Aberrant Methylation of LINE-1 Transposable Elements: A Search for Cancer Biomarkers

. 2020 Sep 02 ; 9 (9) : . [epub] 20200902

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32887319

Cancer remains one of the main causes of human mortality despite significant progress in its diagnostics and therapy achieved in the past decade. Massive hypomethylation of retrotransposons, in particular LINE-1, is considered a hallmark of most malignant transformations as it results in the reactivation of retroelements and subsequent genomic instability. Accumulating data on LINE-1 aberrant methylation in different tumor types indicates its significant role in cancer initiation and progression. However, direct evidence that LINE-1 activation can be used as a cancer biomarker is still limited. The objective of this review was to critically evaluate the published results regarding the diagnostic/prognostic potential of the LINE-1 methylation status in cancer. Our analysis indicates that LINE-1 hypomethylation is a promising candidate biomarker of cancer development, which, however, needs validation in both clinical and laboratory studies to confirm its applicability to different cancer types and/or stages. As LINE-1 is present in multiple cell-free copies in blood, it has advantages over single-copy genes regarding perspectives of using its methylation status as an epigenetic cancer biomarker for cell-free DNA liquid biopsy.

Zobrazit více v PubMed

Hotchkiss R.D. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J. Biol. Chem. 1948;175:315–332. PubMed

Bird A.P. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 1980;8:1499–1504. doi: 10.1093/nar/8.7.1499. PubMed DOI PMC

Deaton A.M., Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25:1010–1022. doi: 10.1101/gad.2037511. PubMed DOI PMC

Lander E.S., Linton L.M., Birren B., Nusbaum C., Zody M.C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W., et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. doi: 10.1038/35057062. PubMed DOI

Zhu J., He F., Hu S., Yu J. On the nature of human housekeeping genes. Trends Genet. 2008;24:481–484. doi: 10.1016/j.tig.2008.08.004. PubMed DOI

Saxonov S., Berg P., Brutlag D.L. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl. Acad. Sci. USA. 2006;103:1412–1417. doi: 10.1073/pnas.0510310103. PubMed DOI PMC

Venter J.C., Adams M.D., Myers E.W., Li P.W., Mural R.J., Sutton G.G., Smith H.O., Yandell M., Evans C.A., Holt R.A., et al. The sequence of the human genome. Science. 2001;291:1304–1351. doi: 10.1126/science.1058040. PubMed DOI

Li E., Zhang Y. DNA methylation in mammals. Cold Spring Harb. Perspect. Biol. 2014;6:a019133. doi: 10.1101/cshperspect.a019133. PubMed DOI PMC

Yoder J.A., Walsh C.P., Bestor T.H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997;13:335–340. doi: 10.1016/S0168-9525(97)01181-5. PubMed DOI

Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI

Hao X., Luo H., Krawczyk M., Wei W., Wang W., Wang J., Flagg K., Hou J., Zhang H., Yi S., et al. DNA methylation markers for diagnosis and prognosis of common cancers. Proc. Natl. Acad. Sci. USA. 2017;114:7414–7419. doi: 10.1073/pnas.1703577114. PubMed DOI PMC

Locke W.J., Guanzon D., Ma C., Liew Y.J., Duesing K.R., Fung K.Y.C., Ross J.P. DNA Methylation Cancer Biomarkers: Translation to the Clinic. Front. Genet. 2019;10:1150. doi: 10.3389/fgene.2019.01150. PubMed DOI PMC

Bouras E., Karakioulaki M., Bougioukas K.I., Aivaliotis M., Tzimagiorgis G., Chourdakis M. Gene promoter methylation and cancer: An umbrella review. Gene. 2019;710:333–340. doi: 10.1016/j.gene.2019.06.023. PubMed DOI

Leal A., Sidransky D., Brait M. Tissue and Cell-Free DNA-Based Epigenomic Approaches for Cancer Detection. Clin. Chem. 2020;66:105–116. doi: 10.1373/clinchem.2019.303594. PubMed DOI

Dunn B.K. Hypomethylation: One side of a larger picture. Ann. N. Y. Acad. Sci. 2003;983:28–42. doi: 10.1111/j.1749-6632.2003.tb05960.x. PubMed DOI

Babaian A., Mager D.L. Endogenous retroviral promoter exaptation in human cancer. Mob. DNA. 2016;7:24. doi: 10.1186/s13100-016-0080-x. PubMed DOI PMC

Burns K.H. Transposable elements in cancer. Nat. Rev. Cancer. 2017;17:415–424. doi: 10.1038/nrc.2017.35. PubMed DOI

Deininger P.L., Batzer M.A. Mammalian retroelements. Genome Res. 2002;12:1455–1465. doi: 10.1101/gr.282402. PubMed DOI

Kazazian H.H., Jr. Genetics. L1 retrotransposons shape the mammalian genome. Science. 2000;289:1152–1153. doi: 10.1126/science.289.5482.1152. PubMed DOI

Lavasanifar A., Sharp C.N., Korte E.A., Yin T., Hosseinnejad K., Jortani S.A. Long interspersed nuclear element-1 mobilization as a target in cancer diagnostics, prognostics and therapeutics. Clin. Chim. Acta. 2019;493:52–62. doi: 10.1016/j.cca.2019.02.015. PubMed DOI

Burns K.H. Our Conflict with Transposable Elements and Its Implications for Human Disease. Annu. Rev. Pathol. Mech. Dis. 2020;15:51–70. doi: 10.1146/annurev-pathmechdis-012419-032633. PubMed DOI

Luan D.D., Korman M.H., Jakubczak J.L., Eickbush T.H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition. Cell. 1993;72:595–605. doi: 10.1016/0092-8674(93)90078-5. PubMed DOI

Denli A.M., Narvaiza I., Kerman B.E., Pena M., Benner C., Marchetto M.C., Diedrich J.K., Aslanian A., Ma J., Moresco J.J., et al. Primate-specific ORF0 contributes to retrotransposon-mediated diversity. Cell. 2015;163:583–593. doi: 10.1016/j.cell.2015.09.025. PubMed DOI

Rodic N. LINE-1 activity and regulation in cancer. Front. Biosci. (Landmark Ed.) 2018;23:1680–1686. doi: 10.2741/4666. PubMed DOI

Beck C.R., Collier P., Macfarlane C., Malig M., Kidd J.M., Eichler E.E., Badge R.M., Moran J.V. LINE-1 retrotransposition activity in human genomes. Cell. 2010;141:1159–1170. doi: 10.1016/j.cell.2010.05.021. PubMed DOI PMC

Brouha B., Schustak J., Badge R.M., Lutz-Prigge S., Farley A.H., Moran J.V., Kazazian H.H. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl. Acad. Sci. USA. 2003;100:5280–5285. doi: 10.1073/pnas.0831042100. PubMed DOI PMC

Pfeifer G.P. Defining driver DNA methylation changes in human cancer. Int. J. Mol. Sci. 2018;19:1166. doi: 10.3390/ijms19041166. PubMed DOI PMC

Cajuso T., Sulo P., Tanskanen T., Katainen R., Taira A., Hänninen U.A., Kondelin J., Forsström L., Välimäki N., Aavikko M. Retrotransposon insertions can initiate colorectal cancer and are associated with poor survival. Nat. Commun. 2019;10:1–9. doi: 10.1038/s41467-019-11770-0. PubMed DOI PMC

Helman E., Lawrence M.S., Stewart C., Sougnez C., Getz G., Meyerson M. Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing. Genome Res. 2014;24:1053–1063. doi: 10.1101/gr.163659.113. PubMed DOI PMC

Miki Y., Nishisho I., Horii A., Miyoshi Y., Utsunomiya J., Kinzler K.W., Vogelstein B., Nakamura Y. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res. 1992;52:643–645. PubMed

Shukla R., Upton K.R., Muñoz-Lopez M., Gerhardt D.J., Fisher M.E., Nguyen T., Brennan P.M., Baillie J.K., Collino A., Ghisletti S. Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell. 2013;153:101–111. doi: 10.1016/j.cell.2013.02.032. PubMed DOI PMC

Robberecht C., Voet T., Zamani Esteki M., Nowakowska B.A., Vermeesch J.R. Nonallelic homologous recombination between retrotransposable elements is a driver of de novo unbalanced translocations. Genome Res. 2013;23:411–418. doi: 10.1101/gr.145631.112. PubMed DOI PMC

Sharif F.A. Frequency of balanced reciprocal translocations from couples with recurrent miscarriages correlates with the density of Alu and L1 repeat elements: Literature finding-based study. Middle East. J. Med. Genet. 2019;8:61. doi: 10.4103/MXE.MXE_14_19. DOI

Rodriguez-Martin B., Alvarez E.G., Baez-Ortega A., Zamora J., Supek F., Demeulemeester J., Santamarina M., Ju Y.S., Temes J., Garcia-Souto D. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat. Genet. 2020;52:306–319. doi: 10.1038/s41588-019-0562-0. PubMed DOI PMC

Baba Y., Murata A., Watanabe M., Baba H. Clinical implications of the LINE-1 methylation levels in patients with gastrointestinal cancer. Surg. Today. 2014;44:1807–1816. doi: 10.1007/s00595-013-0763-6. PubMed DOI

Iskow R.C., McCabe M.T., Mills R.E., Torene S., Pittard W.S., Neuwald A.F., Van Meir E.G., Vertino P.M., Devine S.E. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell. 2010;141:1253–1261. doi: 10.1016/j.cell.2010.05.020. PubMed DOI PMC

Tufarelli C., Badge R.M. Human Retrotransposons in Health and Disease. Springer; Berlin/Heidelberg, Germany: 2017. Retrotransposon-Driven Transcription and Cancer; pp. 259–273.

Zheng Y., Joyce B.T., Liu L., Zhang Z., Kibbe W.A., Zhang W., Hou L. Prediction of genome-wide DNA methylation in repetitive elements. Nucleic Acids Res. 2017;45:8697–8711. doi: 10.1093/nar/gkx587. PubMed DOI PMC

Hancks D.C., Kazazian H.H., Jr. Roles for retrotransposon insertions in human disease. Mob. DNA. 2016;7:9. doi: 10.1186/s13100-016-0065-9. PubMed DOI PMC

Ishak C.A., Classon M., De Carvalho D.D. Deregulation of Retroelements as an Emerging Therapeutic Opportunity in Cancer. Trends Cancer. 2018;4:583–597. doi: 10.1016/j.trecan.2018.05.008. PubMed DOI

Tubio J.M.C., Li Y., Ju Y.S., Martincorena I., Cooke S.L., Tojo M., Gundem G., Pipinikas C.P., Zamora J., Raine K., et al. Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science. 2014;345:1251343. doi: 10.1126/science.1251343. PubMed DOI PMC

Lee E., Iskow R., Yang L., Gokcumen O., Haseley P., Luquette L.J., III, Lohr J.G., Harris C.C., Ding L., Wilson R.K., et al. Landscape of somatic retrotransposition in human cancers. Science. 2012;337:967–971. doi: 10.1126/science.1222077. PubMed DOI PMC

Weber B., Kimhi S., Howard G., Eden A., Lyko F. Demethylation of a LINE-1 antisense promoter in the cMet locus impairs Met signalling through induction of illegitimate transcription. Oncogene. 2010;29:5775–5784. doi: 10.1038/onc.2010.227. PubMed DOI

Harrison A., Parle-McDermott A. DNA methylation: A timeline of methods and applications. Front. Genet. 2011;2:74. doi: 10.3389/fgene.2011.00074. PubMed DOI PMC

Kurinomaru T., Kurita R. Bisulfite-free approaches for DNA methylation profiling. Anal. Methods. 2017;9:1537–1549. doi: 10.1039/C7AY00232G. DOI

Niya M.H.K., Roshan-zamir N., Mortazavi E. DNA Methylation Tools and Strategies: Methods in a Review. Asian Pac. J. Cancer Biol. 2019;4:51–57. doi: 10.31557/apjcb.2019.4.3.51-57. DOI

Herman J.G., Graff J.R., Myöhänen S., Nelkin B.D., Baylin S.B. Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA. 1996;93:9821–9826. doi: 10.1073/pnas.93.18.9821. PubMed DOI PMC

Xiong Z., Laird P.W. COBRA: A sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 1997;25:2532–2534. doi: 10.1093/nar/25.12.2532. PubMed DOI PMC

Eads C.A., Danenberg K.D., Kawakami K., Saltz L.B., Blake C., Shibata D., Danenberg P.V., Laird P.W. MethyLight: A high-throughput assay to measure DNA methylation. Nucleic Acids Res. 2000;28:e32-00. doi: 10.1093/nar/28.8.e32. PubMed DOI PMC

Radpour R., Kohler C., Haghighi M., Fan A., Holzgreve W., Zhong X. Methylation profiles of 22 candidate genes in breast cancer using high-throughput MALDI-TOF mass array. Oncogene. 2009;28:2969–2978. doi: 10.1038/onc.2009.149. PubMed DOI

Rauch T., Li H., Wu X., Pfeifer G.P. MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res. 2006;66:7939–7947. doi: 10.1158/0008-5472.CAN-06-1888. PubMed DOI

de Maat M.F., Umetani N., Sunami E., Turner R.R., Hoon D.S. Assessment of methylation events during colorectal tumor progression by absolute quantitative analysis of methylated alleles. Mol. Cancer Res. 2007;5:461–471. doi: 10.1158/1541-7786.MCR-06-0358. PubMed DOI

Barchitta M., Quattrocchi A., Maugeri A., Vinciguerra M., Agodi A. LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: A systematic review and meta-analysis. PLoS ONE. 2014;9:e109478. doi: 10.1371/journal.pone.0109478. PubMed DOI PMC

van Hoesel A.Q., van de Velde C.J., Kuppen P.J., Liefers G.J., Putter H., Sato Y., Elashoff D.A., Turner R.R., Shamonki J.M., de Kruijf E.M., et al. Hypomethylation of LINE-1 in primary tumor has poor prognosis in young breast cancer patients: A retrospective cohort study. Breast Cancer Res. Treat. 2012;134:1103–1114. doi: 10.1007/s10549-012-2038-0. PubMed DOI

Park S.Y., Seo A.N., Jung H.Y., Gwak J.M., Jung N., Cho N.Y., Kang G.H. Alu and LINE-1 hypomethylation is associated with HER2 enriched subtype of breast cancer. PLoS ONE. 2014;9:e100429. doi: 10.1371/journal.pone.0100429. PubMed DOI PMC

Gao X.D., Qu J.H., Chang X.J., Lu Y.Y., Bai W.L., Wang H., Xu Z.X., An L.J., Wang C.P., Zeng Z., et al. Hypomethylation of long interspersed nuclear element-1 promoter is associated with poor outcomes for curative resected hepatocellular carcinoma. Liver Int. 2014;34:136–146. doi: 10.1111/liv.12264. PubMed DOI PMC

Zhu C., Utsunomiya T., Ikemoto T., Yamada S., Morine Y., Imura S., Arakawa Y., Takasu C., Ishikawa D., Imoto I., et al. Hypomethylation of long interspersed nuclear element-1 (LINE-1) is associated with poor prognosis via activation of c-MET in hepatocellular carcinoma. Ann. Surg. Oncol. 2014;21(Suppl. 4):S729–S735. doi: 10.1245/s10434-014-3874-4. PubMed DOI

Anwar S.L., Hasemeier B., Schipper E., Vogel A., Kreipe H., Lehmann U. LINE-1 hypomethylation in human hepatocellular carcinomas correlates with shorter overall survival and CIMP phenotype. PLoS ONE. 2019;14:e0216374. doi: 10.1371/journal.pone.0216374. PubMed DOI PMC

Shigaki H., Baba Y., Watanabe M., Iwagami S., Miyake K., Ishimoto T., Iwatsuki M., Baba H. LINE-1 hypomethylation in noncancerous esophageal mucosae is associated with smoking history. Ann. Surg. Oncol. 2012;19:4238–4243. doi: 10.1245/s10434-012-2488-y. PubMed DOI

Iwagami S., Baba Y., Watanabe M., Shigaki H., Miyake K., Ishimoto T., Iwatsuki M., Sakamaki K., Ohashi Y., Baba H. LINE-1 hypomethylation is associated with a poor prognosis among patients with curatively resected esophageal squamous cell carcinoma. Ann. Surg. 2013;257:449–455. doi: 10.1097/SLA.0b013e31826d8602. PubMed DOI

Zhu J., Ling Y., Xu Y., Lu M.Z., Liu Y.P., Zhang C.S. Elevated expression of MDR1 associated with Line-1 hypomethylation in esophageal squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 2015;8:14392–14400. PubMed PMC

Antelo M., Balaguer F., Shia J., Shen Y., Hur K., Moreira L., Cuatrecasas M., Bujanda L., Giraldez M.D., Takahashi M., et al. A high degree of LINE-1 hypomethylation is a unique feature of early-onset colorectal cancer. PLoS ONE. 2012;7:e45357. doi: 10.1371/journal.pone.0045357. PubMed DOI PMC

Inamura K., Yamauchi M., Nishihara R., Lochhead P., Qian Z.R., Kuchiba A., Kim S.A., Mima K., Sukawa Y., Jung S., et al. Tumor LINE-1 methylation level and microsatellite instability in relation to colorectal cancer prognosis. J. Natl. Cancer Inst. 2014;106 doi: 10.1093/jnci/dju195. PubMed DOI PMC

Kaneko M., Kotake M., Bando H., Yamada T., Takemura H., Minamoto T. Prognostic and predictive significance of long interspersed nucleotide element-1 methylation in advanced-stage colorectal cancer. BMC Cancer. 2016;16:945. doi: 10.1186/s12885-016-2984-8. PubMed DOI PMC

Swets M., Zaalberg A., Boot A., van Wezel T., Frouws M.A., Bastiaannet E., Gelderblom H., van de Velde C.J., Kuppen P.J. Tumor LINE-1 Methylation Level in Association with Survival of Patients with Stage II Colon Cancer. Int. J. Mol. Sci. 2016;18:36. doi: 10.3390/ijms18010036. PubMed DOI PMC

Kupcinskas J., Steponaitiene R., Langner C., Smailyte G., Skieceviciene J., Kupcinskas L., Malfertheiner P., Link A. LINE-1 hypomethylation is not a common event in preneoplastic stages of gastric carcinogenesis. Sci. Rep. 2017;7:4828. doi: 10.1038/s41598-017-05143-0. PubMed DOI PMC

Bae J.M., Shin S.H., Kwon H.J., Park S.Y., Kook M.C., Kim Y.W., Cho N.Y., Kim N., Kim T.Y., Kim D., et al. ALU and LINE-1 hypomethylations in multistep gastric carcinogenesis and their prognostic implications. Int. J. Cancer. 2012;131:1323–1331. doi: 10.1002/ijc.27369. PubMed DOI

Ikeda K., Shiraishi K., Eguchi A., Shibata H., Yoshimoto K., Mori T., Baba Y., Baba H., Suzuki M. Long interspersed nucleotide element 1 hypomethylation is associated with poor prognosis of lung adenocarcinoma. Ann. Thorac. Surg. 2013;96:1790–1794. doi: 10.1016/j.athoracsur.2013.06.035. PubMed DOI

Rhee Y.Y., Lee T.H., Song Y.S., Wen X., Kim H., Jheon S., Lee C.T., Kim J., Cho N.Y., Chung J.H., et al. Prognostic significance of promoter CpG island hypermethylation and repetitive DNA hypomethylation in stage I lung adenocarcinoma. Virchows Arch. 2015;466:675–683. doi: 10.1007/s00428-015-1749-0. PubMed DOI

Imperatori A., Sahnane N., Rotolo N., Franzi F., Nardecchia E., Libera L., Romualdi C., Cattoni M., Sessa F., Dominioni L., et al. LINE-1 hypomethylation is associated to specific clinico-pathological features in Stage I non-small cell lung cancer. Lung Cancer. 2017;108:83–89. doi: 10.1016/j.lungcan.2017.03.003. PubMed DOI

Furlan C., Polesel J., Barzan L., Franchin G., Sulfaro S., Romeo S., Colizzi F., Rizzo A., Baggio V., Giacomarra V., et al. Prognostic significance of LINE-1 hypomethylation in oropharyngeal squamous cell carcinoma. Clin. Epigenet. 2017;9:58. doi: 10.1186/s13148-017-0357-z. PubMed DOI PMC

Sunami E., de Maat M., Vu A., Turner R.R., Hoon D.S. LINE-1 hypomethylation during primary colon cancer progression. PLoS ONE. 2011;6:e18884. doi: 10.1371/journal.pone.0018884. PubMed DOI PMC

Corley D.A., Jensen C.D., Marks A.R., Zhao W.K., Lee J.K., Doubeni C.A., Zauber A.G., de Boer J., Fireman B.H., Schottinger J.E., et al. Adenoma detection rate and risk of colorectal cancer and death. N. Engl. J. Med. 2014;370:1298–1306. doi: 10.1056/NEJMoa1309086. PubMed DOI PMC

Shah A.K., Saunders N.A., Barbour A.P., Hill M.M. Early diagnostic biomarkers for esophageal adenocarcinoma--the current state of play. Cancer Epidemiol. Biomark. Prev. 2013;22:1185–1209. doi: 10.1158/1055-9965.EPI-12-1415. PubMed DOI

Chalitchagorn K., Shuangshoti S., Hourpai N., Kongruttanachok N., Tangkijvanich P., Thong-ngam D., Voravud N., Sriuranpong V., Mutirangura A. Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene. 2004;23:8841–8846. doi: 10.1038/sj.onc.1208137. PubMed DOI

Schulz W.A., Elo J.P., Florl A.R., Pennanen S., Santourlidis S., Engers R., Buchardt M., Seifert H.H., Visakorpi T. Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes Chromosomes Cancer. 2002;35:58–65. doi: 10.1002/gcc.10092. PubMed DOI

Santourlidis S., Florl A., Ackermann R., Wirtz H.C., Schulz W.A. High frequency of alterations in DNA methylation in adenocarcinoma of the prostate. Prostate. 1999;39:166–174. doi: 10.1002/(SICI)1097-0045(19990515)39:3<166::AID-PROS4>3.0.CO;2-J. PubMed DOI

Pattamadilok J., Huapai N., Rattanatanyong P., Vasurattana A., Triratanachat S., Tresukosol D., Mutirangura A. LINE-1 hypomethylation level as a potential prognostic factor for epithelial ovarian cancer. Int. J. Gynecol. Cancer. 2008;18:711–717. doi: 10.1111/j.1525-1438.2007.01117.x. PubMed DOI

Ogino S., Nosho K., Kirkner G.J., Kawasaki T., Chan A.T., Schernhammer E.S., Giovannucci E.L., Fuchs C.S. A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J. Natl. Cancer Inst. 2008;100:1734–1738. doi: 10.1093/jnci/djn359. PubMed DOI PMC

van Bemmel D., Lenz P., Liao L.M., Baris D., Sternberg L.R., Warner A., Johnson A., Jones M., Kida M., Schwenn M., et al. Correlation of LINE-1 methylation levels in patient-matched buffy coat, serum, buccal cell, and bladder tumor tissue DNA samples. Cancer Epidemiol. Biomark. Prev. 2012;21:1143–1148. doi: 10.1158/1055-9965.EPI-11-1030. PubMed DOI PMC

Ilie M., Hofman P. Pros: Can tissue biopsy be replaced by liquid biopsy? Transl. Lung Cancer Res. 2016;5:420–423. doi: 10.21037/tlcr.2016.08.06. PubMed DOI PMC

Parikh A.R., Leshchiner I., Elagina L., Goyal L., Levovitz C., Siravegna G., Livitz D., Rhrissorrakrai K., Martin E.E., Van Seventer E.E., et al. Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nat. Med. 2019;25:1415–1421. doi: 10.1038/s41591-019-0561-9. PubMed DOI PMC

Cohen J.D., Li L., Wang Y., Thoburn C., Afsari B., Danilova L., Douville C., Javed A.A., Wong F., Mattox A., et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359:926–930. doi: 10.1126/science.aar3247. PubMed DOI PMC

Rothwell D.G., Ayub M., Cook N., Thistlethwaite F., Carter L., Dean E., Smith N., Villa S., Dransfield J., Clipson A., et al. Utility of ctDNA to support patient selection for early phase clinical trials: The TARGET study. Nat. Med. 2019;25:738–743. doi: 10.1038/s41591-019-0380-z. PubMed DOI

Rykova E.Y., Morozkin E.S., Ponomaryova A.A., Loseva E.M., Zaporozhchenko I.A., Cherdyntseva N.V., Vlassov V.V., Laktionov P.P. Cell-free and cell-bound circulating nucleic acid complexes: Mechanisms of generation, concentration and content. Expert Opin. Biol. Ther. 2012;12(Suppl. 1):S141–S153. doi: 10.1517/14712598.2012.673577. PubMed DOI

Warton K., Samimi G. Methylation of cell-free circulating DNA in the diagnosis of cancer. Front. Mol. Biosci. 2015;2:13. doi: 10.3389/fmolb.2015.00013. PubMed DOI PMC

Rykova E.Y., Ponomaryova A.A., Zaporozhchenko I.A., Vlassov V.V., Cherdyntseva N.V., Laktionov P.P. Circulating DNA-based lung cancer diagnostics and follow-up: Looking for epigenetic markers. Transl. Cancer Res. 2018;7:S153–S170. doi: 10.21037/tcr.2018.02.08. DOI

Bettegowda C., Sausen M., Leary R.J., Kinde I., Wang Y., Agrawal N., Bartlett B.R., Wang H., Luber B., Alani R.M., et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 2014;6:224ra24. doi: 10.1126/scitranslmed.3007094. PubMed DOI PMC

Feinberg A.P., Koldobskiy M.A., Gondor A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet. 2016;17:284–299. doi: 10.1038/nrg.2016.13. PubMed DOI PMC

Jorda M., Diez-Villanueva A., Mallona I., Martin B., Lois S., Barrera V., Esteller M., Vavouri T., Peinado M.A. The epigenetic landscape of Alu repeats delineates the structural and functional genomic architecture of colon cancer cells. Genome Res. 2017;27:118–132. doi: 10.1101/gr.207522.116. PubMed DOI PMC

Xiao-Jie L., Hui-Ying X., Qi X., Jiang X., Shi-Jie M. LINE-1 in cancer: Multifaceted functions and potential clinical implications. Genet. Med. 2016;18:431–439. doi: 10.1038/gim.2015.119. PubMed DOI

Farhat F.S., Houhou W. Targeted therapies in non-small cell lung carcinoma: What have we achieved so far? Ther. Adv. Med. Oncol. 2013;5:249–270. doi: 10.1177/1758834013492001. PubMed DOI PMC

Robles A.I., Harris C.C. Integration of multiple “OMIC” biomarkers: A precision medicine strategy for lung cancer. Lung Cancer. 2017;107:50–58. doi: 10.1016/j.lungcan.2016.06.003. PubMed DOI PMC

Rizvi N.A., Hellmann M.D., Snyder A., Kvistborg P., Makarov V., Havel J.J., Lee W., Yuan J., Wong P., Ho T.S., et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–128. doi: 10.1126/science.aaa1348. PubMed DOI PMC

El-Maarri O., Walier M., Behne F., van Uum J., Singer H., Diaz-Lacava A., Nusgen N., Niemann B., Watzka M., Reinsberg J., et al. Methylation at global LINE-1 repeats in human blood are affected by gender but not by age or natural hormone cycles. PLoS ONE. 2011;6:e16252. doi: 10.1371/journal.pone.0016252. PubMed DOI PMC

Bollati V., Schwartz J., Wright R., Litonjua A., Tarantini L., Suh H., Sparrow D., Vokonas P., Baccarelli A. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech. Ageing Dev. 2009;130:234–239. doi: 10.1016/j.mad.2008.12.003. PubMed DOI PMC

Erichsen L., Beermann A., Arauzo-Bravo M.J., Hassan M., Dkhil M.A., Al-Quraishy S., Hafiz T.A., Fischer J.C., Santourlidis S. Genome-wide hypomethylation of LINE-1 and Alu retroelements in cell-free DNA of blood is an epigenetic biomarker of human aging. Saudi J. Biol. Sci. 2018;25:1220–1226. doi: 10.1016/j.sjbs.2018.02.005. PubMed DOI PMC

Terry D.M., Devine S.E. Aberrantly High Levels of Somatic LINE-1 Expression and Retrotransposition in Human Neurological Disorders. Front. Genet. 2019;10:1244. doi: 10.3389/fgene.2019.01244. PubMed DOI PMC

Ghanjati F., Beermann A., Hermanns T., Poyet C., Arauzo-Bravo M.J., Seifert H.H., Schmidtpeter M., Goering W., Sorg R., Wernet P., et al. Unreserved application of epigenetic methods to define differences of DNA methylation between urinary cellular and cell-free DNA. Cancer Biomark. 2014;14:295–302. doi: 10.3233/CBM-140407. PubMed DOI

Wolff E.M., Byun H.M., Han H.F., Sharma S., Nichols P.W., Siegmund K.D., Yang A.S., Jones P.A., Liang G. Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet. 2010;6:e1000917. doi: 10.1371/journal.pgen.1000917. PubMed DOI PMC

Zhong H.H., Hu S.J., Yu B., Jiang S.S., Zhang J., Luo D., Yang M.W., Su W.Y., Shao Y.L., Deng H.L., et al. Apoptosis in the aging liver. Oncotarget. 2017;8:102640–102652. doi: 10.18632/oncotarget.21123. PubMed DOI PMC

Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115. doi: 10.1186/gb-2013-14-10-r115. PubMed DOI PMC

Wangsri S., Subbalekha K., Kitkumthorn N., Mutirangura A. Patterns and possible roles of LINE-1 methylation changes in smoke-exposed epithelia. PLoS ONE. 2012;7:e45292. doi: 10.1371/journal.pone.0045292. PubMed DOI PMC

Liu F., Killian J.K., Yang M., Walker R.L., Hong J.A., Zhang M., Davis S., Zhang Y., Hussain M., Xi S., et al. Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate. Oncogene. 2010;29:3650–3664. doi: 10.1038/onc.2010.129. PubMed DOI PMC

Zeidler R., Albermann K., Lang S. Nicotine and apoptosis. Apoptosis. 2007;12:1927–1943. doi: 10.1007/s10495-007-0102-8. PubMed DOI

Pox C.P., Altenhofen L., Brenner H., Theilmeier A., Von Stillfried D., Schmiegel W. Efficacy of a nationwide screening colonoscopy program for colorectal cancer. Gastroenterology. 2012;142:1460–1467. doi: 10.1053/j.gastro.2012.03.022. PubMed DOI

Chiu H.M., Lee Y.C., Tu C.H., Chen C.C., Tseng P.H., Liang J.T., Shun C.T., Lin J.T., Wu M.S. Association between early stage colon neoplasms and false-negative results from the fecal immunochemical test. Clin. Gastroenterol. Hepatol. 2013;11:832–838. doi: 10.1016/j.cgh.2013.01.013. PubMed DOI

Hirai H.W., Tsoi K.K., Chan J.Y., Wong S.H., Ching J.Y., Wong M.C., Wu J.C., Chan F.K., Sung J.J., Ng S.C. Systematic review with meta-analysis: Faecal occult blood tests show lower colorectal cancer detection rates in the proximal colon in colonoscopy-verified diagnostic studies. Aliment. Pharmacol. Ther. 2016;43:755–764. doi: 10.1111/apt.13556. PubMed DOI

Smith R.A., Andrews K., Brooks D., DeSantis C.E., Fedewa S.A., Lortet-Tieulent J., Manassaram-Baptiste D., Brawley O.W., Wender R.C. Cancer screening in the United States, 2016: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin. 2016;66:96–114. doi: 10.3322/caac.21336. PubMed DOI

von Wagner C., Baio G., Raine R., Snowball J., Morris S., Atkin W., Obichere A., Handley G., Logan R.F., Rainbow S., et al. Inequalities in participation in an organized national colorectal cancer screening programme: Results from the first 2.6 million invitations in England. Int. J. Epidemiol. 2011;40:712–718. doi: 10.1093/ije/dyr008. PubMed DOI

Taber J.M., Aspinwall L.G., Heichman K.A., Kinney A.Y. Preferences for blood-based colon cancer screening differ by race/ethnicity. Am. J. Health Behav. 2014;38:351–361. doi: 10.5993/AJHB.38.3.4. PubMed DOI

Nagai Y., Sunami E., Yamamoto Y., Hata K., Okada S., Murono K., Yasuda K., Otani K., Nishikawa T., Tanaka T., et al. LINE-1 hypomethylation status of circulating cell-free DNA in plasma as a biomarker for colorectal cancer. Oncotarget. 2017;8:11906–11916. doi: 10.18632/oncotarget.14439. PubMed DOI PMC

Matsunoki A., Kawakami K., Kotake M., Kaneko M., Kitamura H., Ooi A., Watanabe G., Minamoto T. LINE-1 methylation shows little intra-patient heterogeneity in primary and synchronous metastatic colorectal cancer. BMC Cancer. 2012;12:574. doi: 10.1186/1471-2407-12-574. PubMed DOI PMC

Rhee Y.Y., Kim M.J., Bae J.M., Koh J.M., Cho N.Y., Juhnn Y.S., Kim D., Kang G.H. Clinical outcomes of patients with microsatellite-unstable colorectal carcinomas depend on L1 methylation level. Ann. Surg. Oncol. 2012;19:3441–3448. doi: 10.1245/s10434-012-2410-7. PubMed DOI

Gainetdinov I.V., Kapitskaya K.Y., Rykova E.Y., Ponomaryova A.A., Cherdyntseva N.V., Vlassov V.V., Laktionov P.P., Azhikina T.L. Hypomethylation of human-specific family of LINE-1 retrotransposons in circulating DNA of lung cancer patients. Lung Cancer. 2016;99:127–130. doi: 10.1016/j.lungcan.2016.07.005. PubMed DOI

Ponomaryova A., Rykova E., Cherdyntseva N., Bondar A., Dobrodeev A., Zavyalov A., Tuzikov S., Bryzgalov L., Merkulova T., Vlassov V. Epigenetic probes for lung cancer monitoring: Line-1 methylation pattern in blood-circulating DNA. Russ. J. Genet. Appl. Res. 2016;6:99–104. doi: 10.1134/S2079059716010111. DOI

Ponomaryova A.A., Cherdyntseva N.V., Bondar A.A., Dobrodeev A.Y., Zavyalov A.A., Tuzikov S.A., Vlassov V.V., Choinzonov E.L., Laktionov P.P., Rykova E.Y. Dynamics of LINE-1 Retrotransposon Methylation Levels in Circulating DNA from Lung Cancer Patients Undergoing Antitumor Therapy. Mol. Biol. (Mosk) 2017;51:622–628. doi: 10.1134/S0026893317040148. PubMed DOI

Ponomaryova A.A., Rykova E.Y., Azhikina T.L., Bondar A.A., Cheremisina O.V., Rodionov E.O., Boyarko V.V., Laktionov P.P., Cherdyntseva N.V. Long interspersed nuclear element-1 methylation status in the circulating DNA from blood of patients with malignant and chronic inflammatory lung diseases. Eur. J. Cancer Prev. 2020 doi: 10.1097/CEJ.0000000000000601. PubMed DOI

Wedge E., Hansen J.W., Garde C., Asmar F., Tholstrup D., Kristensen S.S., Munch-Petersen H.D., Ralfkiaer E., Brown P., Gronbaek K., et al. Global hypomethylation is an independent prognostic factor in diffuse large B cell lymphoma. Am. J. Hematol. 2017;92:689–694. doi: 10.1002/ajh.24751. PubMed DOI

Hoshimoto S., Kuo C.T., Chong K.K., Takeshima T.L., Takei Y., Li M.W., Huang S.K., Sim M.S., Morton D.L., Hoon D.S. AIM1 and LINE-1 epigenetic aberrations in tumor and serum relate to melanoma progression and disease outcome. J. Investig. Dermatol. 2012;132:1689–1697. doi: 10.1038/jid.2012.36. PubMed DOI PMC

Gold B., Cankovic M., Furtado L.V., Meier F., Gocke C.D. Do circulating tumor cells, exosomes, and circulating tumor nucleic acids have clinical utility? A report of the association for molecular pathology. J. Mol. Diagn. 2015;17:209–224. doi: 10.1016/j.jmoldx.2015.02.001. PubMed DOI PMC

Pantel K., Alix-Panabieres C. Tumour microenvironment: Informing on minimal residual disease in solid tumours. Nat. Rev. Clin. Oncol. 2017;14:325–326. doi: 10.1038/nrclinonc.2017.53. PubMed DOI

Thierry A.R., El Messaoudi S., Gahan P.B., Anker P., Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016;35:347–376. doi: 10.1007/s10555-016-9629-x. PubMed DOI PMC

Su S.-F., de Castro Abreu A.L., Chihara Y., Tsai Y., Andreu-Vieyra C., Daneshmand S., Skinner E.C., Jones P.A., Siegmund K.D., Liang G. A panel of three markers hyper-and hypomethylated in urine sediments accurately predicts bladder cancer recurrence. Clin. Cancer Res. 2014;20:1978–1989. doi: 10.1158/1078-0432.CCR-13-2637. PubMed DOI

Kivioja T., Vähärautio A., Karlsson K., Bonke M., Enge M., Linnarsson S., Taipale J. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods. 2012;9:72–74. doi: 10.1038/nmeth.1778. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace