Advanced Therapeutics, Vaccinations, and Precision Medicine in the Treatment and Management of Chronic Hepatitis B Viral Infections; Where Are We and Where Are We Going?

. 2020 Sep 07 ; 12 (9) : . [epub] 20200907

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32906840

The management of chronic hepatitis B virus (CHB) infection is an area of massive unmet clinical need worldwide. In spite of the development of powerful nucleoside/nucleotide analogue (NUC) drugs, and the widespread use of immune stimulators such as interferon-alpha (IFNα) or PEGylated interferon-alpha (PEG-IFNα), substantial improvements in CHB standards of care are still required. We believe that the future for CHB treatment now rests with advanced therapeutics, vaccination, and precision medicine, if all are to bring under control this most resilient of virus infections. In spite of a plethora of active drug treatments, anti-viral vaccinations and diagnostic techniques, the management of CHB infection remains unresolved. The reason for this is the very complexity of the virus replication cycle itself, giving rise to multiple potential targets for therapeutic intervention some of which remain very intractable indeed. Our review is focused on discussing the potential impact that advanced therapeutics, vaccinations and precision medicine could have on the future management of CHB infection. We demonstrate that advanced therapeutic approaches for the treatment of CHB, in the form of gene and immune therapies, together with modern vaccination strategies, are now emerging rapidly to tackle the limitations of current therapeutic approaches to CHB treatment in clinic. In addition, precision medicine approaches are now gathering pace too, starting with personalized medicine. On the basis of this, we argue that the time has now come to accelerate the design and creation of precision therapeutic approaches (PTAs) for CHB treatment that are based on advanced diagnostic tools and nanomedicine, and which could maximize CHB disease detection, treatment, and monitoring in ways that could genuinely eliminate CHB infection altogether.

Zobrazit více v PubMed

Dandri M., Lutgehetmann M., Petersen J. Experimental models and therapeutic approaches for HBV. Semin. Immunopathol. 2013;35:7–21. doi: 10.1007/s00281-012-0335-7. PubMed DOI

Trépo C., Chan H.L., Lok A. Hepatitis B virus infection. Lancet. 2014;384:2053–2063. doi: 10.1016/S0140-6736(14)60220-8. PubMed DOI

Heiberg L.I., Hogh B. Horizontal transmission of hepatitis B virus-why discuss when we can vaccinate? J. Infect. Dis. 2012;206:464–465. doi: 10.1093/infdis/jis294. PubMed DOI

Wilson E.M., Tang L., Kottilil S. Eradication strategies for chronic hepatitis B infection. Clin. Infect. Dis. 2016;62:S318–S325. doi: 10.1093/cid/ciw044. PubMed DOI PMC

Seeger C., Mason W.S. Hepatitis B virus biology. Microbiol. Mol. Biol. Rev. 2000;64:51–68. doi: 10.1128/MMBR.64.1.51-68.2000. PubMed DOI PMC

Iwamoto M., Watashi K., Tsukuda S., Aly H.H., Fukasawa M., Fujimoto A., Suzuki R., Aizaki H., Ito T., Koiwai O., et al. Evaluation and identification of hepatitis B virus entry inhibitors using HepG2 cells overexpressing a membrane transporter NTCP. Biochem. Biophys. Res. Commun. 2014;443:808–813. doi: 10.1016/j.bbrc.2013.12.052. PubMed DOI

Seeger C., Mason W.S. Molecular biology of hepatitis B virus infection. Virology. 2015;479–480:672–686. doi: 10.1016/j.virol.2015.02.031. PubMed DOI PMC

Bock C.T., Schranz P., Schröder C.H., Zentgraf H. Hepatitis B virus genome is organized into nucleosomes in the nucleus of the infected cell. Virus Genes. 1994;8:215–229. doi: 10.1007/BF01703079. PubMed DOI

Seeger C., Summers J., Mason W.S. Viral DNA synthesis. Curr. Top. Microbiol. Immunol. 1991;168:41–60. PubMed

Fanning G.C., Zoulim F., Hou J., Bertoletti A. Therapeutic strategies for hepatitis B virus infection: Towards a cure. Nat. Rev. Drug Discov. 2019;18:827–844. doi: 10.1038/s41573-019-0037-0. PubMed DOI

Kramvis A. Genotypes and genetic variability of hepatitis B virus. Intervirology. 2014;57:141–150. doi: 10.1159/000360947. PubMed DOI

Norder H., Hammas B., Lee S.D., Bile K., Courouce A.M., Mushahwar I.K., Magnius L.O. Genetic relatedness of hepatitis B viral strains of diverse geographical origin and natural variations in the primary structure of the surface antigen. J. Gen. Virol. 1993;74:1341–1348. doi: 10.1099/0022-1317-74-7-1341. PubMed DOI

Kramvis A., Restorp K., Norder H., Botha J.F., Magnius L.O., Kew M.C. Full genome analysis of hepatitis B virus genotype E strains from South-Western Africa and Madagascar reveals low genetic variability. J. Med. Virol. 2005;77:47–52. doi: 10.1002/jmv.20412. PubMed DOI

Singh J., Dickens C., Pahal V., Kumar R., Chaudhary R., Kramvis A. First report of genotype E of hepatitis B virus in an Indian population. Intervirology. 2009;52:235–238. doi: 10.1159/000227279. PubMed DOI

Devesa M., Loureiro C.L., Rivas Y., Monsalve F., Cardona N., Duarte M.C., Poblete F., Gutierrez M.F., Botto C., Pujol F.H. Subgenotype diversity of hepatitis B virus American genotype F in Amerindians from Venezuela and the general population of Colombia. J. Med. Virol. 2008;80:20–26. doi: 10.1002/jmv.21024. PubMed DOI

Tran T.T., Trinh T.N., Abe K. New complex recombinant genotype of hepatitis B virus identified in Vietnam. J. Virol. 2008;82:5657–5663. PubMed PMC

Tatematsu K., Tanaka Y., Kurbanov F., Sugauchi F., Mano S., Maeshiro T., Nakayoshi T., Wakuta M., Miyakawa Y., Mizokami M. A genetic variant of hepatitis B virus divergent from known human and ape genotypes isolated from a Japanese patient and provisionally assigned to new genotype J. J. Virol. 2009;83:10538–10547. doi: 10.1128/JVI.00462-09. PubMed DOI PMC

Papatheodoridis G., Buti M., Cornberg M., Janssen H.L.A., Mutimer D., Pol S., Raimondo G., Dusheiko G., Lok A., Marcellin P. European Association for the Study of the Liver. EASL clinical practice guidelines: Management of chronic hepatitis B virus infection. J. Hepatol. 2012;57:167–185. PubMed

Buster E.H., Hansen B.E., Lau G.K., Piratvisuth T., Zeuzem S., Steyerberg E.W., Janssen H.L.A. Factors that predict response of patients with hepatitis B e antigen-positive chronic hepatitis B to PEG interferon-α. Gastroenterology. 2009;137:2002–2009. doi: 10.1053/j.gastro.2009.08.061. PubMed DOI

Asselah T., Lada O., Moucari R., Martinot M., Boyer N., Marcellin P. Interferon therapy for chronic hepatitis B. Clin. Liver. 2007;11:839–849. doi: 10.1016/j.cld.2007.08.010. PubMed DOI

Janssen H.L., van Zonneveld M., Senturk H.U., Zeuzem S., Akarca U.S., Cakaloglu Y., Simon C., So T.M.K., Gerken G., de Man R.A., et al. HBV 99–01 Study Group; Rotterdam Foundation for Liver Research. PEGylated interferon α-2b alone or in combination with lamivudine for HBeAg-positive chronic hepatitis B: A randomized trial. Lancet. 2005;365:123–129. doi: 10.1016/S0140-6736(05)17701-0. PubMed DOI

Koumbi L. Current and future antiviral drug therapies of hepatitis B chronic infection. World J. Hepatol. 2015;7:1030–1040. doi: 10.4254/wjh.v7.i8.1030. PubMed DOI PMC

Buti M., Tsai N., Petersen J., Flisiak R., Gurel S., Krastev Z., Schall R.A., Flaherty J.F., Martins E.B., Charuworn P., et al. Seven-year efficacy and safety of treatment with tenofovir disoproxil fumarate for chronic hepatitis B virus infection. Dig. Dis. Sci. 2015;60:1457–1464. doi: 10.1007/s10620-014-3486-7. PubMed DOI PMC

Lampertico P., Liaw Y.F. New perspectives in the therapy of chronic hepatitis B. Gut. 2012;61:18–24. doi: 10.1136/gutjnl-2012-302085. PubMed DOI

Jung T.Y., Jun D.W., Lee K.N., Lee H.L., Lee O.Y., Yoon B.C., Choi H.S. Fatal lactic acidosis in hepatitis B virus-associated decompensated cirrhosis treated with tenofovir: A case report. Medicine (Baltimore) 2017;96:e7133. doi: 10.1097/MD.0000000000007133. PubMed DOI PMC

Ahn J., Lee H.M., Lim J.K., Pan C.Q., Nguyen M.H., Ray K.W., Mannalithara A., Trinh H., Chu D., Tran T., et al. Entecavir safety and effectiveness in a national cohort of chronic hepatitis B patients in the United States—The ENUMERATE study. Aliment. Pharmacol. Ther. 2014;43:134–144. doi: 10.1111/apt.13440. PubMed DOI PMC

Bourliere M. Hepatitis B treatment: Could we extend the current treatment indication. Lancet Gastroenterol. Hepatol. 2017;2:543–544. doi: 10.1016/S2468-1253(17)30140-1. PubMed DOI

Verhelst D., Monge M., Meynard J.-L., Fouqueray B., Mougenot B., Girard P.-M., Ronco P., Rossert J. Fanconi syndrome and renal failure induced by tenofovir: A first case report. Am. J. Kidney Dis. 2002;40:1331–1333. doi: 10.1053/ajkd.2002.36924. PubMed DOI

Rodriguez-Nóvoa S., Alvarez E., Labarga P., Sorianom V. Renal toxicity associated with tenofovir use. Expert. Opin. Drug Saf. 2010;9:545–559. doi: 10.1517/14740331003627458. PubMed DOI

Viganò M., Brocchieri A., Spinetti A., Zaltron S., Mangia G., Facchetti F., Fugazza A., Castelli F., Colombo M., Lampertico P. Tenofovir-induced Fanconi syndrome in chronic hepatitis B monoinfected patients that reverted after tenofovir withdrawal. J. Clin. Virol. 2014;61:600–603. doi: 10.1016/j.jcv.2014.09.016. PubMed DOI

Lampertico P., Chan H.L., Janssen H.L., Strasser S.I., Schindler R., Berg T. Review article: Long-term safety of nucleoside and nucleotide analogues in HBV-monoinfected patients. Aliment. Pharmacol. Ther. 2016;44:16–34. doi: 10.1111/apt.13659. PubMed DOI

Lampertico P., Buti M., Fung S., Ahn S.H., Chuang W.-L., Tak W.Y., Ramji A., Chen C.-Y., Tam E., Bae H., et al. Switching from tenofovir disoproxil fumarate to tenofovir alafenamide in virologically suppressed patients with chronic hepatitis B: A randomised, double-blind, phase 3, multicentre non-inferiority study. Lancet Gastroenterol. Hepatol. 2020;5:441–453. doi: 10.1016/S2468-1253(19)30421-2. PubMed DOI

Childs-Kean L.M., Egelund E.F., Jourjy J. Tenofovir Alafenamide for the Treatment of Chronic Hepatitis B Monoinfection. Pharmacotherapy. 2018;38:1051–1057. doi: 10.1002/phar.2174. PubMed DOI

Ogawa E., Furusyo N., Nguyen M.H. Tenofovir alafenamide in the treatment of chronic hepatitis B: Design, development, and place in therapy. Drug Des. Devel. Ther. 2017;11:3197–3204. doi: 10.2147/DDDT.S126742. PubMed DOI PMC

Abdul Basit S., Dawood A., Ryan J., Gish R. Tenofovir alafenamide for the treatment of chronic hepatitis B virus infection. Expert Rev. Clin. Pharmacol. 2017;10:707–716. doi: 10.1080/17512433.2017.1323633. PubMed DOI

Lange C.M., Bojunga J., Hofmann W.P., Wunder K., Mihm U., Zeuzem S., Sarrazin C. Severe lactic acidosis during treatment of chronic hepatitis B with entecavir in patients with impaired liver function. Hepatology. 2009;50:2001–2006. doi: 10.1002/hep.23346. PubMed DOI

Charlton M., Alam A., Shukla A., Dashtseren B., Lesmana C.R.A., Duger D., Payawal D.A., Cuong D.D., Jargalsaikhan G., Cua I.H.Y., et al. An expert review on the use of tenofovir alafenamide for the treatment of chronic hepatitis B virus infection in Asia. J. Gastroenterol. 2020:1–13. doi: 10.1007/s00535-020-01698-4. PubMed DOI PMC

Brouwer W.P., Xie Q., Sonneveld M.J., Zhang N., Zhang Q., Tabak F., Streinu-Cercel A., Wang J.-Y., Idilman R., Reesink H.W., et al. Adding pegylated interferon to entecavir for hepatitis B e antigen-positive chronic hepatitis B: A multicenter randomized trial (ARES study) Hepatology. 2015;61:1512–1522. doi: 10.1002/hep.27586. PubMed DOI

Ward H., Tang L., Poonia B., Kottilil S. Treatment of hepatitis B virus: An update. Future Microbiol. 2016;11:1581–1597. doi: 10.2217/fmb-2016-0128. PubMed DOI PMC

Tajiri K., Shimizu Y. Unsolved problems and future perspectives of hepatitis B virus vaccination. World J. Gastroenterol. 2015;21:7074–7083. doi: 10.3748/wjg.v21.i23.7074. PubMed DOI PMC

Papatheodoridis G.V., Vlachogiannakos I., Cholongitas E., Wursthorn K., Thomadakis C., Touloumi G., Petersen J. Discontinuation of oral antivirals in chronic hepatitis B: A systematic review. Hepatology. 2016;63:1481–1492. doi: 10.1002/hep.28438. PubMed DOI

Song I.H. Emerging therapeutics and relevant targets for chronic Hepatitis B. Turk. J. Gastroenterol. 2016;27:210–215. doi: 10.5152/tjg.2016.15521. PubMed DOI

Seto W.K., Yuen M.F. New pharmacological approaches to a functional cure of hepatitis B. Clin. Liver Dis. 2016;8:83–88. doi: 10.1002/cld.577. PubMed DOI PMC

Wooddell C.I., Rozema D.B., Hossbach M., John M., Hamilton H.L., Chu Q., Hegge O.J., Klein J.J., Wakefield D.H., Oropeza C.E., et al. Hepatocyte-targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection. Mol. Ther. 2013;21:973–985. doi: 10.1038/mt.2013.31. PubMed DOI PMC

McCaffrey A.P. RNA interference inhibitors of hepatitis B virus. Ann. N. Y. Acad. Sci. 2009;175:15–23. doi: 10.1111/j.1749-6632.2009.04974.x. PubMed DOI

Morrissey D.V., Lockridge J.A., Shaw L., Blanchard K., Jensen K., Breen W., Hartsough K., Machemer L., Radka S., Jadhav V., et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 2005;23:1002–1007. doi: 10.1038/nbt1122. PubMed DOI

Miller A.D. Delivery of RNAi therapeutics: Work in progress. Expert Rev. Med. Devices. 2013;10:781–811. doi: 10.1586/17434440.2013.855471. PubMed DOI

Miller A.D. Delivering the promise of small non-coding RNA (ncRNA) therapeutics. Ther. Deliv. 2014;5:569–589. doi: 10.4155/tde.14.23. PubMed DOI

Wooddell C.I., Yuen M.-F., Chan H.L.-Y., Gish R.G., Locarnini S.A., Chavez D., Ferrari C., Given B.D., Hamilton J., Kanner S.B., et al. RNAi-based treatment of chronically infected patients and chimpanzees reveals that integrated hepatitis B virus DNA is a source of HBsAg. Sci. Transl. Med. 2017;9:eaan0241. doi: 10.1126/scitranslmed.aan0241. PubMed DOI PMC

Yuen M.-F., Locarnini S., Lim T.H., Strasser S., Sievert W., Cheng W., Thompson A., Given B., Schluep T., Hamilton J., et al. PS-080-Short term RNA interference therapy in chronic hepatitis B using JNJ-3989 brings majority of patients to HBsAg <100 IU/ml threshold. J. Hepatol. 2019;70:E51–E52.

Jackson A.L., Burchard J., Leake D., Reynolds A., Schelter J., Guo J., Johnson J.M., Lim L., Karpilow J., Nichols K., et al. Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA. 2006;12:1197–1205. doi: 10.1261/rna.30706. PubMed DOI PMC

Watts J.K., Choubdar N., Sadalapure K., Robert F., Wahba A.S., Pelletier J., Pinto B., Damha M.J. 2′-Fluoro-4′-thioarabino-modified oligonucleotides: Conformational switches linked to siRNA activity. Nucleic Acids Res. 2007;35:1441–1451. doi: 10.1093/nar/gkl1153. PubMed DOI PMC

Hean J., Crowther C., Ely A., Islam R.U., Barichievy S., Bloom K., Weinberg M.S., Van Otterlo W.A.L., De Koning C.B., Salazar F., et al. Inhibition of hepatitis B virus replication in vivo using lipoplexes containing altritol-modified antiviral siRNAs. Artif. DNA: PNA XNA. 2010;1:17–26. doi: 10.4161/adna.1.1.11981. PubMed DOI PMC

Carmona S., Jorgensen M.R., Kolli S., Crowther C., Salazar F.H., Marion P.L., Fujino M., Natori Y., Thanou M., Arbuthnot P., et al. Controlling HBV replication in vivo by intravenous administration of triggered PEGylated siRNA-nanoparticles. Mol. Pharm. 2009;6:706–717. doi: 10.1021/mp800157x. PubMed DOI

Kolli S., Wong S.P., Harbottle R., Johnston B., Thanou M., Miller A.D. pH-Triggered nanoparticle mediated delivery of siRNA to liver cells in vitro and in vivo. Bioconjug. Chem. 2013;24:314–332. doi: 10.1021/bc3004099. PubMed DOI

Miller A.D. Nanomedicine therapeutics and diagnostics are the goal. Ther. Deliv. 2016;7:431–456. doi: 10.4155/tde-2016-0020. PubMed DOI

Miller A.D. eLS. Wiley & Sons Ltd; Chichester, UK: 2017. Synthetic nucleic acid delivery systems in gene therapy. DOI

Starkey J.L., Chiari E.F., Isom H.C. Hepatitis B virus (HBV)-specific short hairpin RNA is capable of reducing the formation of HBV covalently closed circular (CCC) DNA but has no effect on established CCC DNA in vitro. J. Gen. Virol. 2009;9:115–126. doi: 10.1099/vir.0.004408-0. PubMed DOI PMC

Zhang G.L., Li Y.X., Zheng S.Q., Liu M., Li X., Tang H. Suppression of hepatitis B virus replication by microRNA-199a-3p and microRNA-210. Antiviral. Res. 2010;88:169–175. doi: 10.1016/j.antiviral.2010.08.008. PubMed DOI

Chen Y., Shen A., Rider P.J., Yu Y., Wu K., Mu Y. A liver-specific microRNA binds to a highly conserved RNA sequence of hepatitis B virus and negatively regulates viral gene expression and replication. FASEB J. 2011;25:4511–4521. doi: 10.1096/fj.11-187781. PubMed DOI PMC

Wang Y., Jiang L., Ji X., Yang B., Zhang Y., Fu X.D. Hepatitis B Viral RNA Directly mediates down-regulation of the tumor suppressor microRNA miR-15a/miR-16–1 in hepatocytes. J. Biol. Chem. 2013;288:18484–18493. doi: 10.1074/jbc.M113.458158. PubMed DOI PMC

Khee S.G., Yusof Y.A., Makpol S. Expression of senescence associated microRNAs and target genes in cellular aging and modulation by to cotrienol-rich fraction. Oxid. Med. Cell. Longev. 2014;2014:725929. PubMed PMC

Huang J.Y., Chen H.L., Shih C. MicroRNA miR-204 and miR-1236 inhibit hepatitis B virus replication via two different mechanisms. Sci. Rep. 2016;6:34740. doi: 10.1038/srep34740. PubMed DOI PMC

Huang J.-Y., Chou S.-F., Lee J.-W., Chen H.-L., Chen C.-M., Tao M.-H., Shih C. MicroRNA-130a can inhibit hepatitis B virus replication via targeting PGC1α and PPARγ. RNA. 2015;21:385–400. doi: 10.1261/rna.048744.114. PubMed DOI PMC

Yang X., Li H., Sun H., Fan H., Hu Y., Liu M., Li X., Tang H. Hepatitis B virus-encoded microRNA controls viral replication. J. Virol. 2017;91:e01919-16. doi: 10.1128/JVI.01919-16. PubMed DOI PMC

Hamada-Tsutsumi S., Naito Y., Sato S., Takaoka A., Kawashima K., Isogawa M., Ochiya T., Tanaka Y. The antiviral effects of human microRNA miR-302c-3p against hepatitis B virus infection. Aliment. Pharmacol. Ther. 2019;49:1060–1070. doi: 10.1111/apt.15197. PubMed DOI

Wang Y., Cao J., Zhang S., Sun L., Nan Y., Yao H., Fan J., Zhu L.Y., Yu L. MicroRNA-802 induces hepatitis B virus replication and replication through regulating SMARCE1 expression in hepatocellular carcinoma. Cell Death Dis. 2019;10:783–789. doi: 10.1038/s41419-019-1999-x. PubMed DOI PMC

Osakabe Y., Osakabe K. Genome editing with engineered nucleases in plants. Plant Cell Physiol. 2015;56:389–400. doi: 10.1093/pcp/pcu170. PubMed DOI

Guan G., Zhang X., Naruse K., Nagahama Y., Hong Y. Gene replacement by zinc finger nucleases in medaka embryos. Marine Biotechnol. 2014;16:739–747. doi: 10.1007/s10126-014-9587-7. PubMed DOI

Menke D.B. Engineering subtle targeted mutations into the mouse genome. Genesis. 2013;51:605–618. doi: 10.1002/dvg.22422. PubMed DOI

Zimmerman K.A., Fischer K.P., Joyce M.A., Tyrrell D.L. Zinc finger proteins designed to specifically target duck hepatitis B virus covalently closed circular DNA inhibit viral transcription in tissue culture. J. Virol. 2008;82:8013–8021. doi: 10.1128/JVI.00366-08. PubMed DOI PMC

Lee H.J., Kweon J., Kim E., Kim S., Kim J.S. Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res. 2012;22:539–548. doi: 10.1101/gr.129635.111. PubMed DOI PMC

Cradick T.J., Keck K., Bradshaw S., Jamieson A.C., McCaffrey A.P. Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. Mol. Ther. 2010;18:947–954. doi: 10.1038/mt.2010.20. PubMed DOI PMC

Bloom K., Ely A., Mussolino C., Cathomen T., Arbuthnot P. Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. Mol. Ther. 2013;21:1889–1897. doi: 10.1038/mt.2013.170. PubMed DOI PMC

Chen J., Zhang W., Lin J., Wang F., Wu M., Chen C., Zheng Y., Peng X., Li J., Yuan Z. An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases. Mol. Ther. 2013;22:303–311. doi: 10.1038/mt.2013.212. PubMed DOI PMC

Qi L.S., Larson M.H., Gilbert L.A., Doudna J.A., Weissman J.S., Arkin A.P., Lim W.A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152:1173–1183. doi: 10.1016/j.cell.2013.02.022. PubMed DOI PMC

Zhen S., Hua L., Liu Y.H., Gao L.C., Fu J., Wan D.Y., Dong L.H., Song H.F., Gao X. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther. 2015;22:404–412. doi: 10.1038/gt.2015.2. PubMed DOI

Scott T., Moyo B., Nicholson S., Maepa M.B., Watashi K., Ely A., Weinberg M.S., Arbuthnot P. ssAAVs containing cassettes encoding SaCas9 and guides targeting hepatitis B virus inactivate replication of the virus in cultured cells. Sci. Rep. 2017;7:7401. doi: 10.1038/s41598-017-07642-6. PubMed DOI PMC

Seeger C., Sohn J.A. Complete spectrum of CRISPR/Cas9-induced mutations on HBV cccDNA. Mol. Ther. 2016;24:1258–1266. doi: 10.1038/mt.2016.94. PubMed DOI PMC

Karimova M., Beschorner N., Dammermann W., Chemnitz J., Indenbirken D., Bockmann J.-H., Grundhoff A.T., Lüth S., Buchholz F., Wiesch J.S.Z., et al. CRISPR/Cas9 nickase-mediated disruption of hepatitis B virus open reading frame S and X. Sci. Rep. 2015;5:13734. doi: 10.1038/srep13734. PubMed DOI PMC

Kurihara T., Fukuhara T., Ono C., Yamamoto S., Uemura K., Okamoto T., Sugiyama M., Motooka D., Nakamura S., Ikawa M., et al. Suppression of HBV replication by the expression of nickase- and nuclease dead-Cas9. Sci. Rep. 2017;7:6122. doi: 10.1038/s41598-017-05905-w. PubMed DOI PMC

Sakuma T., Masaki K., Abe-Chayama H., Mochida K., Yamamoto T., Chayama K. Highly multiplexed CRISPR-Cas9-nuclease and Cas9-nickase vectors for inactivation of hepatitis B virus. Genes Cells. 2016;21:1253–1262. doi: 10.1111/gtc.12437. PubMed DOI

Wagner D.L., Amini L., Wendering D.J., Burkhardt L.-M., Akyüz L., Reinke P., Volk H.-D., Schmueck-Henneresse M. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat. Med. 2018;25:242–248. doi: 10.1038/s41591-018-0204-6. PubMed DOI

Busca A., Kumar A. Innate immune responses in hepatitis B virus (HBV) infection. Virol. J. 2014;11:22. doi: 10.1186/1743-422X-11-22. PubMed DOI PMC

Jiang M., Broering R., Trippler M., Poggenpohl L., Fiedler M., Gerken G., Lu M., Schlaak J. Toll-like receptor-mediated immune responses are attenuated in the presence of high levels of hepatitis B virus surface antigen. J. Viral Hepat. 2014;21:860–872. doi: 10.1111/jvh.12216. PubMed DOI

Ebrahim M., Mirzaei V., Bidaki R., Shabani Z., Daneshvar H., Karimi-Googheri M., Khaleghinia M., Afrooz M.R., Yousefpoor Y., Arababadi M.K. Are RIG-1 and MDA5 expressions associated with chronic HBV infection? Viral Immunol. 2015;28:504–508. doi: 10.1089/vim.2015.0056. PubMed DOI

Van Der Molen R.G., Sprengers D., Biesta P.J., Kusters J.G., Janssen H.L.A. Favorable effect of adefovir on the number and functionality of myeloid dendritic cells of patients with chronic HBV. Hepatology. 2006;44:907–914. doi: 10.1002/hep.21340. PubMed DOI

Ye B., Liu X., Li X., Kong H., Tian L., Chen Y. T-cell exhaustion in chronic hepatitis B infection: Current knowledge and clinical significance. Cell Death Dis. 2015;6:e1694. doi: 10.1038/cddis.2015.42. PubMed DOI PMC

Zou Z.Q., Wang L., Wang K., Yu J.G. Innate immune targets of hepatitis B virus infection. World J. Hepatol. 2016;8:716–725. doi: 10.4254/wjh.v8.i17.716. PubMed DOI PMC

Pollicino T., Koumbi L. Role natural killer group 2D-ligand interactions in hepatitis B infection. World J. Hepatol. 2015;7:819–824. doi: 10.4254/wjh.v7.i6.819. PubMed DOI PMC

Thimme R., Wieland S., Steiger C., Ghrayeb J., Reimann K.A., Purcell R.H., Chisari F.V. CD8+ T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J. Virol. 2003;77:68–76. doi: 10.1128/JVI.77.1.68-76.2003. PubMed DOI PMC

Fisicaro P., Valdatta C., Massari M., Loggi E., Biasini E., Sacchelli L., Cavallo M.C., Silini E.M., Andreone P., Missale G., et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology. 2010;138:682–693.e4. doi: 10.1053/j.gastro.2009.09.052. PubMed DOI

Schurich A., Khanna P., Lopes A.R., Han K.J., Peppa D., Micco L., Nebbia G., Kennedy P.T., Geretti A.-M., Dusheiko G., et al. Role of the coinhibitory receptor cytotoxic T lymphocyte antigen-4 on apoptosis-Prone CD8 T cells in persistent hepatitis B virus infection. Hepatology. 2011;53:1494–1503. doi: 10.1002/hep.24249. PubMed DOI

Yu Y., Wu H., Tang Z., Zang G. CTLA4 silencing with siRNA promotes deviation of Th1/Th2 in chronic hepatitis B patients. Cell Mol. Immunol. 2009;6:123–127. doi: 10.1038/cmi.2009.17. PubMed DOI PMC

Schneider H., Downey J., Smith A., Zinselmeyer B.H., Rush C., Brewer J.M., Wei B., Hogg N., Garside P., Rudd C.E. Reversal of the TCR stop signal by CTLA-4. Science. 2006;313:1972–1975. doi: 10.1126/science.1131078. PubMed DOI

Nebbia G., Peppa D., Schurich A., Khanna P., Singh H.D., Cheng Y., Rosenberg W., Dusheiko G., Gilson R., ChinAleong J., et al. Upregulation of the Tim-3/galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection. PLoS ONE. 2012;7:e47648. doi: 10.1371/journal.pone.0047648. PubMed DOI PMC

Wu W., Shi Y., Li J., Chen F., Chen Z., Zheng M. Tim-3 expression on peripheral T cell subsets correlates with disease progression in hepatitis B infection. Virol. J. 2011;8:113. doi: 10.1186/1743-422X-8-113. PubMed DOI PMC

Krebs K., Böttinger N., Huang L., Chmielewski M., Arzberger S., Gasteiger G., Jäger C., Schmitt E., Bohne F., Aichler M., et al. T cells expressing a chimeric antigen receptor that binds hepatitis B virus envelope proteins control virus replication in mice. Gastroenterology. 2013;145:456–465. doi: 10.1053/j.gastro.2013.04.047. PubMed DOI

Qasim W., Brunetto M.R., Gehring A.J., Xue S.-A., Schurich A., Khakpoor A., Zhan H., Ciccorossi P., Gilmour K., Cavallone D., et al. Immunotherapy of HCC metastases with autologous T cell receptor redirected T cells, targeting HBsAg in a liver transplant patient. J. Hepatol. 2015;62:486–491. doi: 10.1016/j.jhep.2014.10.001. PubMed DOI

Martin P., Dubois C., Jacquier E., Dion S., Bourgine M., Godon O., Kratzer R., Lelu-Santolaria K., Evlachev A., Meritet J.-F., et al. TG1050, an immunotherapeutic to treat chronic hepatitis B, induces robust T cells and exerts an antiviral effect in HBV-persistent mice. Gut. 2014;64:1961–1971. doi: 10.1136/gutjnl-2014-308041. PubMed DOI PMC

Liu J., Kosinska A., Lu M., Roggendorf M. New therapeutic vaccination strategies for the treatment of chronic hepatitis B. Virol. Sin. 2014;29:10–16. doi: 10.1007/s12250-014-3410-5. PubMed DOI PMC

Wang Z., Zhu K., Bai W., Jia B., Hu H., Zhou N., Zhang X., Xie Y., Bourgine M., Michel M.-L., et al. Adenoviral delivery of recombinant hepatitis B virus expressing foreign antigenic epitopes for immunotherapy of persistent viral infection. J. Virol. 2013;88:3004–3015. doi: 10.1128/JVI.02756-13. PubMed DOI PMC

Elvidge S. Blockbuster expectations for hepatitis B therapeutic vaccine. Nat. Biotechnol. 2015;33:789. doi: 10.1038/nbt0815-789. PubMed DOI

Lanford R.E., Guerra B., Chavez D., Giavedoni L., Hodara V.L., Brasky K.M., Fosdick A., Frey C.R., Zheng J., Wolfgang G., et al. GS-9620, an oral agonist of Toll-like receptor-7, induces prolonged suppression of hepatitis B virus in chronically infected chimpanzees. Gastroenterology. 2013;144:1508–1517.e10. doi: 10.1053/j.gastro.2013.02.003. PubMed DOI PMC

Boni C., Janssen H.L., Rossi M., Yoon S.K., Vecchi A., Barili V., Yoshida E.M., Trinh H., Rodell T.C., Laccabue D., et al. Combined GS-4774 and tenofovir therapy can improve HBV-specific T-cell responses in patients with chronic hepatitis. Gastroenterology. 2019;157:227–241.e7. doi: 10.1053/j.gastro.2019.03.044. PubMed DOI

Akcay I.M., Katrinli S., Ozdil K., Doganay G.D., Doganay L. Host genetic factors affecting hepatitis B infection outcomes: Insights from genome-wide association studies. World J. Gastroenterol. 2018;24:3347–3360. doi: 10.3748/wjg.v24.i30.3347. PubMed DOI PMC

Kamatani Y., Wattanapokayakit S., Ochi H., Kawaguchi T., Takahashi A., Hosono N., Kubo M., Tsunoda T., Kamatani N., Kumada H., et al. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat. Genet. 2009;41:591–595. doi: 10.1038/ng.348. PubMed DOI

Mbarek H., Ochi H., Urabe Y., Kumar V., Kubo M., Hosono N., Takahashi A., Kamatani Y., Miki D., Abe H., et al. A genome-wide association study of chronic hepatitis B identified novel risk locus in a Japanese population. Hum. Mol. Genet. 2011;20:3884–3892. doi: 10.1093/hmg/ddr301. PubMed DOI

Liu L., Li J., Yao J., Yu J., Zhang J., Ning Q., Wen Z., Yang D., He Y., Kong X., et al. A genome-wide association study with DNA pooling identifies the variant rs11866328 in the GRIN2A gene that affects disease progression of chronic HBV infection. Viral Immunol. 2011;24:397–402. doi: 10.1089/vim.2011.0027. PubMed DOI

Hu Z., Liu Y., Zhai X., Dai J., Jin G., Wang L., Zhu L., Yang Y., Liu J., Chu M., et al. New loci associated with chronic hepatitis B virus infection in Han Chinese. Nat. Genet. 2013;45:1499–1503. doi: 10.1038/ng.2809. PubMed DOI

Kim Y.J., Lee J.-H., Yu S.J., Yoon J.-H., Cheong J.Y., Cho S.W., Park N.H., Namgoong S., Shin H.D. A genome-wide association study identified new variants associated with the risk of chronic hepatitis B. Hum. Mol. Genet. 2013;22:4233–4238. doi: 10.1093/hmg/ddt266. PubMed DOI

Katrinli S., Niğdelioğlu A., Ozdil K., Dinler-Doganay G., Doganay L. The association of variations in TLR genes and spontaneous immune control of hepatitis B virus. Clin. Res. Hepatol. Gastroenterol. 2018;42:139–144. doi: 10.1016/j.clinre.2017.10.002. PubMed DOI

Chang S.-W., Fann C.S.-J., Su W.-H., Wang Y.C., Weng C.C., Yu C.-J., Hsu C.-L., Hsieh A.-R., Chien R.-N., Chu C.-M., et al. A genome-wide association study on chronic HBV infection and its clinical progression in male Han-Taiwanese. PLoS ONE. 2014;9:e99724. doi: 10.1371/journal.pone.0099724. PubMed DOI PMC

Sawai H., Nishida N., Khor S.-S., Honda M., Sugiyama M., Baba N., Yamada K., Sawada N., Tsugane S., Koike K., et al. Genome-wide association study identified new susceptible genetic variants in HLA class I region for hepatitis B virus-related hepatocellular carcinoma. Sci. Rep. 2018;8:7958. doi: 10.1038/s41598-018-26217-7. PubMed DOI PMC

Pan L., Zhang L., Zhang W., Wu X., Li Y., Yan B., Zhu X., Liu X., Yang C., Xu J., et al. A genome-wide association study identifies polymorphisms in the HLA-DR region associated with non-response to hepatitis B vaccination in Chinese Han populations. Hum. Mol. Genet. 2013;23:2210–2219. doi: 10.1093/hmg/ddt586. PubMed DOI

Wu T.-W., Chen C.-F., Lai S.-K., Lin H.H., Chu C.-C., Wang L.-Y. SNP rs7770370 in HLA-DPB1 loci as a major genetic determinant of response to booster hepatitis B vaccination: Results of a genome-wide association study. J. Gastroenterol. Hepatol. 2015;30:891–899. doi: 10.1111/jgh.12845. PubMed DOI

Roh E.Y., Yoon J.H., In J.W., Lee N., Shin S., Song E.Y. Association of HLA-DP variants with the responsiveness to Hepatitis B virus vaccination in Korean infants. Vaccine. 2016;34:2602–2607. doi: 10.1016/j.vaccine.2016.03.090. PubMed DOI

Okada Y., Uno N., Sato S., Mori S., Sasaki D., Kaku N., Kosai K., Morinaga Y., Hasegawa H., Yanagihara K. Strong influence of human leukocyte antigen-DP variants on response to hepatitis B vaccine in a Japanese population. Vaccine. 2017;35:5662–5665. doi: 10.1016/j.vaccine.2017.08.045. PubMed DOI

Li Y., Si L., Zhai Y., Hu Y., Hu Z., Bei J.-X., Xie B., Ren Q., Cao P., Yang F., et al. Genome-wide association study identifies 8p21.3 associated with persistent hepatitis B virus infection among Chinese. Nat. Commun. 2016;7:11664. doi: 10.1038/ncomms11664. PubMed DOI PMC

Palacios G., Druce J., Du L., Tran T., Birch C., Briese T., Conlan S., Quan P.-L., Hui J., Marshall J., et al. A new arenavirus in a cluster of fatal transplant-associated diseases. New Engl. J. Med. 2008;358:991–998. doi: 10.1056/NEJMoa073785. PubMed DOI

Towner J.S., Sealy T.K., Khristova M.L., Albariño C.G., Conlan S., Reeder S.A., Quan P.-L., Lipkin W.I., Downing R., Tappero J.W., et al. Newly discovered Ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathog. 2008;4:e1000212. doi: 10.1371/journal.ppat.1000212. PubMed DOI PMC

Quick J., Grubaugh N.D., Pullan S.T., Claro I.M., Smith A.D., Gangavarapu K., Oliveira G., Robles-Sikisaka R., Rogers T.F., Beutler N., et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat. Protoc. 2017;12:1261–1276. doi: 10.1038/nprot.2017.066. PubMed DOI PMC

Ge X., Li Y., Yang X., Zhang H., Zhou P., Zhang Y., Shi Z. Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China. J. Virol. 2012;86:4620–4630. doi: 10.1128/JVI.06671-11. PubMed DOI PMC

Yozwiak N.L., Skewes-Cox P., Stenglein M.D., Balmaseda A., Harris E., DeRisi J.L. Virus identification in unknown tropical febrile illness cases using deep sequencing. PLoS Neglected Trop. Dis. 2012;6:e1485. doi: 10.1371/journal.pntd.0001485. PubMed DOI PMC

Wu I.C., Liu W.C., Chang T.T. Applications of next-generation sequencing analysis for the detection of hepatocellular carcinoma-associated hepatitis B virus mutations. J. Biomed. Sci. 2018;25:51. doi: 10.1186/s12929-018-0442-4. PubMed DOI PMC

Gong L., Han Y., Chen L., Liu F., Hao P., Sheng J., Li X.-H., Yu D.-M., Gong Q.-M., Tian F., et al. Comparison of next-generation sequencing and clone-based sequencing in analysis of hepatitis B virus reverse transcriptase quasispecies heterogeneity. J. Clin. Microbiol. 2013;51:4087–4094. doi: 10.1128/JCM.01723-13. PubMed DOI PMC

Lecuit M., Eloit M. The human virome: New tools and concepts. Trends Microbiol. 2013;21:510–515. doi: 10.1016/j.tim.2013.07.001. PubMed DOI PMC

Albalat A., Husi H., Stalmach A., Schanstra J.P., Mischak H. Classical MALDI-MS versus CE-based ESI-MS proteomic profiling in urine for clinical applications. Bioanalysis. 2014;6:247–266. doi: 10.4155/bio.13.313. PubMed DOI

Luan J., Yuan J., Li X., Jin S., Yu L., Liao M., Zhang H., Xu C., He Q., Wen B., et al. Multiplex detection of 60 hepatitis B virus variants by MALDI-TOF mass spectrometry. Clin. Chem. 2009;55:1503–1509. doi: 10.1373/clinchem.2009.124859. PubMed DOI

Liu T., Xue R., Huang X., Zhang D., Dong L., Wu H., Shen X. Proteomic profiling of hepatitis B virus-related hepatocellular carcinoma with magnetic bead-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Acta Biochim. Biophys. Sin. 2011;43:542–550. doi: 10.1093/abbs/gmr044. PubMed DOI

Ganova-Raeva L., Ramachandran S., Honisch C., Forbi J.C., Zhai X., Khudyakov Y. Robust hepatitis B virus genotyping by mass spectrometry. J. Clin. Microbiol. 2010;48:4161–4168. doi: 10.1128/JCM.00813-10. PubMed DOI PMC

Hong S.P., Kim N.K., Hwang S.G., Chung H.J., Kim S., Han J.H., Kim H.T., Rim K.S., Kang M.S., Yoo W., et al. Detection of hepatitis B virus YMDD variants using mass spectrometric analysis of oligonucleotide fragments. J. Hepatol. 2004;40:837–844. doi: 10.1016/j.jhep.2004.01.006. PubMed DOI

World Health Organization Guidelines for the Prevention, Care and Treatment of Persons with Chronic Hepatitis B Infection. [(accessed on 30 July 2020)];2015 Available online: http://www.who.int/hiv/pub/hepatitis/hepatitis-b-guidelines/en. PubMed

Amini A., Varsaneux O., Kelly H., Tang W., Chen W., Boeras D., Falconer J., Tucker J.D., Chou R., Ishizaki A., et al. Diagnostic accuracy of tests to detect hepatitis B surface antigen: A systematic review of the literature and meta-analysis. BMC Infect. Dis. 2017;17:698. doi: 10.1186/s12879-017-2772-3. PubMed DOI PMC

Liu Y.P., Yao C.Y. Rapid and quantitative detection of hepatitis B virus. World J. Gastroenterol. 2015;21:11954–11963. doi: 10.3748/wjg.v21.i42.11954. PubMed DOI PMC

Zhou X., Liu L., Hu M., Wang L., Hu J. Detection of hepatitis B virus by piezoelectric biosensor. J. Pharm. Biomed. Anal. 2002;27:341–345. doi: 10.1016/S0731-7085(01)00538-6. PubMed DOI

Huang J.-T., Yang Y., Hu Y.-M., Liu X., Liao M.-Y., Morgan R., Yuan E.-F., Li X., Liu S.-M. A highly sensitive and robust method for hepatitis B virus covalently closed circular DNA detection in single cells and serum. J. Mol. Diagn. 2018;20:334–343. doi: 10.1016/j.jmoldx.2018.01.010. PubMed DOI

Gauthier M., Bonnaud B., Arsac M., Lavocat F., Maisetti J., Kay A., Simon F., Zoulim F., Vernet G. Microarray for hepatitis B virus genotyping and detection of 994 mutations along the genome. J. Clin. Microbiol. 2010;48:4207–4215. doi: 10.1128/JCM.00344-10. PubMed DOI PMC

Hua W., Zhang G., Guo S., Li W., Sun L., Xiang G. Microarray-based genotyping and detection of drug-resistant HBV mutations from 620 Chinese patients with chronic HBV infection. Braz. J. Infect. Dis. 2015;19:291–295. doi: 10.1016/j.bjid.2015.03.012. PubMed DOI PMC

Zhi X., Deng M., Yang H., Gao G., Qin Q., Fu H., Zhang Y., Chen D., Cui D. A novel HBV genotypes detecting system combined with microfluidic chip, loop-mediated isothermal amplification and GMR sensors. Biosens. Bioelectron. 2014;54:372–377. doi: 10.1016/j.bios.2013.11.025. PubMed DOI

Brahmania M., Feld J., Arif A., Janssen H.L. New therapeutic agents for chronic hepatitis B. Lancet Infect. Dis. 2016;16:e10–e21. doi: 10.1016/S1473-3099(15)00436-3. PubMed DOI

Block B.T.M., Gish R.G., Guo H., Mehta A., Cuconati A., London W.T., Guo J.-T. Chronic hepatitis B: What should be the goal for new therapies? Antivir. Res. 2013;98:27–34. doi: 10.1016/j.antiviral.2013.01.006. PubMed DOI PMC

Centelles M.N., Wright M., Tsolaki M., Amrahli M., Xu X.Y., Stebbing J., Miller A.D., Gedroyc W., Thanou M. Image-guided thermosensitive liposomes for focused ultrasound drug delivery: Using NIRF-labelled lipids and topotecan to visualise the effects of hyperthermia in tumours. J. Control. Release. 2018;280:87–98. doi: 10.1016/j.jconrel.2018.04.047. PubMed DOI

Reddy L.H., Couvreur P. Nanotechnology for therapy and imaging of liver diseases. J. Hepatol. 2011;55:1461–1466. doi: 10.1016/j.jhep.2011.05.039. PubMed DOI

Wang X., Li Y., Wang H., Fu Q., Peng J., Wang Y. Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma. Biosens. Bioelectron. 2010;26:404–410. doi: 10.1016/j.bios.2010.07.121. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...