Advanced Therapeutics, Vaccinations, and Precision Medicine in the Treatment and Management of Chronic Hepatitis B Viral Infections; Where Are We and Where Are We Going?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
32906840
PubMed Central
PMC7552065
DOI
10.3390/v12090998
PII: v12090998
Knihovny.cz E-zdroje
- Klíčová slova
- RNA interference, active pharmaceutical ingredient, biophysics, hepatitis B virus, lipid-based nanoparticles, nanomedicine, nanotechnology, personalized medicine, plasmid DNA, precision medicine, precision therapeutics approach, small interfering RNA,
- MeSH
- antivirové látky aplikace a dávkování MeSH
- chronická hepatitida B farmakoterapie prevence a kontrola virologie MeSH
- individualizovaná medicína trendy MeSH
- lidé MeSH
- vakcína proti hepatitidě B aplikace a dávkování MeSH
- vakcinace MeSH
- virus hepatitidy B účinky léků genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antivirové látky MeSH
- vakcína proti hepatitidě B MeSH
The management of chronic hepatitis B virus (CHB) infection is an area of massive unmet clinical need worldwide. In spite of the development of powerful nucleoside/nucleotide analogue (NUC) drugs, and the widespread use of immune stimulators such as interferon-alpha (IFNα) or PEGylated interferon-alpha (PEG-IFNα), substantial improvements in CHB standards of care are still required. We believe that the future for CHB treatment now rests with advanced therapeutics, vaccination, and precision medicine, if all are to bring under control this most resilient of virus infections. In spite of a plethora of active drug treatments, anti-viral vaccinations and diagnostic techniques, the management of CHB infection remains unresolved. The reason for this is the very complexity of the virus replication cycle itself, giving rise to multiple potential targets for therapeutic intervention some of which remain very intractable indeed. Our review is focused on discussing the potential impact that advanced therapeutics, vaccinations and precision medicine could have on the future management of CHB infection. We demonstrate that advanced therapeutic approaches for the treatment of CHB, in the form of gene and immune therapies, together with modern vaccination strategies, are now emerging rapidly to tackle the limitations of current therapeutic approaches to CHB treatment in clinic. In addition, precision medicine approaches are now gathering pace too, starting with personalized medicine. On the basis of this, we argue that the time has now come to accelerate the design and creation of precision therapeutic approaches (PTAs) for CHB treatment that are based on advanced diagnostic tools and nanomedicine, and which could maximize CHB disease detection, treatment, and monitoring in ways that could genuinely eliminate CHB infection altogether.
KP Therapeutics s r o Purkyňova 649 127 CZ 61200 Brno Czech Republic
Veterinary Research Institute Hudcova 70 CZ 62100 Brno Czech Republic
Zobrazit více v PubMed
Dandri M., Lutgehetmann M., Petersen J. Experimental models and therapeutic approaches for HBV. Semin. Immunopathol. 2013;35:7–21. doi: 10.1007/s00281-012-0335-7. PubMed DOI
Trépo C., Chan H.L., Lok A. Hepatitis B virus infection. Lancet. 2014;384:2053–2063. doi: 10.1016/S0140-6736(14)60220-8. PubMed DOI
Heiberg L.I., Hogh B. Horizontal transmission of hepatitis B virus-why discuss when we can vaccinate? J. Infect. Dis. 2012;206:464–465. doi: 10.1093/infdis/jis294. PubMed DOI
Wilson E.M., Tang L., Kottilil S. Eradication strategies for chronic hepatitis B infection. Clin. Infect. Dis. 2016;62:S318–S325. doi: 10.1093/cid/ciw044. PubMed DOI PMC
Seeger C., Mason W.S. Hepatitis B virus biology. Microbiol. Mol. Biol. Rev. 2000;64:51–68. doi: 10.1128/MMBR.64.1.51-68.2000. PubMed DOI PMC
Iwamoto M., Watashi K., Tsukuda S., Aly H.H., Fukasawa M., Fujimoto A., Suzuki R., Aizaki H., Ito T., Koiwai O., et al. Evaluation and identification of hepatitis B virus entry inhibitors using HepG2 cells overexpressing a membrane transporter NTCP. Biochem. Biophys. Res. Commun. 2014;443:808–813. doi: 10.1016/j.bbrc.2013.12.052. PubMed DOI
Seeger C., Mason W.S. Molecular biology of hepatitis B virus infection. Virology. 2015;479–480:672–686. doi: 10.1016/j.virol.2015.02.031. PubMed DOI PMC
Bock C.T., Schranz P., Schröder C.H., Zentgraf H. Hepatitis B virus genome is organized into nucleosomes in the nucleus of the infected cell. Virus Genes. 1994;8:215–229. doi: 10.1007/BF01703079. PubMed DOI
Seeger C., Summers J., Mason W.S. Viral DNA synthesis. Curr. Top. Microbiol. Immunol. 1991;168:41–60. PubMed
Fanning G.C., Zoulim F., Hou J., Bertoletti A. Therapeutic strategies for hepatitis B virus infection: Towards a cure. Nat. Rev. Drug Discov. 2019;18:827–844. doi: 10.1038/s41573-019-0037-0. PubMed DOI
Kramvis A. Genotypes and genetic variability of hepatitis B virus. Intervirology. 2014;57:141–150. doi: 10.1159/000360947. PubMed DOI
Norder H., Hammas B., Lee S.D., Bile K., Courouce A.M., Mushahwar I.K., Magnius L.O. Genetic relatedness of hepatitis B viral strains of diverse geographical origin and natural variations in the primary structure of the surface antigen. J. Gen. Virol. 1993;74:1341–1348. doi: 10.1099/0022-1317-74-7-1341. PubMed DOI
Kramvis A., Restorp K., Norder H., Botha J.F., Magnius L.O., Kew M.C. Full genome analysis of hepatitis B virus genotype E strains from South-Western Africa and Madagascar reveals low genetic variability. J. Med. Virol. 2005;77:47–52. doi: 10.1002/jmv.20412. PubMed DOI
Singh J., Dickens C., Pahal V., Kumar R., Chaudhary R., Kramvis A. First report of genotype E of hepatitis B virus in an Indian population. Intervirology. 2009;52:235–238. doi: 10.1159/000227279. PubMed DOI
Devesa M., Loureiro C.L., Rivas Y., Monsalve F., Cardona N., Duarte M.C., Poblete F., Gutierrez M.F., Botto C., Pujol F.H. Subgenotype diversity of hepatitis B virus American genotype F in Amerindians from Venezuela and the general population of Colombia. J. Med. Virol. 2008;80:20–26. doi: 10.1002/jmv.21024. PubMed DOI
Tran T.T., Trinh T.N., Abe K. New complex recombinant genotype of hepatitis B virus identified in Vietnam. J. Virol. 2008;82:5657–5663. PubMed PMC
Tatematsu K., Tanaka Y., Kurbanov F., Sugauchi F., Mano S., Maeshiro T., Nakayoshi T., Wakuta M., Miyakawa Y., Mizokami M. A genetic variant of hepatitis B virus divergent from known human and ape genotypes isolated from a Japanese patient and provisionally assigned to new genotype J. J. Virol. 2009;83:10538–10547. doi: 10.1128/JVI.00462-09. PubMed DOI PMC
Papatheodoridis G., Buti M., Cornberg M., Janssen H.L.A., Mutimer D., Pol S., Raimondo G., Dusheiko G., Lok A., Marcellin P. European Association for the Study of the Liver. EASL clinical practice guidelines: Management of chronic hepatitis B virus infection. J. Hepatol. 2012;57:167–185. PubMed
Buster E.H., Hansen B.E., Lau G.K., Piratvisuth T., Zeuzem S., Steyerberg E.W., Janssen H.L.A. Factors that predict response of patients with hepatitis B e antigen-positive chronic hepatitis B to PEG interferon-α. Gastroenterology. 2009;137:2002–2009. doi: 10.1053/j.gastro.2009.08.061. PubMed DOI
Asselah T., Lada O., Moucari R., Martinot M., Boyer N., Marcellin P. Interferon therapy for chronic hepatitis B. Clin. Liver. 2007;11:839–849. doi: 10.1016/j.cld.2007.08.010. PubMed DOI
Janssen H.L., van Zonneveld M., Senturk H.U., Zeuzem S., Akarca U.S., Cakaloglu Y., Simon C., So T.M.K., Gerken G., de Man R.A., et al. HBV 99–01 Study Group; Rotterdam Foundation for Liver Research. PEGylated interferon α-2b alone or in combination with lamivudine for HBeAg-positive chronic hepatitis B: A randomized trial. Lancet. 2005;365:123–129. doi: 10.1016/S0140-6736(05)17701-0. PubMed DOI
Koumbi L. Current and future antiviral drug therapies of hepatitis B chronic infection. World J. Hepatol. 2015;7:1030–1040. doi: 10.4254/wjh.v7.i8.1030. PubMed DOI PMC
Buti M., Tsai N., Petersen J., Flisiak R., Gurel S., Krastev Z., Schall R.A., Flaherty J.F., Martins E.B., Charuworn P., et al. Seven-year efficacy and safety of treatment with tenofovir disoproxil fumarate for chronic hepatitis B virus infection. Dig. Dis. Sci. 2015;60:1457–1464. doi: 10.1007/s10620-014-3486-7. PubMed DOI PMC
Lampertico P., Liaw Y.F. New perspectives in the therapy of chronic hepatitis B. Gut. 2012;61:18–24. doi: 10.1136/gutjnl-2012-302085. PubMed DOI
Jung T.Y., Jun D.W., Lee K.N., Lee H.L., Lee O.Y., Yoon B.C., Choi H.S. Fatal lactic acidosis in hepatitis B virus-associated decompensated cirrhosis treated with tenofovir: A case report. Medicine (Baltimore) 2017;96:e7133. doi: 10.1097/MD.0000000000007133. PubMed DOI PMC
Ahn J., Lee H.M., Lim J.K., Pan C.Q., Nguyen M.H., Ray K.W., Mannalithara A., Trinh H., Chu D., Tran T., et al. Entecavir safety and effectiveness in a national cohort of chronic hepatitis B patients in the United States—The ENUMERATE study. Aliment. Pharmacol. Ther. 2014;43:134–144. doi: 10.1111/apt.13440. PubMed DOI PMC
Bourliere M. Hepatitis B treatment: Could we extend the current treatment indication. Lancet Gastroenterol. Hepatol. 2017;2:543–544. doi: 10.1016/S2468-1253(17)30140-1. PubMed DOI
Verhelst D., Monge M., Meynard J.-L., Fouqueray B., Mougenot B., Girard P.-M., Ronco P., Rossert J. Fanconi syndrome and renal failure induced by tenofovir: A first case report. Am. J. Kidney Dis. 2002;40:1331–1333. doi: 10.1053/ajkd.2002.36924. PubMed DOI
Rodriguez-Nóvoa S., Alvarez E., Labarga P., Sorianom V. Renal toxicity associated with tenofovir use. Expert. Opin. Drug Saf. 2010;9:545–559. doi: 10.1517/14740331003627458. PubMed DOI
Viganò M., Brocchieri A., Spinetti A., Zaltron S., Mangia G., Facchetti F., Fugazza A., Castelli F., Colombo M., Lampertico P. Tenofovir-induced Fanconi syndrome in chronic hepatitis B monoinfected patients that reverted after tenofovir withdrawal. J. Clin. Virol. 2014;61:600–603. doi: 10.1016/j.jcv.2014.09.016. PubMed DOI
Lampertico P., Chan H.L., Janssen H.L., Strasser S.I., Schindler R., Berg T. Review article: Long-term safety of nucleoside and nucleotide analogues in HBV-monoinfected patients. Aliment. Pharmacol. Ther. 2016;44:16–34. doi: 10.1111/apt.13659. PubMed DOI
Lampertico P., Buti M., Fung S., Ahn S.H., Chuang W.-L., Tak W.Y., Ramji A., Chen C.-Y., Tam E., Bae H., et al. Switching from tenofovir disoproxil fumarate to tenofovir alafenamide in virologically suppressed patients with chronic hepatitis B: A randomised, double-blind, phase 3, multicentre non-inferiority study. Lancet Gastroenterol. Hepatol. 2020;5:441–453. doi: 10.1016/S2468-1253(19)30421-2. PubMed DOI
Childs-Kean L.M., Egelund E.F., Jourjy J. Tenofovir Alafenamide for the Treatment of Chronic Hepatitis B Monoinfection. Pharmacotherapy. 2018;38:1051–1057. doi: 10.1002/phar.2174. PubMed DOI
Ogawa E., Furusyo N., Nguyen M.H. Tenofovir alafenamide in the treatment of chronic hepatitis B: Design, development, and place in therapy. Drug Des. Devel. Ther. 2017;11:3197–3204. doi: 10.2147/DDDT.S126742. PubMed DOI PMC
Abdul Basit S., Dawood A., Ryan J., Gish R. Tenofovir alafenamide for the treatment of chronic hepatitis B virus infection. Expert Rev. Clin. Pharmacol. 2017;10:707–716. doi: 10.1080/17512433.2017.1323633. PubMed DOI
Lange C.M., Bojunga J., Hofmann W.P., Wunder K., Mihm U., Zeuzem S., Sarrazin C. Severe lactic acidosis during treatment of chronic hepatitis B with entecavir in patients with impaired liver function. Hepatology. 2009;50:2001–2006. doi: 10.1002/hep.23346. PubMed DOI
Charlton M., Alam A., Shukla A., Dashtseren B., Lesmana C.R.A., Duger D., Payawal D.A., Cuong D.D., Jargalsaikhan G., Cua I.H.Y., et al. An expert review on the use of tenofovir alafenamide for the treatment of chronic hepatitis B virus infection in Asia. J. Gastroenterol. 2020:1–13. doi: 10.1007/s00535-020-01698-4. PubMed DOI PMC
Brouwer W.P., Xie Q., Sonneveld M.J., Zhang N., Zhang Q., Tabak F., Streinu-Cercel A., Wang J.-Y., Idilman R., Reesink H.W., et al. Adding pegylated interferon to entecavir for hepatitis B e antigen-positive chronic hepatitis B: A multicenter randomized trial (ARES study) Hepatology. 2015;61:1512–1522. doi: 10.1002/hep.27586. PubMed DOI
Ward H., Tang L., Poonia B., Kottilil S. Treatment of hepatitis B virus: An update. Future Microbiol. 2016;11:1581–1597. doi: 10.2217/fmb-2016-0128. PubMed DOI PMC
Tajiri K., Shimizu Y. Unsolved problems and future perspectives of hepatitis B virus vaccination. World J. Gastroenterol. 2015;21:7074–7083. doi: 10.3748/wjg.v21.i23.7074. PubMed DOI PMC
Papatheodoridis G.V., Vlachogiannakos I., Cholongitas E., Wursthorn K., Thomadakis C., Touloumi G., Petersen J. Discontinuation of oral antivirals in chronic hepatitis B: A systematic review. Hepatology. 2016;63:1481–1492. doi: 10.1002/hep.28438. PubMed DOI
Song I.H. Emerging therapeutics and relevant targets for chronic Hepatitis B. Turk. J. Gastroenterol. 2016;27:210–215. doi: 10.5152/tjg.2016.15521. PubMed DOI
Seto W.K., Yuen M.F. New pharmacological approaches to a functional cure of hepatitis B. Clin. Liver Dis. 2016;8:83–88. doi: 10.1002/cld.577. PubMed DOI PMC
Wooddell C.I., Rozema D.B., Hossbach M., John M., Hamilton H.L., Chu Q., Hegge O.J., Klein J.J., Wakefield D.H., Oropeza C.E., et al. Hepatocyte-targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection. Mol. Ther. 2013;21:973–985. doi: 10.1038/mt.2013.31. PubMed DOI PMC
McCaffrey A.P. RNA interference inhibitors of hepatitis B virus. Ann. N. Y. Acad. Sci. 2009;175:15–23. doi: 10.1111/j.1749-6632.2009.04974.x. PubMed DOI
Morrissey D.V., Lockridge J.A., Shaw L., Blanchard K., Jensen K., Breen W., Hartsough K., Machemer L., Radka S., Jadhav V., et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 2005;23:1002–1007. doi: 10.1038/nbt1122. PubMed DOI
Miller A.D. Delivery of RNAi therapeutics: Work in progress. Expert Rev. Med. Devices. 2013;10:781–811. doi: 10.1586/17434440.2013.855471. PubMed DOI
Miller A.D. Delivering the promise of small non-coding RNA (ncRNA) therapeutics. Ther. Deliv. 2014;5:569–589. doi: 10.4155/tde.14.23. PubMed DOI
Wooddell C.I., Yuen M.-F., Chan H.L.-Y., Gish R.G., Locarnini S.A., Chavez D., Ferrari C., Given B.D., Hamilton J., Kanner S.B., et al. RNAi-based treatment of chronically infected patients and chimpanzees reveals that integrated hepatitis B virus DNA is a source of HBsAg. Sci. Transl. Med. 2017;9:eaan0241. doi: 10.1126/scitranslmed.aan0241. PubMed DOI PMC
Yuen M.-F., Locarnini S., Lim T.H., Strasser S., Sievert W., Cheng W., Thompson A., Given B., Schluep T., Hamilton J., et al. PS-080-Short term RNA interference therapy in chronic hepatitis B using JNJ-3989 brings majority of patients to HBsAg <100 IU/ml threshold. J. Hepatol. 2019;70:E51–E52.
Jackson A.L., Burchard J., Leake D., Reynolds A., Schelter J., Guo J., Johnson J.M., Lim L., Karpilow J., Nichols K., et al. Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA. 2006;12:1197–1205. doi: 10.1261/rna.30706. PubMed DOI PMC
Watts J.K., Choubdar N., Sadalapure K., Robert F., Wahba A.S., Pelletier J., Pinto B., Damha M.J. 2′-Fluoro-4′-thioarabino-modified oligonucleotides: Conformational switches linked to siRNA activity. Nucleic Acids Res. 2007;35:1441–1451. doi: 10.1093/nar/gkl1153. PubMed DOI PMC
Hean J., Crowther C., Ely A., Islam R.U., Barichievy S., Bloom K., Weinberg M.S., Van Otterlo W.A.L., De Koning C.B., Salazar F., et al. Inhibition of hepatitis B virus replication in vivo using lipoplexes containing altritol-modified antiviral siRNAs. Artif. DNA: PNA XNA. 2010;1:17–26. doi: 10.4161/adna.1.1.11981. PubMed DOI PMC
Carmona S., Jorgensen M.R., Kolli S., Crowther C., Salazar F.H., Marion P.L., Fujino M., Natori Y., Thanou M., Arbuthnot P., et al. Controlling HBV replication in vivo by intravenous administration of triggered PEGylated siRNA-nanoparticles. Mol. Pharm. 2009;6:706–717. doi: 10.1021/mp800157x. PubMed DOI
Kolli S., Wong S.P., Harbottle R., Johnston B., Thanou M., Miller A.D. pH-Triggered nanoparticle mediated delivery of siRNA to liver cells in vitro and in vivo. Bioconjug. Chem. 2013;24:314–332. doi: 10.1021/bc3004099. PubMed DOI
Miller A.D. Nanomedicine therapeutics and diagnostics are the goal. Ther. Deliv. 2016;7:431–456. doi: 10.4155/tde-2016-0020. PubMed DOI
Miller A.D. eLS. Wiley & Sons Ltd; Chichester, UK: 2017. Synthetic nucleic acid delivery systems in gene therapy. DOI
Starkey J.L., Chiari E.F., Isom H.C. Hepatitis B virus (HBV)-specific short hairpin RNA is capable of reducing the formation of HBV covalently closed circular (CCC) DNA but has no effect on established CCC DNA in vitro. J. Gen. Virol. 2009;9:115–126. doi: 10.1099/vir.0.004408-0. PubMed DOI PMC
Zhang G.L., Li Y.X., Zheng S.Q., Liu M., Li X., Tang H. Suppression of hepatitis B virus replication by microRNA-199a-3p and microRNA-210. Antiviral. Res. 2010;88:169–175. doi: 10.1016/j.antiviral.2010.08.008. PubMed DOI
Chen Y., Shen A., Rider P.J., Yu Y., Wu K., Mu Y. A liver-specific microRNA binds to a highly conserved RNA sequence of hepatitis B virus and negatively regulates viral gene expression and replication. FASEB J. 2011;25:4511–4521. doi: 10.1096/fj.11-187781. PubMed DOI PMC
Wang Y., Jiang L., Ji X., Yang B., Zhang Y., Fu X.D. Hepatitis B Viral RNA Directly mediates down-regulation of the tumor suppressor microRNA miR-15a/miR-16–1 in hepatocytes. J. Biol. Chem. 2013;288:18484–18493. doi: 10.1074/jbc.M113.458158. PubMed DOI PMC
Khee S.G., Yusof Y.A., Makpol S. Expression of senescence associated microRNAs and target genes in cellular aging and modulation by to cotrienol-rich fraction. Oxid. Med. Cell. Longev. 2014;2014:725929. PubMed PMC
Huang J.Y., Chen H.L., Shih C. MicroRNA miR-204 and miR-1236 inhibit hepatitis B virus replication via two different mechanisms. Sci. Rep. 2016;6:34740. doi: 10.1038/srep34740. PubMed DOI PMC
Huang J.-Y., Chou S.-F., Lee J.-W., Chen H.-L., Chen C.-M., Tao M.-H., Shih C. MicroRNA-130a can inhibit hepatitis B virus replication via targeting PGC1α and PPARγ. RNA. 2015;21:385–400. doi: 10.1261/rna.048744.114. PubMed DOI PMC
Yang X., Li H., Sun H., Fan H., Hu Y., Liu M., Li X., Tang H. Hepatitis B virus-encoded microRNA controls viral replication. J. Virol. 2017;91:e01919-16. doi: 10.1128/JVI.01919-16. PubMed DOI PMC
Hamada-Tsutsumi S., Naito Y., Sato S., Takaoka A., Kawashima K., Isogawa M., Ochiya T., Tanaka Y. The antiviral effects of human microRNA miR-302c-3p against hepatitis B virus infection. Aliment. Pharmacol. Ther. 2019;49:1060–1070. doi: 10.1111/apt.15197. PubMed DOI
Wang Y., Cao J., Zhang S., Sun L., Nan Y., Yao H., Fan J., Zhu L.Y., Yu L. MicroRNA-802 induces hepatitis B virus replication and replication through regulating SMARCE1 expression in hepatocellular carcinoma. Cell Death Dis. 2019;10:783–789. doi: 10.1038/s41419-019-1999-x. PubMed DOI PMC
Osakabe Y., Osakabe K. Genome editing with engineered nucleases in plants. Plant Cell Physiol. 2015;56:389–400. doi: 10.1093/pcp/pcu170. PubMed DOI
Guan G., Zhang X., Naruse K., Nagahama Y., Hong Y. Gene replacement by zinc finger nucleases in medaka embryos. Marine Biotechnol. 2014;16:739–747. doi: 10.1007/s10126-014-9587-7. PubMed DOI
Menke D.B. Engineering subtle targeted mutations into the mouse genome. Genesis. 2013;51:605–618. doi: 10.1002/dvg.22422. PubMed DOI
Zimmerman K.A., Fischer K.P., Joyce M.A., Tyrrell D.L. Zinc finger proteins designed to specifically target duck hepatitis B virus covalently closed circular DNA inhibit viral transcription in tissue culture. J. Virol. 2008;82:8013–8021. doi: 10.1128/JVI.00366-08. PubMed DOI PMC
Lee H.J., Kweon J., Kim E., Kim S., Kim J.S. Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res. 2012;22:539–548. doi: 10.1101/gr.129635.111. PubMed DOI PMC
Cradick T.J., Keck K., Bradshaw S., Jamieson A.C., McCaffrey A.P. Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. Mol. Ther. 2010;18:947–954. doi: 10.1038/mt.2010.20. PubMed DOI PMC
Bloom K., Ely A., Mussolino C., Cathomen T., Arbuthnot P. Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. Mol. Ther. 2013;21:1889–1897. doi: 10.1038/mt.2013.170. PubMed DOI PMC
Chen J., Zhang W., Lin J., Wang F., Wu M., Chen C., Zheng Y., Peng X., Li J., Yuan Z. An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases. Mol. Ther. 2013;22:303–311. doi: 10.1038/mt.2013.212. PubMed DOI PMC
Qi L.S., Larson M.H., Gilbert L.A., Doudna J.A., Weissman J.S., Arkin A.P., Lim W.A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152:1173–1183. doi: 10.1016/j.cell.2013.02.022. PubMed DOI PMC
Zhen S., Hua L., Liu Y.H., Gao L.C., Fu J., Wan D.Y., Dong L.H., Song H.F., Gao X. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther. 2015;22:404–412. doi: 10.1038/gt.2015.2. PubMed DOI
Scott T., Moyo B., Nicholson S., Maepa M.B., Watashi K., Ely A., Weinberg M.S., Arbuthnot P. ssAAVs containing cassettes encoding SaCas9 and guides targeting hepatitis B virus inactivate replication of the virus in cultured cells. Sci. Rep. 2017;7:7401. doi: 10.1038/s41598-017-07642-6. PubMed DOI PMC
Seeger C., Sohn J.A. Complete spectrum of CRISPR/Cas9-induced mutations on HBV cccDNA. Mol. Ther. 2016;24:1258–1266. doi: 10.1038/mt.2016.94. PubMed DOI PMC
Karimova M., Beschorner N., Dammermann W., Chemnitz J., Indenbirken D., Bockmann J.-H., Grundhoff A.T., Lüth S., Buchholz F., Wiesch J.S.Z., et al. CRISPR/Cas9 nickase-mediated disruption of hepatitis B virus open reading frame S and X. Sci. Rep. 2015;5:13734. doi: 10.1038/srep13734. PubMed DOI PMC
Kurihara T., Fukuhara T., Ono C., Yamamoto S., Uemura K., Okamoto T., Sugiyama M., Motooka D., Nakamura S., Ikawa M., et al. Suppression of HBV replication by the expression of nickase- and nuclease dead-Cas9. Sci. Rep. 2017;7:6122. doi: 10.1038/s41598-017-05905-w. PubMed DOI PMC
Sakuma T., Masaki K., Abe-Chayama H., Mochida K., Yamamoto T., Chayama K. Highly multiplexed CRISPR-Cas9-nuclease and Cas9-nickase vectors for inactivation of hepatitis B virus. Genes Cells. 2016;21:1253–1262. doi: 10.1111/gtc.12437. PubMed DOI
Wagner D.L., Amini L., Wendering D.J., Burkhardt L.-M., Akyüz L., Reinke P., Volk H.-D., Schmueck-Henneresse M. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat. Med. 2018;25:242–248. doi: 10.1038/s41591-018-0204-6. PubMed DOI
Busca A., Kumar A. Innate immune responses in hepatitis B virus (HBV) infection. Virol. J. 2014;11:22. doi: 10.1186/1743-422X-11-22. PubMed DOI PMC
Jiang M., Broering R., Trippler M., Poggenpohl L., Fiedler M., Gerken G., Lu M., Schlaak J. Toll-like receptor-mediated immune responses are attenuated in the presence of high levels of hepatitis B virus surface antigen. J. Viral Hepat. 2014;21:860–872. doi: 10.1111/jvh.12216. PubMed DOI
Ebrahim M., Mirzaei V., Bidaki R., Shabani Z., Daneshvar H., Karimi-Googheri M., Khaleghinia M., Afrooz M.R., Yousefpoor Y., Arababadi M.K. Are RIG-1 and MDA5 expressions associated with chronic HBV infection? Viral Immunol. 2015;28:504–508. doi: 10.1089/vim.2015.0056. PubMed DOI
Van Der Molen R.G., Sprengers D., Biesta P.J., Kusters J.G., Janssen H.L.A. Favorable effect of adefovir on the number and functionality of myeloid dendritic cells of patients with chronic HBV. Hepatology. 2006;44:907–914. doi: 10.1002/hep.21340. PubMed DOI
Ye B., Liu X., Li X., Kong H., Tian L., Chen Y. T-cell exhaustion in chronic hepatitis B infection: Current knowledge and clinical significance. Cell Death Dis. 2015;6:e1694. doi: 10.1038/cddis.2015.42. PubMed DOI PMC
Zou Z.Q., Wang L., Wang K., Yu J.G. Innate immune targets of hepatitis B virus infection. World J. Hepatol. 2016;8:716–725. doi: 10.4254/wjh.v8.i17.716. PubMed DOI PMC
Pollicino T., Koumbi L. Role natural killer group 2D-ligand interactions in hepatitis B infection. World J. Hepatol. 2015;7:819–824. doi: 10.4254/wjh.v7.i6.819. PubMed DOI PMC
Thimme R., Wieland S., Steiger C., Ghrayeb J., Reimann K.A., Purcell R.H., Chisari F.V. CD8+ T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J. Virol. 2003;77:68–76. doi: 10.1128/JVI.77.1.68-76.2003. PubMed DOI PMC
Fisicaro P., Valdatta C., Massari M., Loggi E., Biasini E., Sacchelli L., Cavallo M.C., Silini E.M., Andreone P., Missale G., et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology. 2010;138:682–693.e4. doi: 10.1053/j.gastro.2009.09.052. PubMed DOI
Schurich A., Khanna P., Lopes A.R., Han K.J., Peppa D., Micco L., Nebbia G., Kennedy P.T., Geretti A.-M., Dusheiko G., et al. Role of the coinhibitory receptor cytotoxic T lymphocyte antigen-4 on apoptosis-Prone CD8 T cells in persistent hepatitis B virus infection. Hepatology. 2011;53:1494–1503. doi: 10.1002/hep.24249. PubMed DOI
Yu Y., Wu H., Tang Z., Zang G. CTLA4 silencing with siRNA promotes deviation of Th1/Th2 in chronic hepatitis B patients. Cell Mol. Immunol. 2009;6:123–127. doi: 10.1038/cmi.2009.17. PubMed DOI PMC
Schneider H., Downey J., Smith A., Zinselmeyer B.H., Rush C., Brewer J.M., Wei B., Hogg N., Garside P., Rudd C.E. Reversal of the TCR stop signal by CTLA-4. Science. 2006;313:1972–1975. doi: 10.1126/science.1131078. PubMed DOI
Nebbia G., Peppa D., Schurich A., Khanna P., Singh H.D., Cheng Y., Rosenberg W., Dusheiko G., Gilson R., ChinAleong J., et al. Upregulation of the Tim-3/galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection. PLoS ONE. 2012;7:e47648. doi: 10.1371/journal.pone.0047648. PubMed DOI PMC
Wu W., Shi Y., Li J., Chen F., Chen Z., Zheng M. Tim-3 expression on peripheral T cell subsets correlates with disease progression in hepatitis B infection. Virol. J. 2011;8:113. doi: 10.1186/1743-422X-8-113. PubMed DOI PMC
Krebs K., Böttinger N., Huang L., Chmielewski M., Arzberger S., Gasteiger G., Jäger C., Schmitt E., Bohne F., Aichler M., et al. T cells expressing a chimeric antigen receptor that binds hepatitis B virus envelope proteins control virus replication in mice. Gastroenterology. 2013;145:456–465. doi: 10.1053/j.gastro.2013.04.047. PubMed DOI
Qasim W., Brunetto M.R., Gehring A.J., Xue S.-A., Schurich A., Khakpoor A., Zhan H., Ciccorossi P., Gilmour K., Cavallone D., et al. Immunotherapy of HCC metastases with autologous T cell receptor redirected T cells, targeting HBsAg in a liver transplant patient. J. Hepatol. 2015;62:486–491. doi: 10.1016/j.jhep.2014.10.001. PubMed DOI
Martin P., Dubois C., Jacquier E., Dion S., Bourgine M., Godon O., Kratzer R., Lelu-Santolaria K., Evlachev A., Meritet J.-F., et al. TG1050, an immunotherapeutic to treat chronic hepatitis B, induces robust T cells and exerts an antiviral effect in HBV-persistent mice. Gut. 2014;64:1961–1971. doi: 10.1136/gutjnl-2014-308041. PubMed DOI PMC
Liu J., Kosinska A., Lu M., Roggendorf M. New therapeutic vaccination strategies for the treatment of chronic hepatitis B. Virol. Sin. 2014;29:10–16. doi: 10.1007/s12250-014-3410-5. PubMed DOI PMC
Wang Z., Zhu K., Bai W., Jia B., Hu H., Zhou N., Zhang X., Xie Y., Bourgine M., Michel M.-L., et al. Adenoviral delivery of recombinant hepatitis B virus expressing foreign antigenic epitopes for immunotherapy of persistent viral infection. J. Virol. 2013;88:3004–3015. doi: 10.1128/JVI.02756-13. PubMed DOI PMC
Elvidge S. Blockbuster expectations for hepatitis B therapeutic vaccine. Nat. Biotechnol. 2015;33:789. doi: 10.1038/nbt0815-789. PubMed DOI
Lanford R.E., Guerra B., Chavez D., Giavedoni L., Hodara V.L., Brasky K.M., Fosdick A., Frey C.R., Zheng J., Wolfgang G., et al. GS-9620, an oral agonist of Toll-like receptor-7, induces prolonged suppression of hepatitis B virus in chronically infected chimpanzees. Gastroenterology. 2013;144:1508–1517.e10. doi: 10.1053/j.gastro.2013.02.003. PubMed DOI PMC
Boni C., Janssen H.L., Rossi M., Yoon S.K., Vecchi A., Barili V., Yoshida E.M., Trinh H., Rodell T.C., Laccabue D., et al. Combined GS-4774 and tenofovir therapy can improve HBV-specific T-cell responses in patients with chronic hepatitis. Gastroenterology. 2019;157:227–241.e7. doi: 10.1053/j.gastro.2019.03.044. PubMed DOI
Akcay I.M., Katrinli S., Ozdil K., Doganay G.D., Doganay L. Host genetic factors affecting hepatitis B infection outcomes: Insights from genome-wide association studies. World J. Gastroenterol. 2018;24:3347–3360. doi: 10.3748/wjg.v24.i30.3347. PubMed DOI PMC
Kamatani Y., Wattanapokayakit S., Ochi H., Kawaguchi T., Takahashi A., Hosono N., Kubo M., Tsunoda T., Kamatani N., Kumada H., et al. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat. Genet. 2009;41:591–595. doi: 10.1038/ng.348. PubMed DOI
Mbarek H., Ochi H., Urabe Y., Kumar V., Kubo M., Hosono N., Takahashi A., Kamatani Y., Miki D., Abe H., et al. A genome-wide association study of chronic hepatitis B identified novel risk locus in a Japanese population. Hum. Mol. Genet. 2011;20:3884–3892. doi: 10.1093/hmg/ddr301. PubMed DOI
Liu L., Li J., Yao J., Yu J., Zhang J., Ning Q., Wen Z., Yang D., He Y., Kong X., et al. A genome-wide association study with DNA pooling identifies the variant rs11866328 in the GRIN2A gene that affects disease progression of chronic HBV infection. Viral Immunol. 2011;24:397–402. doi: 10.1089/vim.2011.0027. PubMed DOI
Hu Z., Liu Y., Zhai X., Dai J., Jin G., Wang L., Zhu L., Yang Y., Liu J., Chu M., et al. New loci associated with chronic hepatitis B virus infection in Han Chinese. Nat. Genet. 2013;45:1499–1503. doi: 10.1038/ng.2809. PubMed DOI
Kim Y.J., Lee J.-H., Yu S.J., Yoon J.-H., Cheong J.Y., Cho S.W., Park N.H., Namgoong S., Shin H.D. A genome-wide association study identified new variants associated with the risk of chronic hepatitis B. Hum. Mol. Genet. 2013;22:4233–4238. doi: 10.1093/hmg/ddt266. PubMed DOI
Katrinli S., Niğdelioğlu A., Ozdil K., Dinler-Doganay G., Doganay L. The association of variations in TLR genes and spontaneous immune control of hepatitis B virus. Clin. Res. Hepatol. Gastroenterol. 2018;42:139–144. doi: 10.1016/j.clinre.2017.10.002. PubMed DOI
Chang S.-W., Fann C.S.-J., Su W.-H., Wang Y.C., Weng C.C., Yu C.-J., Hsu C.-L., Hsieh A.-R., Chien R.-N., Chu C.-M., et al. A genome-wide association study on chronic HBV infection and its clinical progression in male Han-Taiwanese. PLoS ONE. 2014;9:e99724. doi: 10.1371/journal.pone.0099724. PubMed DOI PMC
Sawai H., Nishida N., Khor S.-S., Honda M., Sugiyama M., Baba N., Yamada K., Sawada N., Tsugane S., Koike K., et al. Genome-wide association study identified new susceptible genetic variants in HLA class I region for hepatitis B virus-related hepatocellular carcinoma. Sci. Rep. 2018;8:7958. doi: 10.1038/s41598-018-26217-7. PubMed DOI PMC
Pan L., Zhang L., Zhang W., Wu X., Li Y., Yan B., Zhu X., Liu X., Yang C., Xu J., et al. A genome-wide association study identifies polymorphisms in the HLA-DR region associated with non-response to hepatitis B vaccination in Chinese Han populations. Hum. Mol. Genet. 2013;23:2210–2219. doi: 10.1093/hmg/ddt586. PubMed DOI
Wu T.-W., Chen C.-F., Lai S.-K., Lin H.H., Chu C.-C., Wang L.-Y. SNP rs7770370 in HLA-DPB1 loci as a major genetic determinant of response to booster hepatitis B vaccination: Results of a genome-wide association study. J. Gastroenterol. Hepatol. 2015;30:891–899. doi: 10.1111/jgh.12845. PubMed DOI
Roh E.Y., Yoon J.H., In J.W., Lee N., Shin S., Song E.Y. Association of HLA-DP variants with the responsiveness to Hepatitis B virus vaccination in Korean infants. Vaccine. 2016;34:2602–2607. doi: 10.1016/j.vaccine.2016.03.090. PubMed DOI
Okada Y., Uno N., Sato S., Mori S., Sasaki D., Kaku N., Kosai K., Morinaga Y., Hasegawa H., Yanagihara K. Strong influence of human leukocyte antigen-DP variants on response to hepatitis B vaccine in a Japanese population. Vaccine. 2017;35:5662–5665. doi: 10.1016/j.vaccine.2017.08.045. PubMed DOI
Li Y., Si L., Zhai Y., Hu Y., Hu Z., Bei J.-X., Xie B., Ren Q., Cao P., Yang F., et al. Genome-wide association study identifies 8p21.3 associated with persistent hepatitis B virus infection among Chinese. Nat. Commun. 2016;7:11664. doi: 10.1038/ncomms11664. PubMed DOI PMC
Palacios G., Druce J., Du L., Tran T., Birch C., Briese T., Conlan S., Quan P.-L., Hui J., Marshall J., et al. A new arenavirus in a cluster of fatal transplant-associated diseases. New Engl. J. Med. 2008;358:991–998. doi: 10.1056/NEJMoa073785. PubMed DOI
Towner J.S., Sealy T.K., Khristova M.L., Albariño C.G., Conlan S., Reeder S.A., Quan P.-L., Lipkin W.I., Downing R., Tappero J.W., et al. Newly discovered Ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathog. 2008;4:e1000212. doi: 10.1371/journal.ppat.1000212. PubMed DOI PMC
Quick J., Grubaugh N.D., Pullan S.T., Claro I.M., Smith A.D., Gangavarapu K., Oliveira G., Robles-Sikisaka R., Rogers T.F., Beutler N., et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat. Protoc. 2017;12:1261–1276. doi: 10.1038/nprot.2017.066. PubMed DOI PMC
Ge X., Li Y., Yang X., Zhang H., Zhou P., Zhang Y., Shi Z. Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China. J. Virol. 2012;86:4620–4630. doi: 10.1128/JVI.06671-11. PubMed DOI PMC
Yozwiak N.L., Skewes-Cox P., Stenglein M.D., Balmaseda A., Harris E., DeRisi J.L. Virus identification in unknown tropical febrile illness cases using deep sequencing. PLoS Neglected Trop. Dis. 2012;6:e1485. doi: 10.1371/journal.pntd.0001485. PubMed DOI PMC
Wu I.C., Liu W.C., Chang T.T. Applications of next-generation sequencing analysis for the detection of hepatocellular carcinoma-associated hepatitis B virus mutations. J. Biomed. Sci. 2018;25:51. doi: 10.1186/s12929-018-0442-4. PubMed DOI PMC
Gong L., Han Y., Chen L., Liu F., Hao P., Sheng J., Li X.-H., Yu D.-M., Gong Q.-M., Tian F., et al. Comparison of next-generation sequencing and clone-based sequencing in analysis of hepatitis B virus reverse transcriptase quasispecies heterogeneity. J. Clin. Microbiol. 2013;51:4087–4094. doi: 10.1128/JCM.01723-13. PubMed DOI PMC
Lecuit M., Eloit M. The human virome: New tools and concepts. Trends Microbiol. 2013;21:510–515. doi: 10.1016/j.tim.2013.07.001. PubMed DOI PMC
Albalat A., Husi H., Stalmach A., Schanstra J.P., Mischak H. Classical MALDI-MS versus CE-based ESI-MS proteomic profiling in urine for clinical applications. Bioanalysis. 2014;6:247–266. doi: 10.4155/bio.13.313. PubMed DOI
Luan J., Yuan J., Li X., Jin S., Yu L., Liao M., Zhang H., Xu C., He Q., Wen B., et al. Multiplex detection of 60 hepatitis B virus variants by MALDI-TOF mass spectrometry. Clin. Chem. 2009;55:1503–1509. doi: 10.1373/clinchem.2009.124859. PubMed DOI
Liu T., Xue R., Huang X., Zhang D., Dong L., Wu H., Shen X. Proteomic profiling of hepatitis B virus-related hepatocellular carcinoma with magnetic bead-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Acta Biochim. Biophys. Sin. 2011;43:542–550. doi: 10.1093/abbs/gmr044. PubMed DOI
Ganova-Raeva L., Ramachandran S., Honisch C., Forbi J.C., Zhai X., Khudyakov Y. Robust hepatitis B virus genotyping by mass spectrometry. J. Clin. Microbiol. 2010;48:4161–4168. doi: 10.1128/JCM.00813-10. PubMed DOI PMC
Hong S.P., Kim N.K., Hwang S.G., Chung H.J., Kim S., Han J.H., Kim H.T., Rim K.S., Kang M.S., Yoo W., et al. Detection of hepatitis B virus YMDD variants using mass spectrometric analysis of oligonucleotide fragments. J. Hepatol. 2004;40:837–844. doi: 10.1016/j.jhep.2004.01.006. PubMed DOI
World Health Organization Guidelines for the Prevention, Care and Treatment of Persons with Chronic Hepatitis B Infection. [(accessed on 30 July 2020)];2015 Available online: http://www.who.int/hiv/pub/hepatitis/hepatitis-b-guidelines/en. PubMed
Amini A., Varsaneux O., Kelly H., Tang W., Chen W., Boeras D., Falconer J., Tucker J.D., Chou R., Ishizaki A., et al. Diagnostic accuracy of tests to detect hepatitis B surface antigen: A systematic review of the literature and meta-analysis. BMC Infect. Dis. 2017;17:698. doi: 10.1186/s12879-017-2772-3. PubMed DOI PMC
Liu Y.P., Yao C.Y. Rapid and quantitative detection of hepatitis B virus. World J. Gastroenterol. 2015;21:11954–11963. doi: 10.3748/wjg.v21.i42.11954. PubMed DOI PMC
Zhou X., Liu L., Hu M., Wang L., Hu J. Detection of hepatitis B virus by piezoelectric biosensor. J. Pharm. Biomed. Anal. 2002;27:341–345. doi: 10.1016/S0731-7085(01)00538-6. PubMed DOI
Huang J.-T., Yang Y., Hu Y.-M., Liu X., Liao M.-Y., Morgan R., Yuan E.-F., Li X., Liu S.-M. A highly sensitive and robust method for hepatitis B virus covalently closed circular DNA detection in single cells and serum. J. Mol. Diagn. 2018;20:334–343. doi: 10.1016/j.jmoldx.2018.01.010. PubMed DOI
Gauthier M., Bonnaud B., Arsac M., Lavocat F., Maisetti J., Kay A., Simon F., Zoulim F., Vernet G. Microarray for hepatitis B virus genotyping and detection of 994 mutations along the genome. J. Clin. Microbiol. 2010;48:4207–4215. doi: 10.1128/JCM.00344-10. PubMed DOI PMC
Hua W., Zhang G., Guo S., Li W., Sun L., Xiang G. Microarray-based genotyping and detection of drug-resistant HBV mutations from 620 Chinese patients with chronic HBV infection. Braz. J. Infect. Dis. 2015;19:291–295. doi: 10.1016/j.bjid.2015.03.012. PubMed DOI PMC
Zhi X., Deng M., Yang H., Gao G., Qin Q., Fu H., Zhang Y., Chen D., Cui D. A novel HBV genotypes detecting system combined with microfluidic chip, loop-mediated isothermal amplification and GMR sensors. Biosens. Bioelectron. 2014;54:372–377. doi: 10.1016/j.bios.2013.11.025. PubMed DOI
Brahmania M., Feld J., Arif A., Janssen H.L. New therapeutic agents for chronic hepatitis B. Lancet Infect. Dis. 2016;16:e10–e21. doi: 10.1016/S1473-3099(15)00436-3. PubMed DOI
Block B.T.M., Gish R.G., Guo H., Mehta A., Cuconati A., London W.T., Guo J.-T. Chronic hepatitis B: What should be the goal for new therapies? Antivir. Res. 2013;98:27–34. doi: 10.1016/j.antiviral.2013.01.006. PubMed DOI PMC
Centelles M.N., Wright M., Tsolaki M., Amrahli M., Xu X.Y., Stebbing J., Miller A.D., Gedroyc W., Thanou M. Image-guided thermosensitive liposomes for focused ultrasound drug delivery: Using NIRF-labelled lipids and topotecan to visualise the effects of hyperthermia in tumours. J. Control. Release. 2018;280:87–98. doi: 10.1016/j.jconrel.2018.04.047. PubMed DOI
Reddy L.H., Couvreur P. Nanotechnology for therapy and imaging of liver diseases. J. Hepatol. 2011;55:1461–1466. doi: 10.1016/j.jhep.2011.05.039. PubMed DOI
Wang X., Li Y., Wang H., Fu Q., Peng J., Wang Y. Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma. Biosens. Bioelectron. 2010;26:404–410. doi: 10.1016/j.bios.2010.07.121. PubMed DOI