI PMC
Helman E., Lawrence M.S., Stewart C., Sougnez C., Getz G., Meyerson M. Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing. Genome Res. 2014;24:1053–1063. doi: 10.1101/gr.163659.113. PubMed DOI PMC
Miki Y., Nishisho I., Horii A., Miyoshi Y., Utsunomiya J., Kinzler K.W., Vogelstein B., Nakamura Y. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res. 1992;52:643–645. PubMed
Shukla R., Upton K.R., Muñoz-Lopez M., Gerhardt D.J., Fisher M.E., Nguyen T., Brennan P.M., Baillie J.K., Collino A., Ghisletti S. Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell. 2013;153:101–111. doi: 10.1016/j.cell.2013.02.032. PubMed DOI PMC
Robberecht C., Voet T., Zamani Esteki M., Nowakowska B.A., Vermeesch J.R. Nonallelic homologous recombination between retrotransposable elements is a driver of de novo unbalanced translocations. Genome Res. 2013;23:411–418. doi: 10.1101/gr.145631.112. PubMed DOI PMC
Sharif F.A. Frequency of balanced reciprocal translocations from couples with recurrent miscarriages correlates with the density of Alu and L1 repeat elements: Literature finding-based study. Middle East. J. Med. Genet. 2019;8:61. doi: 10.4103/MXE.MXE_14_19. DOI
Rodriguez-Martin B., Alvarez E.G., Baez-Ortega A., Zamora J., Supek F., Demeulemeester J., Santamarina M., Ju Y.S., Temes J., Garcia-Souto D. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat. Genet. 2020;52:306–319. doi: 10.1038/s41588-019-0562-0. PubMed DOI PMC
Baba Y., Murata A., Watanabe M., Baba H. Clinical implications of the LINE-1 methylation levels in patients with gastrointestinal cancer. Surg. Today. 2014;44:1807–1816. doi: 10.1007/s00595-013-0763-6. PubMed DOI
Iskow R.C., McCabe M.T., Mills R.E., Torene S., Pittard W.S., Neuwald A.F., Van Meir E.G., Vertino P.M., Devine S.E. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell. 2010;141:1253–1261. doi: 10.1016/j.cell.2010.05.020. PubMed DOI PMC
Tufarelli C., Badge R.M. Human Retrotransposons in Health and Disease. Springer; Berlin/Heidelberg, Germany: 2017. Retrotransposon-Driven Transcription and Cancer; pp. 259–273.
Zheng Y., Joyce B.T., Liu L., Zhang Z., Kibbe W.A., Zhang W., Hou L. Prediction of genome-wide DNA methylation in repetitive elements. Nucleic Acids Res. 2017;45:8697–8711. doi: 10.1093/nar/gkx587. PubMed DOI PMC
Hancks D.C., Kazazian H.H., Jr. Roles for retrotransposon insertions in human disease. Mob. DNA. 2016;7:9. doi: 10.1186/s13100-016-0065-9. PubMed DOI PMC
Ishak C.A., Classon M., De Carvalho D.D. Deregulation of Retroelements as an Emerging Therapeutic Opportunity in Cancer. Trends Cancer. 2018;4:583–597. doi: 10.1016/j.trecan.2018.05.008. PubMed DOI
Tubio J.M.C., Li Y., Ju Y.S., Martincorena I., Cooke S.L., Tojo M., Gundem G., Pipinikas C.P., Zamora J., Raine K., et al. Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science. 2014;345:1251343. doi: 10.1126/science.1251343. PubMed DOI PMC
Lee E., Iskow R., Yang L., Gokcumen O., Haseley P., Luquette L.J., III, Lohr J.G., Harris C.C., Ding L., Wilson R.K., et al. Landscape of somatic retrotransposition in human cancers. Science. 2012;337:967–971. doi: 10.1126/science.1222077. PubMed DOI PMC
Weber B., Kimhi S., Howard G., Eden A., Lyko F. Demethylation of a LINE-1 antisense promoter in the cMet locus impairs Met signalling through induction of illegitimate transcription. Oncogene. 2010;29:5775–5784. doi: 10.1038/onc.2010.227. PubMed DOI
Harrison A., Parle-McDermott A. DNA methylation: A timeline of methods and applications. Front. Genet. 2011;2:74. doi: 10.3389/fgene.2011.00074. PubMed DOI PMC
Kurinomaru T., Kurita R. Bisulfite-free approaches for DNA methylation profiling. Anal. Methods. 2017;9:1537–1549. doi: 10.1039/C7AY00232G. DOI
Niya M.H.K., Roshan-zamir N., Mortazavi E. DNA Methylation Tools and Strategies: Methods in a Review. Asian Pac. J. Cancer Biol. 2019;4:51–57. doi: 10.31557/apjcb.2019.4.3.51-57. DOI
Herman J.G., Graff J.R., Myöhänen S., Nelkin B.D., Baylin S.B. Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA. 1996;93:9821–9826. doi: 10.1073/pnas.93.18.9821. PubMed DOI PMC
Xiong Z., Laird P.W. COBRA: A sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 1997;25:2532–2534. doi: 10.1093/nar/25.12.2532. PubMed DOI PMC
Eads C.A., Danenberg K.D., Kawakami K., Saltz L.B., Blake C., Shibata D., Danenberg P.V., Laird P.W. MethyLight: A high-throughput assay to measure DNA methylation. Nucleic Acids Res. 2000;28:e32-00. doi: 10.1093/nar/28.8.e32. PubMed DOI PMC
Radpour R., Kohler C., Haghighi M., Fan A., Holzgreve W., Zhong X. Methylation profiles of 22 candidate genes in breast cancer using high-throughput MALDI-TOF mass array. Oncogene. 2009;28:2969–2978. doi: 10.1038/onc.2009.149. PubMed DOI
Rauch T., Li H., Wu X., Pfeifer G.P. MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res. 2006;66:7939–7947. doi: 10.1158/0008-5472.CAN-06-1888. PubMed DOI
de Maat M.F., Umetani N., Sunami E., Turner R.R., Hoon D.S. Assessment of methylation events during colorectal tumor progression by absolute quantitative analysis of methylated alleles. Mol. Cancer Res. 2007;5:461–471. doi: 10.1158/1541-7786.MCR-06-0358. PubMed DOI
Barchitta M., Quattrocchi A., Maugeri A., Vinciguerra M., Agodi A. LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: A systematic review and meta-analysis. PLoS ONE. 2014;9:e109478. doi: 10.1371/journal.pone.0109478. PubMed DOI PMC
van Hoesel A.Q., van de Velde C.J., Kuppen P.J., Liefers G.J., Putter H., Sato Y., Elashoff D.A., Turner R.R., Shamonki J.M., de Kruijf E.M., et al. Hypomethylation of LINE-1 in primary tumor has poor prognosis in young breast cancer patients: A retrospective cohort study. Breast Cancer Res. Treat. 2012;134:1103–1114. doi: 10.1007/s10549-012-2038-0. PubMed DOI
Park S.Y., Seo A.N., Jung H.Y., Gwak J.M., Jung N., Cho N.Y., Kang G.H. Alu and LINE-1 hypomethylation is associated with HER2 enriched subtype of breast cancer. PLoS ONE. 2014;9:e100429. doi: 10.1371/journal.pone.0100429. PubMed DOI PMC
Gao X.D., Qu J.H., Chang X.J., Lu Y.Y., Bai W.L., Wang H., Xu Z.X., An L.J., Wang C.P., Zeng Z., et al. Hypomethylation of long interspersed nuclear element-1 promoter is associated with poor outcomes for curative resected hepatocellular carcinoma. Liver Int. 2014;34:136–146. doi: 10.1111/liv.12264. PubMed DOI PMC
Zhu C., Utsunomiya T., Ikemoto T., Yamada S., Morine Y., Imura S., Arakawa Y., Takasu C., Ishikawa D., Imoto I., et al. Hypomethylation of long interspersed nuclear element-1 (LINE-1) is associated with poor prognosis via activation of c-MET in hepatocellular carcinoma. Ann. Surg. Oncol. 2014;21(Suppl. 4):S729–S735. doi: 10.1245/s10434-014-3874-4. PubMed DOI
Anwar S.L., Hasemeier B., Schipper E., Vogel A., Kreipe H., Lehmann U. LINE-1 hypomethylation in human hepatocellular carcinomas correlates with shorter overall survival and CIMP phenotype. PLoS ONE. 2019;14:e0216374. doi: 10.1371/journal.pone.0216374. PubMed DOI PMC
Shigaki H., Baba Y., Watanabe M., Iwagami S., Miyake K., Ishimoto T., Iwatsuki M., Baba H. LINE-1 hypomethylation in noncancerous esophageal mucosae is associated with smoking history. Ann. Surg. Oncol. 2012;19:4238–4243. doi: 10.1245/s10434-012-2488-y. PubMed DOI
Iwagami S., Baba Y., Watanabe M., Shigaki H., Miyake K., Ishimoto T., Iwatsuki M., Sakamaki K., Ohashi Y., Baba H. LINE-1 hypomethylation is associated with a poor prognosis among patients with curatively resected esophageal squamous cell carcinoma. Ann. Surg. 2013;257:449–455. doi: 10.1097/SLA.0b013e31826d8602. PubMed DOI
Zhu J., Ling Y., Xu Y., Lu M.Z., Liu Y.P., Zhang C.S. Elevated expression of MDR1 associated with Line-1 hypomethylation in esophageal squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 2015;8:14392–14400. PubMed PMC
Antelo M., Balaguer F., Shia J., Shen Y., Hur K., Moreira L., Cuatrecasas M., Bujanda L., Giraldez M.D., Takahashi M., et al. A high degree of LINE-1 hypomethylation is a unique feature of early-onset colorectal cancer. PLoS ONE. 2012;7:e45357. doi: 10.1371/journal.pone.0045357. PubMed DOI PMC
Inamura K., Yamauchi M., Nishihara R., Lochhead P., Qian Z.R., Kuchiba A., Kim S.A., Mima K., Sukawa Y., Jung S., et al. Tumor LINE-1 methylation level and microsatellite instability in relation to colorectal cancer prognosis. J. Natl. Cancer Inst. 2014;106 doi: 10.1093/jnci/dju195. PubMed DOI PMC
Kaneko M., Kotake M., Bando H., Yamada T., Takemura H., Minamoto T. Prognostic and predictive significance of long interspersed nucleotide element-1 methylation in advanced-stage colorectal cancer. BMC Cancer. 2016;16:945. doi: 10.1186/s12885-016-2984-8. PubMed DOI PMC
Swets M., Zaalberg A., Boot A., van Wezel T., Frouws M.A., Bastiaannet E., Gelderblom H., van de Velde C.J., Kuppen P.J. Tumor LINE-1 Methylation Level in Association with Survival of Patients with Stage II Colon Cancer. Int. J. Mol. Sci. 2016;18:36. doi: 10.3390/ijms18010036. PubMed DOI PMC
Kupcinskas J., Steponaitiene R., Langner C., Smailyte G., Skieceviciene J., Kupcinskas L., Malfertheiner P., Link A. LINE-1 hypomethylation is not a common event in preneoplastic stages of gastric carcinogenesis. Sci. Rep. 2017;7:4828. doi: 10.1038/s41598-017-05143-0. PubMed DOI PMC
Bae J.M., Shin S.H., Kwon H.J., Park S.Y., Kook M.C., Kim Y.W., Cho N.Y., Kim N., Kim T.Y., Kim D., et al. ALU and LINE-1 hypomethylations in multistep gastric carcinogenesis and their prognostic implications. Int. J. Cancer. 2012;131:1323–1331. doi: 10.1002/ijc.27369. PubMed DOI
Ikeda K., Shiraishi K., Eguchi A., Shibata H., Yoshimoto K., Mori T., Baba Y., Baba H., Suzuki M. Long interspersed nucleotide element 1 hypomethylation is associated with poor prognosis of lung adenocarcinoma. Ann. Thorac. Surg. 2013;96:1790–1794. doi: 10.1016/j.athoracsur.2013.06.035. PubMed DOI
Rhee Y.Y., Lee T.H., Song Y.S., Wen X., Kim H., Jheon S., Lee C.T., Kim J., Cho N.Y., Chung J.H., et al. Prognostic significance of promoter CpG island hypermethylation and repetitive DNA hypomethylation in stage I lung adenocarcinoma. Virchows Arch. 2015;466:675–683. doi: 10.1007/s00428-015-1749-0. PubMed DOI
Imperatori A., Sahnane N., Rotolo N., Franzi F., Nardecchia E., Libera L., Romualdi C., Cattoni M., Sessa F., Dominioni L., et al. LINE-1 hypomethylation is associated to specific clinico-pathological features in Stage I non-small cell lung cancer. Lung Cancer. 2017;108:83–89. doi: 10.1016/j.lungcan.2017.03.003. PubMed DOI
Furlan C., Polesel J., Barzan L., Franchin G., Sulfaro S., Romeo S., Colizzi F., Rizzo A., Baggio V., Giacomarra V., et al. Prognostic significance of LINE-1 hypomethylation in oropharyngeal squamous cell carcinoma. Clin. Epigenet. 2017;9:58. doi: 10.1186/s13148-017-0357-z. PubMed DOI PMC
Sunami E., de Maat M., Vu A., Turner R.R., Hoon D.S. LINE-1 hypomethylation during primary colon cancer progression. PLoS ONE. 2011;6:e18884. doi: 10.1371/journal.pone.0018884. PubMed DOI PMC
Corley D.A., Jensen C.D., Marks A.R., Zhao W.K., Lee J.K., Doubeni C.A., Zauber A.G., de Boer J., Fireman B.H., Schottinger J.E., et al. Adenoma detection rate and risk of colorectal cancer and death. N. Engl. J. Med. 2014;370:1298–1306. doi: 10.1056/NEJMoa1309086. PubMed DOI PMC
Shah A.K., Saunders N.A., Barbour A.P., Hill M.M. Early diagnostic biomarkers for esophageal adenocarcinoma--the current state of play. Cancer Epidemiol. Biomark. Prev. 2013;22:1185–1209. doi: 10.1158/1055-9965.EPI-12-1415. PubMed DOI
Chalitchagorn K., Shuangshoti S., Hourpai N., Kongruttanachok N., Tangkijvanich P., Thong-ngam D., Voravud N., Sriuranpong V., Mutirangura A. Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene. 2004;23:8841–8846. doi: 10.1038/sj.onc.1208137. PubMed DOI
Schulz W.A., Elo J.P., Florl A.R., Pennanen S., Santourlidis S., Engers R., Buchardt M., Seifert H.H., Visakorpi T. Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes Chromosomes Cancer. 2002;35:58–65. doi: 10.1002/gcc.10092. PubMed DOI
Santourlidis S., Florl A., Ackermann R., Wirtz H.C., Schulz W.A. High frequency of alterations in DNA methylation in adenocarcinoma of the prostate. Prostate. 1999;39:166–174. doi: 10.1002/(SICI)1097-0045(19990515)39:3<166::AID-PROS4>3.0.CO;2-J. PubMed DOI
Pattamadilok J., Huapai N., Rattanatanyong P., Vasurattana A., Triratanachat S., Tresukosol D., Mutirangura A. LINE-1 hypomethylation level as a potential prognostic factor for epithelial ovarian cancer. Int. J. Gynecol. Cancer. 2008;18:711–717. doi: 10.1111/j.1525-1438.2007.01117.x. PubMed DOI
Ogino S., Nosho K., Kirkner G.J., Kawasaki T., Chan A.T., Schernhammer E.S., Giovannucci E.L., Fuchs C.S. A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J. Natl. Cancer Inst. 2008;100:1734–1738. doi: 10.1093/jnci/djn359. PubMed DOI PMC
van Bemmel D., Lenz P., Liao L.M., Baris D., Sternberg L.R., Warner A., Johnson A., Jones M., Kida M., Schwenn M., et al. Correlation of LINE-1 methylation levels in patient-matched buffy coat, serum, buccal cell, and bladder tumor tissue DNA samples. Cancer Epidemiol. Biomark. Prev. 2012;21:1143–1148. doi: 10.1158/1055-9965.EPI-11-1030. PubMed DOI PMC
Ilie M., Hofman P. Pros: Can tissue biopsy be replaced by liquid biopsy? Transl. Lung Cancer Res. 2016;5:420–423. doi: 10.21037/tlcr.2016.08.06. PubMed DOI PMC
Parikh A.R., Leshchiner I., Elagina L., Goyal L., Levovitz C., Siravegna G., Livitz D., Rhrissorrakrai K., Martin E.E., Van Seventer E.E., et al. Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nat. Med. 2019;25:1415–1421. doi: 10.1038/s41591-019-0561-9. PubMed DOI PMC
Cohen J.D., Li L., Wang Y., Thoburn C., Afsari B., Danilova L., Douville C., Javed A.A., Wong F., Mattox A., et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359:926–930. doi: 10.1126/science.aar3247. PubMed DOI PMC
Rothwell D.G., Ayub M., Cook N., Thistlethwaite F., Carter L., Dean E., Smith N., Villa S., Dransfield J., Clipson A., et al. Utility of ctDNA to support patient selection for early phase clinical trials: The TARGET study. Nat. Med. 2019;25:738–743. doi: 10.1038/s41591-019-0380-z. PubMed DOI
Rykova E.Y., Morozkin E.S., Ponomaryova A.A., Loseva E.M., Zaporozhchenko I.A., Cherdyntseva N.V., Vlassov V.V., Laktionov P.P. Cell-free and cell-bound circulating nucleic acid complexes: Mechanisms of generation, concentration and content. Expert Opin. Biol. Ther. 2012;12(Suppl. 1):S141–S153. doi: 10.1517/14712598.2012.673577. PubMed DOI
Warton K., Samimi G. Methylation of cell-free circulating DNA in the diagnosis of cancer. Front. Mol. Biosci. 2015;2:13. doi: 10.3389/fmolb.2015.00013. PubMed DOI PMC
Rykova E.Y., Ponomaryova A.A., Zaporozhchenko I.A., Vlassov V.V., Cherdyntseva N.V., Laktionov P.P. Circulating DNA-based lung cancer diagnostics and follow-up: Looking for epigenetic markers. Transl. Cancer Res. 2018;7:S153–S170. doi: 10.21037/tcr.2018.02.08. DOI
Bettegowda C., Sausen M., Leary R.J., Kinde I., Wang Y., Agrawal N., Bartlett B.R., Wang H., Luber B., Alani R.M., et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 2014;6:224ra24. doi: 10.1126/scitranslmed.3007094. PubMed DOI PMC
Feinberg A.P., Koldobskiy M.A., Gondor A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet. 2016;17:284–299. doi: 10.1038/nrg.2016.13. PubMed DOI PMC
Jorda M., Diez-Villanueva A., Mallona I., Martin B., Lois S., Barrera V., Esteller M., Vavouri T., Peinado M.A. The epigenetic landscape of Alu repeats delineates the structural and functional genomic architecture of colon cancer cells. Genome Res. 2017;27:118–132. doi: 10.1101/gr.207522.116. PubMed DOI PMC
Xiao-Jie L., Hui-Ying X., Qi X., Jiang X., Shi-Jie M. LINE-1 in cancer: Multifaceted functions and potential clinical implications. Genet. Med. 2016;18:431–439. doi: 10.1038/gim.2015.119. PubMed DOI
Farhat F.S., Houhou W. Targeted therapies in non-small cell lung carcinoma: What have we achieved so far? Ther. Adv. Med. Oncol. 2013;5:249–270. doi: 10.1177/1758834013492001. PubMed DOI PMC
Robles A.I., Harris C.C. Integration of multiple “OMIC” biomarkers: A precision medicine strategy for lung cancer. Lung Cancer. 2017;107:50–58. doi: 10.1016/j.lungcan.2016.06.003. PubMed DOI PMC
Rizvi N.A., Hellmann M.D., Snyder A., Kvistborg P., Makarov V., Havel J.J., Lee W., Yuan J., Wong P., Ho T.S., et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–128. doi: 10.1126/science.aaa1348. PubMed DOI PMC
El-Maarri O., Walier M., Behne F., van Uum J., Singer H., Diaz-Lacava A., Nusgen N., Niemann B., Watzka M., Reinsberg J., et al. Methylation at global LINE-1 repeats in human blood are affected by gender but not by age or natural hormone cycles. PLoS ONE. 2011;6:e16252. doi: 10.1371/journal.pone.0016252. PubMed DOI PMC
Bollati V., Schwartz J., Wright R., Litonjua A., Tarantini L., Suh H., Sparrow D., Vokonas P., Baccarelli A. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech. Ageing Dev. 2009;130:234–239. doi: 10.1016/j.mad.2008.12.003. PubMed DOI PMC
Erichsen L., Beermann A., Arauzo-Bravo M.J., Hassan M., Dkhil M.A., Al-Quraishy S., Hafiz T.A., Fischer J.C., Santourlidis S. Genome-wide hypomethylation of LINE-1 and Alu retroelements in cell-free DNA of blood is an epigenetic biomarker of human aging. Saudi J. Biol. Sci. 2018;25:1220–1226. doi: 10.1016/j.sjbs.2018.02.005. PubMed DOI PMC
Terry D.M., Devine S.E. Aberrantly High Levels of Somatic LINE-1 Expression and Retrotransposition in Human Neurological Disorders. Front. Genet. 2019;10:1244. doi: 10.3389/fgene.2019.01244. PubMed DOI PMC
Ghanjati F., Beermann A., Hermanns T., Poyet C., Arauzo-Bravo M.J., Seifert H.H., Schmidtpeter M., Goering W., Sorg R., Wernet P., et al. Unreserved application of epigenetic methods to define differences of DNA methylation between urinary cellular and cell-free DNA. Cancer Biomark. 2014;14:295–302. doi: 10.3233/CBM-140407. PubMed DOI
Wolff E.M., Byun H.M., Han H.F., Sharma S., Nichols P.W., Siegmund K.D., Yang A.S., Jones P.A., Liang G. Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet. 2010;6:e1000917. doi: 10.1371/journal.pgen.1000917. PubMed DOI PMC
Zhong H.H., Hu S.J., Yu B., Jiang S.S., Zhang J., Luo D., Yang M.W., Su W.Y., Shao Y.L., Deng H.L., et al. Apoptosis in the aging liver. Oncotarget. 2017;8:102640–102652. doi: 10.18632/oncotarget.21123. PubMed DOI PMC
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115. doi: 10.1186/gb-2013-14-10-r115. PubMed DOI PMC
Wangsri S., Subbalekha K., Kitkumthorn N., Mutirangura A. Patterns and possible roles of LINE-1 methylation changes in smoke-exposed epithelia. PLoS ONE. 2012;7:e45292. doi: 10.1371/journal.pone.0045292. PubMed DOI PMC
Liu F., Killian J.K., Yang M., Walker R.L., Hong J.A., Zhang M., Davis S., Zhang Y., Hussain M., Xi S., et al. Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate. Oncogene. 2010;29:3650–3664. doi: 10.1038/onc.2010.129. PubMed DOI PMC
Zeidler R., Albermann K., Lang S. Nicotine and apoptosis. Apoptosis. 2007;12:1927–1943. doi: 10.1007/s10495-007-0102-8. PubMed DOI
Pox C.P., Altenhofen L., Brenner H., Theilmeier A., Von Stillfried D., Schmiegel W. Efficacy of a nationwide screening colonoscopy program for colorectal cancer. Gastroenterology. 2012;142:1460–1467. doi: 10.1053/j.gastro.2012.03.022. PubMed DOI
Chiu H.M., Lee Y.C., Tu C.H., Chen C.C., Tseng P.H., Liang J.T., Shun C.T., Lin J.T., Wu M.S. Association between early stage colon neoplasms and false-negative results from the fecal immunochemical test. Clin. Gastroenterol. Hepatol. 2013;11:832–838. doi: 10.1016/j.cgh.2013.01.013. PubMed DOI
Hirai H.W., Tsoi K.K., Chan J.Y., Wong S.H., Ching J.Y., Wong M.C., Wu J.C., Chan F.K., Sung J.J., Ng S.C. Systematic review with meta-analysis: Faecal occult blood tests show lower colorectal cancer detection rates in the proximal colon in colonoscopy-verified diagnostic studies. Aliment. Pharmacol. Ther. 2016;43:755–764. doi: 10.1111/apt.13556. PubMed DOI
Smith R.A., Andrews K., Brooks D., DeSantis C.E., Fedewa S.A., Lortet-Tieulent J., Manassaram-Baptiste D., Brawley O.W., Wender R.C. Cancer screening in the United States, 2016: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin. 2016;66:96–114. doi: 10.3322/caac.21336. PubMed DOI
von Wagner C., Baio G., Raine R., Snowball J., Morris S., Atkin W., Obichere A., Handley G., Logan R.F., Rainbow S., et al. Inequalities in participation in an organized national colorectal cancer screening programme: Results from the first 2.6 million invitations in England. Int. J. Epidemiol. 2011;40:712–718. doi: 10.1093/ije/dyr008. PubMed DOI
Taber J.M., Aspinwall L.G., Heichman K.A., Kinney A.Y. Preferences for blood-based colon cancer screening differ by race/ethnicity. Am. J. Health Behav. 2014;38:351–361. doi: 10.5993/AJHB.38.3.4. PubMed DOI
Nagai Y., Sunami E., Yamamoto Y., Hata K., Okada S., Murono K., Yasuda K., Otani K., Nishikawa T., Tanaka T., et al. LINE-1 hypomethylation status of circulating cell-free DNA in plasma as a biomarker for colorectal cancer. Oncotarget. 2017;8:11906–11916. doi: 10.18632/oncotarget.14439. PubMed DOI PMC
Matsunoki A., Kawakami K., Kotake M., Kaneko M., Kitamura H., Ooi A., Watanabe G., Minamoto T. LINE-1 methylation shows little intra-patient heterogeneity in primary and synchronous metastatic colorectal cancer. BMC Cancer. 2012;12:574. doi: 10.1186/1471-2407-12-574. PubMed DOI PMC
Rhee Y.Y., Kim M.J., Bae J.M., Koh J.M., Cho N.Y., Juhnn Y.S., Kim D., Kang G.H. Clinical outcomes of patients with microsatellite-unstable colorectal carcinomas depend on L1 methylation level. Ann. Surg. Oncol. 2012;19:3441–3448. doi: 10.1245/s10434-012-2410-7. PubMed DOI
Gainetdinov I.V., Kapitskaya K.Y., Rykova E.Y., Ponomaryova A.A., Cherdyntseva N.V., Vlassov V.V., Laktionov P.P., Azhikina T.L. Hypomethylation of human-specific family of LINE-1 retrotransposons in circulating DNA of lung cancer patients. Lung Cancer. 2016;99:127–130. doi: 10.1016/j.lungcan.2016.07.005. PubMed DOI
Ponomaryova A., Rykova E., Cherdyntseva N., Bondar A., Dobrodeev A., Zavyalov A., Tuzikov S., Bryzgalov L., Merkulova T., Vlassov V. Epigenetic probes for lung cancer monitoring: Line-1 methylation pattern in blood-circulating DNA. Russ. J. Genet. Appl. Res. 2016;6:99–104. doi: 10.1134/S2079059716010111. DOI
Ponomaryova A.A., Cherdyntseva N.V., Bondar A.A., Dobrodeev A.Y., Zavyalov A.A., Tuzikov S.A., Vlassov V.V., Choinzonov E.L., Laktionov P.P., Rykova E.Y. Dynamics of LINE-1 Retrotransposon Methylation Levels in Circulating DNA from Lung Cancer Patients Undergoing Antitumor Therapy. Mol. Biol. (Mosk) 2017;51:622–628. doi: 10.1134/S0026893317040148. PubMed DOI
Ponomaryova A.A., Rykova E.Y., Azhikina T.L., Bondar A.A., Cheremisina O.V., Rodionov E.O., Boyarko V.V., Laktionov P.P., Cherdyntseva N.V. Long interspersed nuclear element-1 methylation status in the circulating DNA from blood of patients with malignant and chronic inflammatory lung diseases. Eur. J. Cancer Prev. 2020 doi: 10.1097/CEJ.0000000000000601. PubMed DOI
Wedge E., Hansen J.W., Garde C., Asmar F., Tholstrup D., Kristensen S.S., Munch-Petersen H.D., Ralfkiaer E., Brown P., Gronbaek K., et al. Global hypomethylation is an independent prognostic factor in diffuse large B cell lymphoma. Am. J. Hematol. 2017;92:689–694. doi: 10.1002/ajh.24751. PubMed DOI
Hoshimoto S., Kuo C.T., Chong K.K., Takeshima T.L., Takei Y., Li M.W., Huang S.K., Sim M.S., Morton D.L., Hoon D.S. AIM1 and LINE-1 epigenetic aberrations in tumor and serum relate to melanoma progression and disease outcome. J. Investig. Dermatol. 2012;132:1689–1697. doi: 10.1038/jid.2012.36. PubMed DOI PMC
Gold B., Cankovic M., Furtado L.V., Meier F., Gocke C.D. Do circulating tumor cells, exosomes, and circulating tumor nucleic acids have clinical utility? A report of the association for molecular pathology. J. Mol. Diagn. 2015;17:209–224. doi: 10.1016/j.jmoldx.2015.02.001. PubMed DOI PMC
Pantel K., Alix-Panabieres C. Tumour microenvironment: Informing on minimal residual disease in solid tumours. Nat. Rev. Clin. Oncol. 2017;14:325–326. doi: 10.1038/nrclinonc.2017.53. PubMed DOI
Thierry A.R., El Messaoudi S., Gahan P.B., Anker P., Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016;35:347–376. doi: 10.1007/s10555-016-9629-x. PubMed DOI PMC
Su S.-F., de Castro Abreu A.L., Chihara Y., Tsai Y., Andreu-Vieyra C., Daneshmand S., Skinner E.C., Jones P.A., Siegmund K.D., Liang G. A panel of three markers hyper-and hypomethylated in urine sediments accurately predicts bladder cancer recurrence. Clin. Cancer Res. 2014;20:1978–1989. doi: 10.1158/1078-0432.CCR-13-2637. PubMed DOI
Kivioja T., Vähärautio A., Karlsson K., Bonke M., Enge M., Linnarsson S., Taipale J. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods. 2012;9:72–74. doi: 10.1038/nmeth.1778. PubMed DOI