Nanotechnology and stem cells in vascular biology
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
32923961
PubMed Central
PMC7439937
DOI
10.1530/vb-19-0021
PII: VB-19-0021
Knihovny.cz E-zdroje
- Klíčová slova
- nanorobots, nanotechnology, stem cells,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Nanotechnology and stem cells are one of the most promising strategies for clinical medicine applications. The article provides an up-to-date view on advances in the field of regenerative and targeted vascular therapies describing a molecular design (propulsion mechanism, composition, target identification) and applications of nanorobots. Stem cell paragraph presents current clinical application of various cell types involved in vascular biology including mesenchymal stem cells, very small embryonic-like stem cells, induced pluripotent stem cells, mononuclear stem cells, amniotic fluid-derived stem cells and endothelial progenitor cells. A possible bridging between the two fields is also envisioned, where bio-inspired, safe, long-lasting nanorobots can fully target the cellular specific cues and even drive vascular process in a timely manner.
Department of Cardiology and Structural Heart Diseases Medical University of Silesia Katowice Poland
Zobrazit více v PubMed
Jadczyk T, Bryndza Tfaily E, Mishra S, Jedrzejek M, Boloz M, Padmanabhan P, Wojakowski W, Starek Z, Martel S, Gulyas B. Innovative Diagnostics and Treatment: Nanorobotics and Stem Cells. Springer Briefs in Applied Science and Technology 2017. Singapore: Springer; Singapore; (10.1007/978-981-10-4527-1) DOI
Wamala I, Roche ET, Pigula FA. The use of soft robotics in cardiovascular therapy. Expert Review of Cardiovascular Therapy 2017. 767–774. (10.1080/14779072.2017.1366313) PubMed DOI
Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech 2014. 1527–1534. (10.1208/s12249-014-0177-9) PubMed DOI PMC
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharmaceutical Research 2016. 2373–2387. (10.1007/s11095-016-1958-5) PubMed DOI
Martel S. Swimming microorganisms acting as nanorobots versus artificial nanorobotic agents: a perspective view from an historical retrospective on the future of medical nanorobotics in the largest known three-dimensional biomicrofluidic networks. Biomicrofluidics 2016. 021301 (10.1063/1.4945734) PubMed DOI PMC
Sokolov IL, Cherkasov VR, Tregubov AA, Buiucli SR, Nikitin MP. Smart materials on the way to theranostic nanorobots: molecular machines and nanomotors, advanced biosensors, and intelligent vehicles for drug delivery. Biochimica et Biophysica Acta. General Subjects 2017. 1530–1544. (10.1016/j.bbagen.2017.01.027) PubMed DOI
Kumar A, Takatsuki H, Choi CK, Ayusman Sen A, Eric Blough E. Glucose driven catalytic nanomotor to create motion at micro scale. Journal of Biotech Research 2013. 35–39.
Zhao G, Viehrig M, Pumera M. Challenges of the movement of catalytic micromotors in blood. Lab On A Chip 2013. 1930–1936. (10.1039/c3lc41423j) PubMed DOI
Beladi-Mousavi SM, Khezri B, Krejcova L, Heger Z, Sofer Z, Fisher AC, Pumera M. Recoverable bismuth-based microrobots: capture, transport, and on-demand release of heavy metals and an anticancer drug in confined spaces. ACS Applied Materials & Interfaces 2019. 13359–13369. (10.1021/acsami.8b19408) PubMed DOI
Khezri B, Pumera M. Metal-organic frameworks based nano/micro/millimeter-sized self-propelled autonomous machines. Advanced Materials 2019. e1806530 (10.1002/adma.201806530) PubMed DOI
Singh HR, Kopperger E, Simmel FC. A DNA nanorobot uprises against cancer. Trends in Molecular Medicine 2018. 591–593. (10.1016/j.molmed.2018.05.001) PubMed DOI
Ali J, Cheang UK, Martindale JD, Jabbarzadeh M, Fu HC, Jun Kim M. Bacteria-inspired nanorobots with flagellar polymorphic transformations and bundling. Scientific Reports 2017. 14098 (10.1038/s41598-017-14457-y) PubMed DOI PMC
Medina-Sanchez M, Xu H, Schmidt OG. Micro- and nano-motors: the new generation of drug carriers. Therapeutic Delivery 2018. 303–316. (10.4155/tde-2017-0113) PubMed DOI
Arcese L, Fruchard M, Ferreira A. Endovascular magnetically guided robots: navigation modeling and optimization. IEEE Transactions on Bio-Medical Engineering 2012. 977–987. (10.1109/TBME.2011.2181508) PubMed DOI
Kandaswamy E, Zuo L. Recent advances in treatment of coronary artery disease: role of science and technology. International Journal of Molecular Sciences 2018. . (10.3390/ijms19020424) PubMed DOI PMC
Tsukie N, Nakano K, Matoba T, Masuda S, Iwata E, Miyagawa M, Zhao G, Meng W, Kishimoto J, Sunagawa K, et al. Pitavastatin-incorporated nanoparticle-eluting stents attenuate in-stent stenosis without delayed endothelial healing effects in a porcine coronary artery model. Journal of Atherosclerosis & Thrombosis 2013. 32–45. (10.5551/jat.13862) PubMed DOI
Lu J, Liong M, Li Z, Zink JI, Tamanoi F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 2010. 1794–1805. (10.1002/smll.201000538) PubMed DOI PMC
Acharya G, Lee CH, Lee Y. Optimization of cardiovascular stent against restenosis: factorial design-based statistical analysis of polymer coating conditions. PLOS ONE 2012. e43100 (10.1371/journal.pone.0043100) PubMed DOI PMC
Broz P, Ben-Haim N, Grzelakowski M, Marsch S, Meier W, Hunziker P. Inhibition of macrophage phagocytotic activity by a receptor-targeted polymer vesicle-based drug delivery formulation of pravastatin. Journal of Cardiovascular Pharmacology 2008. 246–252. (10.1097/FJC.0b013e3181624aed) PubMed DOI
Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G, Lee KM, Kim JI, Markmann JF, Marinelli B, et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology 2011. 1005–1010. (10.1038/nbt.1989) PubMed DOI PMC
Rhee JW, Wu JC. Advances in nanotechnology for the management of coronary artery disease. Trends in Cardiovascular Medicine 2013. 39–45. (10.1016/j.tcm.2012.08.009) PubMed DOI PMC
Mittal R, Jhaveri VM, McMurry HS, Kay SS, Sutherland KJ, Nicole L, Mittal J, Jayant RD. Recent treatment modalities for cardiovascular diseases with a focus on stem cells, aptamers, exosomes and nanomedicine. Artificial Cells, Nanomedicine, and Biotechnology 2018. 831–840. (10.1080/21691401.2018.1436555) PubMed DOI
Cavalcanti A, Shirinzadeh B, Fukuda T, Ikeda S. Nanorobot for brain aneurysm. The International Journal of Robotics Research 2009. 558–570. (10.1177/0278364908097586) DOI
Trihirun S, Achalakul T, Kaewkamnerdpong B. Modeling nanorobot control for blood vessel repair: a non-Newtonian blood model In The 6th 2013 Biomedical Engineering International Conference 2013, Amphur Muang, Thailand.
Al-Fandi M, Alshraiedeh N, Oweis R, Alshdaifat H, Al-Mahaseneh O, Al-Tall K, Alawneh R, Al-Fandi M, Alshraiedeh N, Oweis R, Alshdaifat H, Al-Mahaseneh O, Al-Tall K, Alawneh R. Novel selective detection method of tumor angiogenesis factors using living nano-robots. Sensors (Basel, Switzerland) 2017. 1580 (10.3390/s17071580) PubMed DOI PMC
Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C, Wang J, Zou Y, Anderson GJ, Han JY, et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature Biotechnology 2018. 258–264. (10.1038/nbt.4071) PubMed DOI
Chandra P, Atala A. Engineering blood vessels and vascularized tissues: technology trends and potential clinical applications. Clinical Science 2019. 1115–1135. (10.1042/CS20180155) PubMed DOI
Wang D, Li LK, Dai T, Wang A, Li S. Adult stem cells in vascular remodeling. Theranostics 2018. 815–829. (10.7150/thno.19577) PubMed DOI PMC
Fitzsimmons REB, Mazurek MS, Soos A, Simmons CA. Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells International 2018. 8031718 (10.1155/2018/8031718) PubMed DOI PMC
Karantalis V, Hare JM. Use of mesenchymal stem cells for therapy of cardiac disease. Circulation Research 2015. 1413–1430. (10.1161/CIRCRESAHA.116.303614) PubMed DOI PMC
Musialek P, Mazurek A, Jarocha D, Tekieli L, Szot W, Kostkiewicz M, Banys RP, Urbanczyk M, Kadzielski A, Trystula M, et al. Myocardial regeneration strategy using Wharton's jelly mesenchymal stem cells as an off-the-shelf 'unlimited' therapeutic agent: results from the acute myocardial infarction first-in-Man Study. Postepy w Kardiologii Interwencyjnej = Advances in Interventional Cardiology 2015. 100–107. (10.5114/pwki.2015.52282) PubMed DOI PMC
Wingate K, Floren M, Tan Y, Tseng PO, Tan W. Synergism of matrix stiffness and vascular endothelial growth factor on mesenchymal stem cells for vascular endothelial regeneration. Tissue Engineering. Part A 2014. 2503–2512. (10.1089/ten.TEA.2013.0249) PubMed DOI PMC
Machado Cde V, Telles PD, Nascimento IL. Immunological characteristics of mesenchymal stem cells. Revista Brasileira de Hematologia e Hemoterapia 2013. 62–67. (10.5581/1516-8484.20130017) PubMed DOI PMC
Iwase T, Nagaya N, Fujii T, Itoh T, Murakami S, Matsumoto T, Kangawa K, Kitamura S. Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovascular Research 2005. 543–551. (10.1016/j.cardiores.2005.02.006) PubMed DOI
Bura A, Planat-Benard V, Bourin P, Silvestre JS, Gross F, Grolleau JL, Saint-Lebese B, Peyrafitte JA, Fleury S, Gadelorge M, et al. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy 2014. 245–257. (10.1016/j.jcyt.2013.11.011) PubMed DOI
Perin EC, Borow KM, Silva GV, DeMaria AN, Marroquin OC, Huang PP, Traverse JH, Krum H, Skerrett D, Zheng Y, et al. A phase II dose-escalation study of allogeneic mesenchymal precursor cells in patients with ischemic or nonischemic heart failure. Circulation Research 2015. 576–584. (10.1161/CIRCRESAHA.115.306332) PubMed DOI
Penn MS, Ellis S, Gandhi S, Greenbaum A, Hodes Z, Mendelsohn FO, Strasser D, Ting AE, Sherman W. Adventitial delivery of an allogeneic bone marrow-derived adherent stem cell in acute myocardial infarction: phase I clinical study. Circulation Research 2012. 304–311. (10.1161/CIRCRESAHA.111.253427) PubMed DOI
Lalu MM, Mazzarello S, Zlepnig J, Dong YYR, Montroy J, McIntyre L, Devereaux PJ, Stewart DJ, David Mazer C, Barron CC, et al. Safety and efficacy of adult stem cell therapy for acute myocardial infarction and ischemic heart failure (SafeCell heart): a systematic review and meta-analysis. Stem Cells Translational Medicine 2018. 857–866. (10.1002/sctm.18-0120) PubMed DOI PMC
Maraldi T, Riccio M, Pisciotta A, Zavatti M, Carnevale G, Beretti F, La Sala GB, Motta A, De Pol A. Human amniotic fluid-derived and dental pulp-derived stem cells seeded into collagen scaffold repair critical-size bone defects promoting vascularization. Stem Cell Research & Therapy 2013. 53 (10.1186/scrt203) PubMed DOI PMC
Rigato M, Monami M, Fadini GP. Autologous cell therapy for peripheral arterial disease: systematic review and meta-analysis of randomized, nonrandomized, and noncontrolled studies. Circulation Research 2017. 1326–1340. (10.1161/CIRCRESAHA.116.309045) PubMed DOI
Qadura M, Terenzi DC, Verma S, Al-Omran M, Hess DA. Concise review: cell therapy for critical limb ischemia: an integrated review of preclinical and clinical studies. Stem Cells 2018. 161–171. (10.1002/stem.2751) PubMed DOI
Bartunek J, Wojakowski W. Intracoronary autologous bone marrow cell transfer after acute myocardial infarction: abort and refocus. European Heart Journal 2017. 2944–2947. (10.1093/eurheartj/ehx300) PubMed DOI
Gyongyosi M, Wojakowski W, Navarese EP, Moye LÀ. & ACCRUE Investigators. Meta-analyses of human cell-based cardiac regeneration therapies: controversies in meta-analyses results on cardiac cell-based regenerative studies. Circulation Research 2016. 1254–1263. (10.1161/CIRCRESAHA.115.307347) PubMed DOI PMC
Ratajczak MZ, Ratajczak J, Kucia M. Very small embryonic-like stem cells (VSELs). Circulation Research 2019. 208–210. (10.1161/CIRCRESAHA.118.314287) PubMed DOI PMC
Bhartiya D. Clinical translation of stem cells for regenerative medicine. Circulation Research 2019. 840–842. (10.1161/CIRCRESAHA.118.313823) PubMed DOI
Sivarapatna A, Ghaedi M, Le AV, Mendez JJ, Qyang Y, Niklason LE. Arterial specification of endothelial cells derived from human induced pluripotent stem cells in a biomimetic flow bioreactor. Biomaterials 2015. 621–633. (10.1016/j.biomaterials.2015.02.121) PubMed DOI PMC
Suzuki H, Shibata R, Kito T, Yamamoto T, Ishii M, Nishio N, Ito S, Isobe K, Murohara T. Comparative angiogenic activities of induced pluripotent stem cells derived from young and old mice. PLOS ONE 2012. e39562 (10.1371/journal.pone.0039562) PubMed DOI PMC
Gu M, Nguyen PK, Lee AS, Xu D, Hu S, Plews JR, Han L, Huber BC, Lee WH, Gong Y, et al. Microfluidic single-cell analysis shows that porcine induced pluripotent stem cell-derived endothelial cells improve myocardial function by paracrine activation. Circulation Research 2012. 882–893. (10.1161/CIRCRESAHA.112.269001) PubMed DOI PMC
Yamanaka S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 2012. 678–684. (10.1016/j.stem.2012.05.005) PubMed DOI
Grath A, Dai G. Direct cell reprogramming for tissue engineering and regenerative medicine. Journal of Biological Engineering 2019. 14 (10.1186/s13036-019-0144-9) PubMed DOI PMC
Borgohain MP, Haridhasapavalan KK, Dey C, Adhikari P, Thummer RP. An insight into DNA-free reprogramming approaches to generate integration-free induced pluripotent stem cells for prospective biomedical applications. Stem Cell Reviews and Reports 2019. 286–313. (10.1007/s12015-018-9861-6) PubMed DOI
Medina RJ, Barber CL, Sabatier F, Dignat-George F, Melero-Martin JM, Khosrotehrani K, Ohneda O, Randi AM, Chan JKY, Yamaguchi T, et al. Endothelial progenitors: a consensus statement on nomenclature. Stem Cells Translational Medicine 2017. 1316–1320. (10.1002/sctm.16-0360) PubMed DOI PMC
Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000. 952–958. PubMed
Chong MS, Ng WK, Chan JK. Concise review: endothelial progenitor cells in regenerative medicine: applications and challenges. Stem Cells Translational Medicine 2016. 530–538. (10.5966/sctm.2015-0227) PubMed DOI PMC
Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 2004. 2752–2760. (10.1182/blood-2004-04-1396) PubMed DOI
Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 2007. 4761–4768. (10.1182/blood-2006-12-062471) PubMed DOI
Zhang M, Malik AB, Rehman J. Endothelial progenitor cells and vascular repair. Current Opinion in Hematology 2014. 224–228. (10.1097/MOH.0000000000000041) PubMed DOI PMC
Li DW, Liu ZQ, Wei J, Liu Y, Hu LS. Contribution of endothelial progenitor cells to neovascularization (Review). International Journal of Molecular Medicine 2012. 1000–1006. (10.3892/ijmm.2012.1108) PubMed DOI
Ambasta RK, Kohli H, Kumar P. Multiple therapeutic effect of endothelial progenitor cell regulated by drugs in diabetes and diabetes related disorder. Journal of Translational Medicine 2017. 185 (10.1186/s12967-017-1280-y) PubMed DOI PMC
Wojakowski W, Landmesser U, Bachowski R, Jadczyk T, Tendera M. Mobilization of stem and progenitor cells in cardiovascular diseases. Leukemia 2012. 23–33. (10.1038/leu.2011.184) PubMed DOI
Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proceedings of the National Academy of Sciences of the United States of America 2000. 3422–3427. (10.1073/pnas.070046397) PubMed DOI PMC
Li R, Li XM, Chen JR. Clinical efficacy and safety of autologous stem cell transplantation for patients with ST-segment elevation myocardial infarction. Therapeutics & Clinical Risk Management 2016. 1171–1189. (10.2147/TCRM.S107199) PubMed DOI PMC
Hou Y, Li C. Stem/progenitor cells and their therapeutic application in cardiovascular disease. Frontiers in Cell & Developmental Biology 2018. 139 (10.3389/fcell.2018.00139) PubMed DOI PMC
Pirro M, Manfredelli MR, Schillaci G, Helou RS, Bagaglia F, Melis F, Scalera GB, Scarponi AM, Gentile E, Mannarino E. Association between circulating osteoblast progenitor cells and aortic calcifications in women with postmenopausal osteoporosis. Nutrition, Metabolism, and Cardiovascular Diseases 2013. 466–472. (10.1016/j.numecd.2011.08.006) PubMed DOI
Pirro M, Schillaci G, Mannarino MR, Scarponi AM, Manfredelli MR, Callarelli L, Leli C, Fabbriciani G, Helou RS, Bagaglia F, et al. Circulating immature osteoprogenitor cells and arterial stiffening in postmenopausal osteoporosis. Nutrition, Metabolism, and Cardiovascular Diseases 2011. 636–642. (10.1016/j.numecd.2010.01.015) PubMed DOI