A Simple Drug Delivery System for Platelet-Derived Bioactive Molecules, to Improve Melanocyte Stimulation in Vitiligo Treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO1508
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.2.16/3.1.00/21528
Ministerstvo Školství, Mládeže a Tělovýchovy
CEITEC 2020 (LQ1601)
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018110
CzechNanoLab Research Infrastructure
17-32285A
Agentura Pro Zdravotnický Výzkum České Republiky
PubMed
32927642
PubMed Central
PMC7559479
DOI
10.3390/nano10091801
PII: nano10091801
Knihovny.cz E-zdroje
- Klíčová slova
- centrifugal spinning, electrospinning, melanocyte, platelets, vitiligo,
- Publikační typ
- časopisecké články MeSH
Vitiligo is the most common depigmentation disorder of the skin. Currently, its therapy focuses on the halting of the immune response and stimulation of the regenerative processes, leading to the restoration of normal melanocyte function. Platelet-rich plasma (PRP) represents a safe and cheap regenerative therapy option, as it delivers a wide spectrum of native growth factors, cytokines and other bioactive molecules. The aim of this study was to develop a simple delivery system to prolong the effects of the bioactive molecules released from platelets. The surface of electrospun and centrifugally spun poly-ε-caprolactone (PCL) fibrous scaffolds was functionalized with various concentrations of platelets; the influence of the morphology of the scaffolds and the concentration of the released platelet-derived bioactive molecules on melanocytes, was then assessed. An almost two-fold increase in the amount of the released bioactive molecules was detected on the centrifugally spun vs. electrospun scaffolds, and a sustained 14-day release of the bioactive molecules was demonstrated. A strong concentration-dependent response of melanocyte to the bioactive molecules was observed; higher concentrations of bioactive molecules resulted in improved metabolic activity and proliferation of melanocytes. This simple system improves melanocyte viability, offers on-site preparation and is suitable for prolonged topical PRP administration.
Zobrazit více v PubMed
Alikhan A., Felsten L.M., Daly M., Petronic-Rosic V. Vitiligo: A comprehensive overview: Part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. J. Am. Acad. Dermatol. 2011;65:473–491. doi: 10.1016/j.jaad.2010.11.061. PubMed DOI
Zhang Y., Cai Y., Shi M., Jiang S., Cui S., Wu Y. The Prevalence of Vitiligo: A Meta-Analysis. PLoS ONE. 2016;11:e0163806. doi: 10.1371/journal.pone.0163806. PubMed DOI PMC
Yaghoobi R., Omidian M., Bagherani N. Vitiligo: A review of the published work. J. Dermatol. 2011;38:419–431. doi: 10.1111/j.1346-8138.2010.01139.x. PubMed DOI
Parambath N., Sharma V.K., Parihar A.S., Sahni K., Gupta S. Use of platelet-rich plasma to suspend noncultured epidermal cell suspension improves repigmentation after autologous transplantation in stable vitiligo: A double-blind randomized controlled trial. Int. J. Dermatol. 2019;58:472–476. doi: 10.1111/ijd.14286. PubMed DOI
Talsania N., Lamb B., Bewley A. Vitiligo is more than skin deep: A survey of members of the Vitiligo Society. Clin. Exp. Dermatol. 2010;35:736–739. doi: 10.1111/j.1365-2230.2009.03765.x. PubMed DOI
Felsten L.M., Alikhan A., Petronic-Rosic V. Vitiligo: A comprehensive overview: Part II: Treatment options and approach to treatment. J. Am. Acad. Dermatol. 2011;65:493–514. doi: 10.1016/j.jaad.2010.10.043. PubMed DOI
Xiao B.H., Wu Y., Sun Y., Chen H.D., Gao X.H. Treatment of vitiligo with NB-UVB: A systematic review. J. Dermatol. Treat. 2015;26:340–346. doi: 10.3109/09546634.2014.952610. PubMed DOI
Nicolaidou E., Antoniou C., Stratigos A., Katsambas A.D. Narrowband ultraviolet B phototherapy and 308-nm excimer laser in the treatment of vitiligo: A review. J. Am. Acad. Dermatol. 2009;60:470–477. doi: 10.1016/j.jaad.2008.07.053. PubMed DOI
Ibrahim Z.A., El-Ashmawy A.A., El-Tatawy R.A., Sallam F.A. The effect of platelet-rich plasma on the outcome of short-term narrowband–ultraviolet B phototherapy in the treatment of vitiligo: A pilot study. J. Cosmet. Dermatol. 2016;15:108–116. doi: 10.1111/jocd.12194. PubMed DOI
Abdelghani R., Ahmed N.A., Darwish H.M. Combined treatment with fractional carbon dioxide laser, autologous platelet-rich plasma, and narrow band ultraviolet B for vitiligo in different body sites: A prospective, randomized comparative trial. J. Cosmet. Dermatol. 2018;17:365–372. doi: 10.1111/jocd.12397. PubMed DOI
De Pascale M.R., Sommese L., Casamassimi A., Napoli C. Platelet Derivatives in Regenerative Medicine: An Update. Transfus. Med. Rev. 2015;29:52–61. doi: 10.1016/j.tmrv.2014.11.001. PubMed DOI
Burnouf T., Strunk D., Koh M.B.C., Schallmoser K. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials. 2016;76:371–387. doi: 10.1016/j.biomaterials.2015.10.065. PubMed DOI
Foster T.E., Puskas B.L., Mandelbaum B.R., Gerhardt M.B., Rodeo S.A. Platelet-Rich Plasma. Am. J. Sports Med. 2009;37:2259–2272. doi: 10.1177/0363546509349921. PubMed DOI
Cameli N., Mariano M., Cordone I., Abril E., Masi S., Foddai M.L. Autologous Pure Platelet-Rich Plasma Dermal Injections for Facial Skin Rejuvenation. Dermatol. Surg. 2017;43:826–835. doi: 10.1097/DSS.0000000000001083. PubMed DOI
Elnehrawy N.Y., Ibrahim Z.A., Eltoukhy A.M., Nagy H.M. Assessment of the efficacy and safety of single platelet-rich plasma injection on different types and grades of facial wrinkles. J. Cosmet. Dermatol. 2017;16:103–111. doi: 10.1111/jocd.12258. PubMed DOI
James R., Chetry R., Subramanian V., Ashtekar A., Srikruthi N., Ramachandran S., Koka P.S., Deb K. Efficacy of activated 3X platelet-rich plasma in the treatment of androgenic alopecia. J. Stem Cells. 2016;11:191–199. PubMed
Asif M., Kanodia S., Singh K. Combined autologous platelet-rich plasma with microneedling verses microneedling with distilled water in the treatment of atrophic acne scars: A concurrent split-face study. J. Cosmet. Dermatol. 2016;15:434–443. doi: 10.1111/jocd.12207. PubMed DOI
Zhang M., Park G., Zhou B., Luo D. Applications and efficacy of platelet-rich plasma in dermatology: A clinical review. J. Cosmet. Dermatol. 2018;17:660–665. doi: 10.1111/jocd.12673. PubMed DOI
Mitchell A.C., Briquez P.S., Hubbell J.A., Cochran J.R. Engineering growth factors for regenerative medicine applications. Acta Biomater. 2016;30:1–12. doi: 10.1016/j.actbio.2015.11.007. PubMed DOI PMC
Mendes B.B., Gómez-Florit M., Babo P.S., Domingues R.M., Reis R.L., Gomes M.E. Blood derivatives awaken in regenerative medicine strategies to modulate wound healing. Adv. Drug Deliv. Rev. 2018;129:376–393. doi: 10.1016/j.addr.2017.12.018. PubMed DOI
Gurtner G.C., Werner S., Barrandon Y., Longaker M.T. Wound repair and regeneration. Nature. 2008;453:314–321. doi: 10.1038/nature07039. PubMed DOI
Ma Z., Kotaki M., Inai R., Ramakrishna S. Potential of Nanofiber Matrix as Tissue-Engineering Scaffolds. Tissue Eng. 2005;11:101–109. doi: 10.1089/ten.2005.11.101. PubMed DOI
Dhandayuthapani B., Yoshida Y., Maekawa T., Kumar D.S. Polymeric scaffolds in tissue engineering application: A review. Int. J. Polym. Sci. 2011;2011:1–19. doi: 10.1155/2011/290602. DOI
Reneker D.H., Yarin A.L. Electrospinning jets and polymer nanofibers. Polymer. 2008;49:2387–2425. doi: 10.1016/j.polymer.2008.02.002. DOI
Lukášová V., Buzgo M., Vocetková K., Sovková V., Doupník M., Himawan E., Staffa A., Sedláček R., Chlup H., Rustichelli F., et al. Needleless electrospun and centrifugal spun poly-ε-caprolactone scaffolds as a carrier for platelets in tissue engineering applications: A comparative study with hMSCs. Mater. Sci. Eng. C. 2019;97:567–575. doi: 10.1016/j.msec.2018.12.069. PubMed DOI
Plencner M., East B., Tonar Z., Otahal M., Prosecka E., Rampichova M., Krejci T., Litvinec A., Buzgo M., Mickova A., et al. Abdominal closure reinforcement by using polypropylene mesh functionalized with poly-ε-caprolactone nanofibers and growth factors for prevention of incisional hernia formation. Int. J. Nanomed. 2014;9:3263–3277. doi: 10.2147/IJN.S63095. PubMed DOI PMC
Bölgen N., Korkusuz V.P., Menceloglu Y.Z., Piskin E. In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J. Biomed. Mater. Res. B Appl. Biomater. 2007;81:530–543. doi: 10.1002/jbm.b.30694. PubMed DOI
Staffa A., Vocetkova K., Sovkova V., Rampichova M., Filova E., Amler E. Polycaprolactone nanofiber mesh with adhered liposomes as a simple delivery system for bioactive growth factors. Transl. Med. Rep. 2017;1:58–63. doi: 10.4081/tmr.6716. DOI
Rampichova M., Buzgo M., Lukasova V., Mickova A., Vocetkova K., Sovkova V., Rustichelli F., Amler E. Functionalization of 3D fibrous scaffolds prepared using centrifugal spinning with liposomes as a simple drug delivery system. Acta Polytechnol. CTU Proc. 2017;8:24–26. doi: 10.14311/APP.2017.8.0024. DOI
Paganin D., Mayo S.C., Gureyev T.E., Miller P.R., Wilkins S.W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 2002;206:33–40. doi: 10.1046/j.1365-2818.2002.01010.x. PubMed DOI
Kalasova D., Zikmund T., Pina L., Takeda Y., Horvath M., Omote K., Kaiser J. Characterization of a laboratory-based X-ray computed nanotomography system for propagation-based method of phase contrast imaging. IEEE Trans. Instrum. Meas. 2019;69:1170–1178. doi: 10.1109/TIM.2019.2910338. DOI
VGStudio MAX. Volume Graphics GmbH; Heidelberg, Germany: 2019. [(accessed on 5 May 2020)]. version 3.2; Software. Available online: https://www.volumegraphics.com.
Leo M.S., Kumar A.S., Kirit R., Konathan R., Sivamani R.K. Systematic review of the use of platelet-rich plasma in aesthetic dermatology. J. Cosmet. Dermatol. 2015;14:315–323. doi: 10.1111/jocd.12167. PubMed DOI
Barbulescu C.C., Goldstein N.B., Roop D.R., Norris D.A., Birlea S.A. Harnessing the Power of Regenerative Therapy for Vitiligo and Alopecia Areata. J. Investig. Dermatol. 2020;140:29–37. doi: 10.1016/j.jid.2019.03.1142. PubMed DOI
Lim H., Shin M., Lee M. Clinical application of platelet-rich plasma in vitiligo: A pilot study; Proceedings of the International Pigment Cell Conference; Bordeaux, France. 21–24 September 2011.
Kadry M., Tawfik A., Abdallah N., Badawi A., Shokeir H. Platelet-rich plasma versus combined fractional carbon dioxide laser with platelet-rich plasma in the treatment of vitiligo: A comparative study. Clin. Cosmet. Investig. Dermatol. 2018;11:551–559. doi: 10.2147/CCID.S178817. PubMed DOI PMC
Khattab F.M., Abdelbary E., Fawzi M. Evaluation of combined excimer laser and platelet-rich plasma for the treatment of nonsegmental vitiligo: A prospective comparative study. J. Cosmet. Dermatol. 2019;19:869–877. doi: 10.1111/jocd.13103. PubMed DOI
Saify K., Gupta P., Sharma D.C. Treatment of Vitiligo by PRP and Umbilical Cord Blood: A prospective study in Treatment of Vitiligo by PRP and Umbilical Cord Blood: A prospective study in 120 cases. IOSR J. Den. Med. Sci. 2019;18:1–5. doi: 10.9790/0853-1805120105. DOI
Buzgo M., Rampichova M., Vocetkova K., Sovkova V., Lukasova V., Doupnik M., Mickova A., Rustichelli F., Amler E. Emulsion centrifugal spinning for production of 3D drug releasing nanofibres with core/shell structure. RSC Adv. 2017;7:1215–1228. doi: 10.1039/C6RA26606A. DOI
Rogalski J., Bastiaansen C., Peijs T. PA6 Nanofibre Production: A Comparison between Rotary Jet Spinning and Electrospinning. Fibers. 2018;6:37. doi: 10.3390/fib6020037. DOI
Milleret V., Hefti T., Hall H., Vogel V., Eberli D. Influence of the fiber diameter and surface roughness of electrospun vascular grafts on blood activation. Acta Biomater. 2012;8:4349–4356. doi: 10.1016/j.actbio.2012.07.032. PubMed DOI
Krifa M., Yuan W. Morphology and pore size distribution of electrospun and centrifugal forcespun nylon 6 nanofiber membranes. Text. Res. J. 2016;86:1294–1306. doi: 10.1177/0040517515609258. DOI
Rampichová M., Buzgo M., Chvojka J., Prosecká E., Kofroňová O., Amler E. Cell penetration to nanofibrous scaffolds Forcespinning, an alternative approach for fabricating 3D nanofibers. Cell Adhes. Migr. 2014;8:36–41. doi: 10.4161/cam.27477. PubMed DOI PMC
Jakubova R., Mickova A., Buzgo M., Rampichova M., Prosecka E., Tvrdik D., Amler E. Immobilization of thrombocytes on PCL nanofibres enhances chondrocyte proliferation in vitro. Cell Prolif. 2011;44:183–191. doi: 10.1111/j.1365-2184.2011.00737.x. PubMed DOI PMC
Vocetkova K., Buzgo M., Sovkova V., Bezdekova D., Kneppo P., Amler E. Nanofibrous polycaprolactone scaffolds with adhered platelets stimulate proliferation of skin cells. Cell Prolif. 2016;49:568–578. doi: 10.1111/cpr.12276. PubMed DOI PMC
Wolberg A.S. Plasma and cellular contributions to fibrin network formation, structure and stability. Haemophilia. 2010;16:7–12. doi: 10.1111/j.1365-2516.2010.02253.x. PubMed DOI
Pretorius E., Briedenhann S., Marx J., Smit E., Van Der Merwe C., Pieters M., Franz C. Ultrastructural comparison of the morphology of three different platelet and fibrin fiber preparations. Anat. Rec. 2007;290:188–198. doi: 10.1002/ar.20413. PubMed DOI
Heher P., Mühleder S., Mittermayr R., Redl H., Slezak P. Fibrin-based delivery strategies for acute and chronic wound healing. Adv. Drug Deliv. Rev. 2018;129:134–147. doi: 10.1016/j.addr.2017.12.007. PubMed DOI
Ehrbar M., Zeisberger S.M., Raeber G.P., Hubbell J.A., Schnell C., Zisch A.H. The role of actively released fibrin-conjugated VEGF for VEGF receptor 2 gene activation and the enhancement of angiogenesis. Biomaterials. 2008;29:1720–1729. doi: 10.1016/j.biomaterials.2007.12.002. PubMed DOI
Zhang Y., Heher P., Hilborn J., Redl H., Ossipov D.A. Hyaluronic acid-fibrin interpenetrating double network hydrogel prepared in situ by orthogonal disulfide cross-linking reaction for biomedical applications. Acta Biomater. 2016;38:23–32. doi: 10.1016/j.actbio.2016.04.041. PubMed DOI
Spicer P.P., Mikos A.G. Fibrin glue as a drug delivery system. J. Control. Release. 2010;148:49–55. doi: 10.1016/j.jconrel.2010.06.025. PubMed DOI PMC
Sahni A., Francis C.W. Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood. 2000;96:3772–3778. doi: 10.1182/blood.V96.12.3772. PubMed DOI
Sahni A., Odrljin T., Francis C.W. Binding of basic fibroblast growth factor to fibrinogen and fibrin. J. Biol. Chem. 1998;273:7554–7559. doi: 10.1074/jbc.273.13.7554. PubMed DOI
Sahni A., Altland O.D., Francis C.W. FGF-2 but not FGF-1 binds fibrin and supports prolonged endothelial cell growth. J. Thromb. Haemost. 2003;1:1304–1310. doi: 10.1046/j.1538-7836.2003.00250.x. PubMed DOI
Catelas I., Dwyer J.F., Helgerson S. Controlled Release of Bioactive Transforming Growth Factor Beta-1 from Fibrin Gels In Vitro. Tissue Eng. Part C Methods. 2008;14:119–128. doi: 10.1089/ten.tec.2007.0262. PubMed DOI
Martino M.M., Briquez P.S., Ranga A., Lutolf M.P., Hubbell J.A. Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc. Natl. Acad. Sci. USA. 2013;110:4563–4568. doi: 10.1073/pnas.1221602110. PubMed DOI PMC
Savkovic V., Flämig F., Schneider M., Sülflow K., Loth T., Lohrenz A., Hacker M.C., Schulz-Siegmund M., Simon J.C. Polycaprolactone fiber meshes provide a 3D environment suitable for cultivation and differentiation of melanocytes from the outer root sheath of hair follicle. J. Biomed. Mater. Res. Part A. 2016;104:26–36. doi: 10.1002/jbm.a.35536. PubMed DOI
Sovkova V., Vocetkova K., Rampichova M., Mickova A., Buzgo M., Lukasova V., Dankova J., Filova E., Necas A., Amler E. Platelet lysate as a serum replacement for skin cell culture on biomimetic PCL nanofibers. Platelets. 2018;29:395–405. doi: 10.1080/09537104.2017.1316838. PubMed DOI
Hirobe T., Shibata T., Fujiwara R., Sato K. Platelet-derived growth factor regulates the proliferation and differentiation of human melanocytes in a differentiation-stage-specific manner. J. Dermatol. Sci. 2016;83:200–209. doi: 10.1016/j.jdermsci.2016.05.010. PubMed DOI
Lin S.J., Jee S.H., Hsiao W.C., Lee S.J., Young T.H. Formation of melanocyte spheroids on the chitosan-coated surface. Biomaterials. 2005;26:1413–1422. doi: 10.1016/j.biomaterials.2004.05.002. PubMed DOI
Redondo P., Gimenez de Azcarate A., Marques L., Garcia-Guzman M., Andreu E., Prosper F. Amniotic membrane as a scaffold for melanocyte transplantation in patients with stable vitiligo. Dermatol. Res. Pract. 2011;532139:1–6. doi: 10.1155/2011/532139. PubMed DOI PMC
Ghosh D., Kuchroo P., Viswanathna C., Sachan S., Shah B., Bhatt D., Parasramani S., Savant S. Efficacy and safety of autologous cultured melanocytes delivered on poly(DL-lactic acid) film: A prospective, open-label, randomized, multicenter study. Dermatol. Surg. 2012;38:1981–1990. doi: 10.1111/dsu.12000. PubMed DOI
Eves P.C., Bullett N.A., Haddow D., Beck A.J., Layton C., Way L., Shard A.G., Gawkrodger D.J., Neil S.M. Simplifying the delivery of melanocytes and keratinocytes for the treatment of vitiligo using a chemically defined carrier dressing. J. Investig. Dermatol. 2008;128:1554–1564. doi: 10.1038/sj.jid.5701214. PubMed DOI
Lin S.J., Jee S.H., Hsiao W.C., Yu H.S., Tsai T.F., Chen J.S., Hsu C.J., Young T.H. Enhanced cell survival of melanocyte spheroids in serum starvation condition. Biomaterials. 2006;27:1462–1469. doi: 10.1016/j.biomaterials.2005.08.031. PubMed DOI
Advances in Electrospun Hybrid Nanofibers for Biomedical Applications
Nanomaterials in Skin Regeneration and Rejuvenation