A Comparative Study of Some Procedures for Isolation of Fruit DNA of Sufficient Quality for PCR-Based Assays
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
FCH-S-20-6316
Vysoké Učení Technické v Brně
PubMed
32962310
PubMed Central
PMC7570663
DOI
10.3390/molecules25184317
PII: molecules25184317
Knihovny.cz E-zdroje
- Klíčová slova
- DNA isolation, Prunus, commercial kit, real-time PCR, red fruit, tropical fruit,
- MeSH
- DNA rostlinná analýza izolace a purifikace MeSH
- elektroforéza MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- ovoce chemie MeSH
- reagenční diagnostické soupravy MeSH
- rostlinné extrakty analýza izolace a purifikace MeSH
- slivoň chemie MeSH
- spektrofotometrie MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- DNA rostlinná MeSH
- reagenční diagnostické soupravy MeSH
- rostlinné extrakty MeSH
Food fraud has been and still is a problem in the food industry. It is detectable by several approaches, such as high performance liquid chromatography (HPLC), chemometric assays, or DNA-based techniques, each with its own drawbacks. This work addresses one major drawback of DNA-based methods, in particular their sensitivity to inhibitors contained in particular matrices from which DNA is isolated. We tested five commercial kits and one in-house method characterized by different ways of sample homogenization and DNA capture and purification. Using these methods, DNA was isolated from 10 different fruit species commonly used in plant-based foodstuffs. The quality of the DNA was evaluated by UV-VIS spectrophotometry. Two types of qPCR assays were used for DNA quality testing: (i) Method specific for plant ITS2 region, (ii) methods specific for individual fruit species. Based mainly on the results of real-time PCR assays, we were able to find two column-based kits and one magnetic carrier-based kit, which consistently provided fruit DNA isolates of sufficient quality for PCR-based assays useful for routine analysis and identification of individual fruit species in food products.
Zobrazit více v PubMed
Koswig S. Determination of Foreign Fruit Types and Fruit Varieties. Analyses, Evaluation and Practical Problems. Fruit Process. J. Fruit Process. Juice Prod. Eur. Overseas Ind. 2006;16:401–412.
Zhang J., Yu Q., Cheng H., Ge Y., Liu H., Ye X., Chen Y. Metabolomic Approach for the Authentication of Berry Fruit Juice by Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry Coupled to Chemometrics. J. Agric. Food Chem. 2018;66:8199–8208. doi: 10.1021/acs.jafc.8b01682. PubMed DOI
Pardo-Mates N., Vera A., Barbosa S., Hidalgo-Serrano M., Núñez O., Saurina J., Hernández-Cassou S., Puignou L. Characterization, classification and authentication of fruit-based extracts by means of HPLC-UV chromatographic fingerprints, polyphenolic profiles and chemometric methods. Food Chem. 2017;221:29–38. doi: 10.1016/j.foodchem.2016.10.033. PubMed DOI
López-Calleja I.M., De La Cruz S., Pegels N., González I., Martín R., García T. Sensitive and specific detection of almond (Prunus dulcis) in commercial food products by real-time PCR. LWT Food Sci. Technol. 2014;56:31–39. doi: 10.1016/j.lwt.2013.10.039. DOI
Schrader C., Schielke A., Ellerbroek L., Johne R. PCR inhibitors-occurrence, properties and removal. J. Appl. Microbiol. 2012;113:1014–1026. doi: 10.1111/j.1365-2672.2012.05384.x. PubMed DOI
Turci M., Sardaro M.L.S., Visioli G., MAESTRI E., Marmiroli M., Marmiroli N. Evaluation of DNA extraction procedures for traceability of various tomato products. Food Control. 2010;21:143–149. doi: 10.1016/j.foodcont.2009.04.012. DOI
Varma A., Padh H., Shrivastava N. Plant genomic DNA isolation: An art or a science. Biotechnol. J. 2007;2:386–392. doi: 10.1002/biot.200600195. PubMed DOI
Paulos S., Mateo M., De Lucio A., Hernández-de Mingo M., Bailo B., Saugar J.M., Cardona G.A., Fuentes I., Mateo M., Carmena D. Evaluation of five commercial methods for the extraction and purification of DNA from human faecal samples for downstream molecular detection of the enteric protozoan parasites Cryptosporidium spp., Giardia duodenalis, and Entamoeba spp. J. Microbiol. Methods. 2016;127:68–73. doi: 10.1016/j.mimet.2016.05.020. PubMed DOI
Li P., Su X., Wang J., Yang S., Wu G., Lin M., Zhao K., Bezuidenhout C., Tang X. Comparison of genomic DNA extraction commercial kits based on clayey and paddy soils. J. Pure Appl. Microbiol. 2014;7:69–75.
Jara C., Mateo E., Guillamón J.M., Toria M.J., Mas A. Analysis of several methods for the extraction of high quality DNA from acetic acid bacteria in wine and vinegar for characterization by PCR-based methods. Int. J. Food Microbiol. 2008;128:336–341. doi: 10.1016/j.ijfoodmicro.2008.09.008. PubMed DOI
Vodret B., Milia M., Orani M.G., Serratrice G., Mancuso M.R. Detection of Genetically Modified Organisms in Food: Comparison Among Three Different DNA Extraction Methods. Vet. Res. Commun. 2007;31:385–388. doi: 10.1007/s11259-007-0043-2. PubMed DOI
Saghai-Maroof M.A., Soliman M.A., Jorgensen R.A., Allard R.W. Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Nail. Acad. Sci. USA. 1984;81:8014–8019. doi: 10.1073/pnas.81.24.8014. PubMed DOI PMC
Glyn M.C.P., Egertová M., Gazdova B., Kovarik A., Bezdek M., Leitch A.R., Chen Y. The influence of 5-azacytidine on the condensation of the short arm of rye chromosome 1R in Triticum aestivum L. root tip meristematic nuclei. Chromosoma. 1997;106:485–492. doi: 10.1007/PL00007688. PubMed DOI
Primer-BLAST: A tool for finding specific primers. NCBI National Center for Biotechnology Information [online]. Bethesda MD, 20894 USA. [(accessed on 14 April 2020)]; Available online: https://www.ncbi.nlm.nih.gov/tools/primer-blast/
Chen S., Yao H., Han J., Liu C., Song J., Shi L., Zhu Y., Ma X., Gao T., Pang X., et al. Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species. PLoS ONE. 2010:5. doi: 10.1371/journal.pone.0008613. PubMed DOI PMC
Zhang C., Ma R., Xu J., Yan J., Guo L., Song J., Feng R., Yu M. Genome-wide identification and classification of MYB superfamily genes in peach. PLoS ONE. 2018;13:e0199192. doi: 10.1371/journal.pone.0199192. PubMed DOI PMC
Sargent D.J., Rys A., Nier S., Simpson D.W., Tobutt K.R. The development and mapping of functional markers in Fragaria and their transferability and potential for mapping in other genera. Theor. Appl. Genet. 2007;114:373–384. doi: 10.1007/s00122-006-0441-9. PubMed DOI
Wang F., Xia L., Lv S., Xu C., Niu Y., Liu W., Zeng L., Zhou J., Hu B. Development of a Mitochondrial SCAR Marker Related to Susceptibility of Banana (Musa AAA Cavendish) to Fusarium oxysporum f. sp. Cubense Race 4. Not. Bot. Horti Agrobot. Cluj Napoca. 2018;46:509–516. doi: 10.15835/nbha46211053. DOI
Zhang S., Zhang D., Fan S., Du L., Shen Y., Xing L., Li Y., Ma J., Han M. Effect of exogenous GA 3 and its inhibitor paclobutrazol on floral formation, endogenous hormones, and flowering-associated genes in ‘Fuji’ apple (Malus domestica Borkh.) Plant Physiol. Biochem. 2016;107:178–186. doi: 10.1016/j.plaphy.2016.06.005. PubMed DOI
Fuentes L., Monsalve L., Morales-Quintana L., Valdenegro M., Martínez J.P., Defilippi B.G., González-Agüero M. Differential expression of ethylene biosynthesis genes in drupelets and receptacle of raspberry (Rubus idaeus) J. Plant Physiol. 2015;179:100–105. doi: 10.1016/j.jplph.2015.02.005. PubMed DOI
Song Y., Liu H., Zhou Q., Zhang H.J., Zhang Z.D., Li Y.D., Wang H.B., Liu F.Z. High-throughput sequencing of highbush bilberry transcriptome and analysis of basic helix-loop-helix transcription factors. J. Integr. Agric. 2017;16:591–604. doi: 10.1016/S2095-3119(16)61461-2. DOI
Hoang V.L.T., Innes D.J., Shaw P.N., Monteith G.R., Gidley M.J., Dietzgen R.G. Sequence diversity and differential expression of major phenylpropanoid-flavonoid biosynthetic genes among three mango varieties. BMC Genom. 2015;16:561. doi: 10.1186/s12864-015-1784-x. PubMed DOI PMC
Ziarovska J., Boselova D., Bezo M. Retrotransposon cassandra copies estimating in plums using real-time pcr approach. Emir. J. Food Agric. 2015;27:591–604. doi: 10.9755/ejfa.2015-04-165. DOI
Han J., Wu Y., Huang W., Wang B., Sun C., Ge Y., Chen Y. PCR and DHPLC methods used to detect juice ingredient from 7 fruits. Food Control. 2012;25:696–703. doi: 10.1016/j.foodcont.2011.12.001. DOI