A Comparative Study of Some Procedures for Isolation of Fruit DNA of Sufficient Quality for PCR-Based Assays

. 2020 Sep 20 ; 25 (18) : . [epub] 20200920

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32962310

Grantová podpora
FCH-S-20-6316 Vysoké Učení Technické v Brně

Food fraud has been and still is a problem in the food industry. It is detectable by several approaches, such as high performance liquid chromatography (HPLC), chemometric assays, or DNA-based techniques, each with its own drawbacks. This work addresses one major drawback of DNA-based methods, in particular their sensitivity to inhibitors contained in particular matrices from which DNA is isolated. We tested five commercial kits and one in-house method characterized by different ways of sample homogenization and DNA capture and purification. Using these methods, DNA was isolated from 10 different fruit species commonly used in plant-based foodstuffs. The quality of the DNA was evaluated by UV-VIS spectrophotometry. Two types of qPCR assays were used for DNA quality testing: (i) Method specific for plant ITS2 region, (ii) methods specific for individual fruit species. Based mainly on the results of real-time PCR assays, we were able to find two column-based kits and one magnetic carrier-based kit, which consistently provided fruit DNA isolates of sufficient quality for PCR-based assays useful for routine analysis and identification of individual fruit species in food products.

Zobrazit více v PubMed

Koswig S. Determination of Foreign Fruit Types and Fruit Varieties. Analyses, Evaluation and Practical Problems. Fruit Process. J. Fruit Process. Juice Prod. Eur. Overseas Ind. 2006;16:401–412.

Zhang J., Yu Q., Cheng H., Ge Y., Liu H., Ye X., Chen Y. Metabolomic Approach for the Authentication of Berry Fruit Juice by Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry Coupled to Chemometrics. J. Agric. Food Chem. 2018;66:8199–8208. doi: 10.1021/acs.jafc.8b01682. PubMed DOI

Pardo-Mates N., Vera A., Barbosa S., Hidalgo-Serrano M., Núñez O., Saurina J., Hernández-Cassou S., Puignou L. Characterization, classification and authentication of fruit-based extracts by means of HPLC-UV chromatographic fingerprints, polyphenolic profiles and chemometric methods. Food Chem. 2017;221:29–38. doi: 10.1016/j.foodchem.2016.10.033. PubMed DOI

López-Calleja I.M., De La Cruz S., Pegels N., González I., Martín R., García T. Sensitive and specific detection of almond (Prunus dulcis) in commercial food products by real-time PCR. LWT Food Sci. Technol. 2014;56:31–39. doi: 10.1016/j.lwt.2013.10.039. DOI

Schrader C., Schielke A., Ellerbroek L., Johne R. PCR inhibitors-occurrence, properties and removal. J. Appl. Microbiol. 2012;113:1014–1026. doi: 10.1111/j.1365-2672.2012.05384.x. PubMed DOI

Turci M., Sardaro M.L.S., Visioli G., MAESTRI E., Marmiroli M., Marmiroli N. Evaluation of DNA extraction procedures for traceability of various tomato products. Food Control. 2010;21:143–149. doi: 10.1016/j.foodcont.2009.04.012. DOI

Varma A., Padh H., Shrivastava N. Plant genomic DNA isolation: An art or a science. Biotechnol. J. 2007;2:386–392. doi: 10.1002/biot.200600195. PubMed DOI

Paulos S., Mateo M., De Lucio A., Hernández-de Mingo M., Bailo B., Saugar J.M., Cardona G.A., Fuentes I., Mateo M., Carmena D. Evaluation of five commercial methods for the extraction and purification of DNA from human faecal samples for downstream molecular detection of the enteric protozoan parasites Cryptosporidium spp., Giardia duodenalis, and Entamoeba spp. J. Microbiol. Methods. 2016;127:68–73. doi: 10.1016/j.mimet.2016.05.020. PubMed DOI

Li P., Su X., Wang J., Yang S., Wu G., Lin M., Zhao K., Bezuidenhout C., Tang X. Comparison of genomic DNA extraction commercial kits based on clayey and paddy soils. J. Pure Appl. Microbiol. 2014;7:69–75.

Jara C., Mateo E., Guillamón J.M., Toria M.J., Mas A. Analysis of several methods for the extraction of high quality DNA from acetic acid bacteria in wine and vinegar for characterization by PCR-based methods. Int. J. Food Microbiol. 2008;128:336–341. doi: 10.1016/j.ijfoodmicro.2008.09.008. PubMed DOI

Vodret B., Milia M., Orani M.G., Serratrice G., Mancuso M.R. Detection of Genetically Modified Organisms in Food: Comparison Among Three Different DNA Extraction Methods. Vet. Res. Commun. 2007;31:385–388. doi: 10.1007/s11259-007-0043-2. PubMed DOI

Saghai-Maroof M.A., Soliman M.A., Jorgensen R.A., Allard R.W. Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Nail. Acad. Sci. USA. 1984;81:8014–8019. doi: 10.1073/pnas.81.24.8014. PubMed DOI PMC

Glyn M.C.P., Egertová M., Gazdova B., Kovarik A., Bezdek M., Leitch A.R., Chen Y. The influence of 5-azacytidine on the condensation of the short arm of rye chromosome 1R in Triticum aestivum L. root tip meristematic nuclei. Chromosoma. 1997;106:485–492. doi: 10.1007/PL00007688. PubMed DOI

Primer-BLAST: A tool for finding specific primers. NCBI National Center for Biotechnology Information [online]. Bethesda MD, 20894 USA. [(accessed on 14 April 2020)]; Available online: https://www.ncbi.nlm.nih.gov/tools/primer-blast/

Chen S., Yao H., Han J., Liu C., Song J., Shi L., Zhu Y., Ma X., Gao T., Pang X., et al. Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species. PLoS ONE. 2010:5. doi: 10.1371/journal.pone.0008613. PubMed DOI PMC

Zhang C., Ma R., Xu J., Yan J., Guo L., Song J., Feng R., Yu M. Genome-wide identification and classification of MYB superfamily genes in peach. PLoS ONE. 2018;13:e0199192. doi: 10.1371/journal.pone.0199192. PubMed DOI PMC

Sargent D.J., Rys A., Nier S., Simpson D.W., Tobutt K.R. The development and mapping of functional markers in Fragaria and their transferability and potential for mapping in other genera. Theor. Appl. Genet. 2007;114:373–384. doi: 10.1007/s00122-006-0441-9. PubMed DOI

Wang F., Xia L., Lv S., Xu C., Niu Y., Liu W., Zeng L., Zhou J., Hu B. Development of a Mitochondrial SCAR Marker Related to Susceptibility of Banana (Musa AAA Cavendish) to Fusarium oxysporum f. sp. Cubense Race 4. Not. Bot. Horti Agrobot. Cluj Napoca. 2018;46:509–516. doi: 10.15835/nbha46211053. DOI

Zhang S., Zhang D., Fan S., Du L., Shen Y., Xing L., Li Y., Ma J., Han M. Effect of exogenous GA 3 and its inhibitor paclobutrazol on floral formation, endogenous hormones, and flowering-associated genes in ‘Fuji’ apple (Malus domestica Borkh.) Plant Physiol. Biochem. 2016;107:178–186. doi: 10.1016/j.plaphy.2016.06.005. PubMed DOI

Fuentes L., Monsalve L., Morales-Quintana L., Valdenegro M., Martínez J.P., Defilippi B.G., González-Agüero M. Differential expression of ethylene biosynthesis genes in drupelets and receptacle of raspberry (Rubus idaeus) J. Plant Physiol. 2015;179:100–105. doi: 10.1016/j.jplph.2015.02.005. PubMed DOI

Song Y., Liu H., Zhou Q., Zhang H.J., Zhang Z.D., Li Y.D., Wang H.B., Liu F.Z. High-throughput sequencing of highbush bilberry transcriptome and analysis of basic helix-loop-helix transcription factors. J. Integr. Agric. 2017;16:591–604. doi: 10.1016/S2095-3119(16)61461-2. DOI

Hoang V.L.T., Innes D.J., Shaw P.N., Monteith G.R., Gidley M.J., Dietzgen R.G. Sequence diversity and differential expression of major phenylpropanoid-flavonoid biosynthetic genes among three mango varieties. BMC Genom. 2015;16:561. doi: 10.1186/s12864-015-1784-x. PubMed DOI PMC

Ziarovska J., Boselova D., Bezo M. Retrotransposon cassandra copies estimating in plums using real-time pcr approach. Emir. J. Food Agric. 2015;27:591–604. doi: 10.9755/ejfa.2015-04-165. DOI

Han J., Wu Y., Huang W., Wang B., Sun C., Ge Y., Chen Y. PCR and DHPLC methods used to detect juice ingredient from 7 fruits. Food Control. 2012;25:696–703. doi: 10.1016/j.foodcont.2011.12.001. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...