• This record comes from PubMed

How butterflies keep their cool: Physical and ecological traits influence thermoregulatory ability and population trends

. 2020 Nov ; 89 (11) : 2440-2450. [epub] 20200923

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate change. We investigated how a community of butterflies responded to fine-scale changes in air temperature, and whether species-specific responses were predicted by ecological or morphological traits. Using data collected across a UK reserve network, we investigated the ability of 29 butterfly species to buffer thoracic temperature against changes in air temperature. First, we tested whether differences were attributable to taxonomic family, morphology or habitat association. We then investigated the relative importance of two buffering mechanisms: behavioural thermoregulation versus fine-scale microclimate selection. Finally, we tested whether species' responses to changing temperatures predicted their population trends from a UK-wide dataset. We found significant interspecific variation in buffering ability, which varied between families and increased with wing length. We also found interspecific differences in the relative importance of the two buffering mechanisms, with species relying on microclimate selection suffering larger population declines over the last 40 years than those that could alter their temperature behaviourally. Our results highlight the importance of understanding how different species respond to fine-scale temperature variation, and the value of taking microclimate into account in conservation management to ensure favourable conditions are maintained for temperature-sensitive species.

See more in PubMed

Abram, P. K., Boivin, G., Moiroux, J., & Brodeur, J. (2017). Behavioural effects of temperature on ectothermic animals: Unifying thermal physiology and behavioural plasticity. Biological Reviews, 92(4), 1859-1876. https://doi.org/10.1111/brv.12312

Advani, N. K., Parmesan, C., & Singer, M. C. (2019). Takeoff temperatures in Melitaea cinxia butterflies from latitudinal and elevational range limits: A potential adaptation to solar irradiance. Ecological Entomology, 44(3), 389-396. https://doi.org/10.1111/een.12714

Asher, J., Warren, M. S., Fox, R., Harding, P., Jeffcoate, G., & Jeffcoate, S. (2001). The millennium atlas of butterflies in Britain and Ireland. Oxford: Oxford University Press.

Bladon, A. J., Donald, P. F., Jones, S. E. I., Collar, N. J., Deng, J., Dadacha, G., … Green, R. E. (2019). Behavioural thermoregulation and climatic range restriction in the globally threatened Ethiopian Bush-crow Zavattariornis stresemanni. Ibis, 161, 546-558. https://doi.org/10.1111/ibi.12660

Bladon, A. J., Lewis, M., Bladon, E. K., Buckton, S. J., Corbett, S., Ewing, S. R., … Turner, E. C. (2020). Data from: How butterflies keep their cool: Physical and ecological traits influence thermoregulatory ability and population trends. Dryad Digital Repository, https://doi.org/10.5061/dryad.z08kprr9n

Bramer, I., Anderson, B. J., Bennie, J., Bladon, A. J., De Frenne, P., Hemming, D., … Gillingham, P. K. (2018). Advances in monitoring and modelling climate at ecologically relevant scales. In D. A. Bohan, A. J. Dumbrell, G. Woodward, & M. Jackson (Eds.), Advances in ecological research (pp. 101-161). https://doi.org/10.1016/bs.aecr.2017.12.005

Brereton, T. M., Botham, M. S., Middlebrook, I., Randle, Z., Noble, D., Harris, S., … Roy, D. B. (2018). United Kingdom Butterfly Monitoring Scheme report for 2017 (p. 24). Centre for Ecology and Hydrology, Butterfly Conservation, British Trust for Ornithology and Joint Nature Conservation Committee. Retrieved from http://www.ukbms.org/reportsandpublications

Briscoe, N. J., Elith, J., Salguero-Gómez, R., Lahoz-Monfort, J. J., Camac, J. S., Giljohann, K. M., … Guillera-Arroita, G. (2019). Forecasting species range dynamics with process-explicit models: Matching methods to applications. Ecology Letters, 22(11), 1940-1956. https://doi.org/10.1111/ele.13348

Bryant, S. R., Thomas, C. D., & Bale, J. S. (2000). Thermal ecology of gregarious and solitary nettle-feeding nymphalid butterfly larvae. Oecologia, 122(1), 1-10. https://doi.org/10.1007/PL00008825

Calosi, P., Bilton, D. T., & Spicer, J. I. (2008). Thermal tolerance, acclimatory capacity and vulnerability to global climate change. Biology Letters, 4(1), 99-102. https://doi.org/10.1098/rsbl.2007.0408

Casey, T. M. (1976). Activity patterns, body temperature and thermal ecology in two desert caterpillars (Lepidoptera: Sphingidae). Ecology, 57(3), 485-497. https://doi.org/10.2307/1936433

Curtis, R. J., & Isaac, N. J. B. (2015). The effect of temperature and habitat quality on abundance of the Glanville fritillary on the Isle of Wight: Implications for conservation management in a warming climate. Journal of Insect Conservation, 19(2), 217-225. https://doi.org/10.1007/s10841-014-9738-1

Dennis, R. L. H., & Shreeve, T. G. (1991). Climatic change and the British butterfly fauna: Opportunities and constraints. Biological Conservation, 55(1), 1-16. https://doi.org/10.1016/0006-3207(91)90002-Q

Devictor, V., Julliard, R., Couvet, D., & Jiguet, F. (2008). Birds are tracking climate warming, but not fast enough. Proceedings of the Royal Society B: Biological Sciences, 275(1652), 2743-2748. https://doi.org/10.1098/rspb.2008.0878

Diamond, S. E., Chick, L., Penick, C. A., Nichols, L. M., Cahan, S. H., Dunn, R. R., … Gotelli, N. J. (2017). Heat tolerance predicts the importance of species interaction effects as the climate changes. Integrative and Comparative Biology, 57(1), 112-120. https://doi.org/10.1093/icb/icx008

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., … Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27-46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

Dreisig, H. (1995). Thermoregulation and flight activity in territorial male graylings, Hipparchia semele (Satyridae), and large skippers, Ochlodes venata (Hesperiidae). Oecologia, 101(2), 169-176. https://doi.org/10.1007/BF00317280

Eeles, P. (2020). UK butterflies. Retrieved from https://ukbutterflies.co.uk/index.php

Fox, R., Brereton, T. M., Asher, J., August, T. A., Botham, M. S., Bourn, N. A. D., … Roy, D. B. (2015). The state of the UK's butterflies. Butterfly Conservation and the Centre for Ecology & Hydrology. Retrieved from https://butterfly-conservation.org/sites/default/files/soukb-2015.pdf

Franco, A. M. A., Hill, J. K., Kitschke, C., Collingham, Y. C., Roy, D. B., Fox, R., … Thomas, C. D. (2006). Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Global Change Biology, 12(8), 1545-1553. https://doi.org/10.1111/j.1365-2486.2006.01180.x

Gilchrist, G. W. (1990). The consequences of sexual dimorphism in body size for butterfly flight and thermoregulation. Functional Ecology, 4(4), 475-487. https://doi.org/10.2307/2389315

González-Megías, A., Menéndez, R., Roy, D., Brereton, T., & Thomas, C. D. (2008). Changes in the composition of British butterfly assemblages over two decades. Global Change Biology, 14(7), 1464-1474. https://doi.org/10.1111/j.1365-2486.2008.01592.x

Greenwood, O., Mossman, H. L., Suggitt, A. J., Curtis, R. J., & Maclean, I. M. D. (2016). Using in situ management to conserve biodiversity under climate change. Journal of Applied Ecology, 53(3), 885-894. https://doi.org/10.1111/1365-2664.12602

Hayes, M. P., Hitchcock, G. E., Knock, R. I., Lucas, C. B. H., & Turner, E. C. (2019). Temperature and territoriality in the Duke of Burgundy butterfly, Hamearis lucina. Journal of Insect Conservation, 23(4), 739-750. https://doi.org/10.1007/s10841-019-00166-6

Hayes, M. P., Rhodes, M. W., Turner, E. C., Hitchcock, G. E., Knock, R. I., Lucas, C. B. H., & Chaney, P. K. (2018). Determining the long-term habitat preferences of the Duke of Burgundy butterfly, Hamearis lucina, on a chalk grassland reserve in the UK. Journal of Insect Conservation, 22(2), 329-343. https://doi.org/10.1007/s10841-018-0065-9

Hill, J. K., Thomas, C. D., & Huntley, B. (1999). Climate and habitat availability determine 20th century changes in a butterfly's range margin. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1425), 1197-1206. https://doi.org/10.1098/rspb.1999.0763

Ide, J.-Y. (2002). Seasonal changes in the territorial behaviour of the satyrine butterfly Lethe diana are mediated by temperature. Journal of Ethology, 20(1), 71-78. https://doi.org/10.1007/s10164-002-0056-9

Ide, J. (2010). Weather factors affecting the male mate-locating tactics of the small copper butterfly (Lepidoptera: Lycaenidae). European Journal of Entomology, 107, 369-376. https://doi.org/10.14411/eje.2010.046

Kearney, M. R., Shine, R., & Porter, W. P. (2009). The potential for behavioral thermoregulation to buffer ‘cold-blooded’ animals against climate warming. Proceedings of the National Academy of Sciences of the United States of America, 106(10), 3835-3840. https://doi.org/10.1073/pnas.0808913106

Kelly, A., Godley, B. J., & Furness, R. W. (2004). Magpies, Pica pica, at the southern limit of their range actively select their thermal environment at high ambient temperatures. Zoology in the Middle East, 32(1), 13-26. https://doi.org/10.1080/09397140.2004.10638039

Kemp, D. J., & Krockenberger, A. K. (2002). A novel method of behavioural thermoregulation in butterflies. Journal of Evolutionary Biology, 15(6), 922-929. https://doi.org/10.1046/j.1420-9101.2002.00470.x

Kleckova, I., & Klecka, J. (2016). Facing the heat: Thermoregulation and behaviour of lowland species of a cold-dwelling butterfly genus: Erebia. PLoS ONE, 11(3), e0150393. https://doi.org/10.1371/journal.pone.0150393

Kleckova, I., Konvicka, M., & Klecka, J. (2014). Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: Importance of fine-scale habitat heterogeneity. Journal of Thermal Biology, 41, 50-58. https://doi.org/10.1016/j.jtherbio.2014.02.002

Knapp, R., & Casey, T. M. (1986). Thermal ecology, behavior, and growth of gypsy moth and eastern tent caterpillars. Ecology, 67(3), 598-608. https://doi.org/10.2307/1937683

Lehikoinen, A., Jaatinen, K., Vähätalo, A. V., Clausen, P., Crowe, O., Deceuninck, B., … Fox, A. D. (2013). Rapid climate driven shifts in wintering distributions of three common waterbird species. Global Change Biology, 19(7), 2071-2081. https://doi.org/10.1111/gcb.12200

Lembrechts, J. J., Lenoir, J., Roth, N., Hattab, T., Milbau, A., Haider, S., … Nijs, I. (2019). Comparing temperature data sources for use in species distribution models: From in-situ logging to remote sensing. Global Ecology and Biogeography, 28(11), 1578-1596. https://doi.org/10.1111/geb.12974

Maclean, I. M. D., Suggitt, A. J., Wilson, R. J., Duffy, J. P., & Bennie, J. J. (2017). Fine-scale climate change: Modelling spatial variation in biologically meaningful rates of warming. Global Change Biology, 23(1), 256-268. https://doi.org/10.1111/gcb.13343

Mason, S. C., Palmer, G., Fox, R., Gillings, S., Hill, J. K., Thomas, C. D., & Oliver, T. H. (2015). Geographical range margins of many taxonomic groups continue to shift polewards. Biological Journal of the Linnean Society, 115(3), 586-597. https://doi.org/10.1111/bij.12574

Menéndez, R., González-Megías, A., Collingham, Y., Fox, R., Roy, D. B., Ohlemüller, R., & Thomas, C. D. (2007). Direct and indirect effects of climate and habitat factors on butterfly diversity. Ecology, 88(3), 605-611. https://doi.org/10.1890/06-0539

Menéndez, R., Megías, A. G., Hill, J. K., Braschler, B., Willis, S. G., Collingham, Y., … Thomas, C. D. (2006). Species richness changes lag behind climate change. Proceedings of the Royal Society B: Biological Sciences, 273(1593), 1465-1470. https://doi.org/10.1098/rspb.2006.3484

Mills, S. C., Oliver, T. H., Bradbury, R. B., Gregory, R. D., Brereton, T., Kühn, E., … Evans, K. L. (2017). European butterfly populations vary in sensitivity to weather across their geographical ranges. Global Ecology and Biogeography, 26(12), 1374-1385. https://doi.org/10.1111/geb.12659

Oliver, T., Hill, J. K., Thomas, C. D., Brereton, T., & Roy, D. B. (2009). Changes in habitat specificity of species at their climatic range boundaries. Ecology Letters, 12(10), 1091-1102. https://doi.org/10.1111/j.1461-0248.2009.01367.x

Oliver, T. H., Thomas, C. D., Hill, J. K., Brereton, T., & Roy, D. B. (2012). Habitat associations of thermophilous butterflies are reduced despite climatic warming. Global Change Biology, 18(9), 2720-2729. https://doi.org/10.1111/j.1365-2486.2012.02737.x

Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D., Descimon, H., … Warren, M. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399(6736), 579. https://doi.org/10.1038/21181

Pivnick, K. A., & McNeil, J. N. (1986). Sexual differences in the thermoregulation of Thymelicus lineola adults (Lepidoptera: Hesperiidae). Ecology, 67(4), 1024-1035. https://doi.org/10.2307/1939825

Pörtner, H. O., & Knust, R. (2007). Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science, 315(5808), 95-97. https://doi.org/10.1126/science.1135471

R Core Team. (2019). R: A language and environment for statistical computing. (version, 3.5.3). Retrieved from http://www.Rproject.org/

Rebaudo, F., & Rabhi, V.-B. (2018). Modeling temperature-dependent development rate and phenology in insects: Review of major developments, challenges, and future directions. Entomologia Experimentalis et Applicata, 166(8), 607-617. https://doi.org/10.1111/eea.12693

Rutowski, R. L., Demlong, M. J., & Leffingwell, T. (1994). Behavioural thermoregulation at mate encounter sites by male butterflies (Asterocampa leilia, Nymphalidae). Animal Behaviour, 48(4), 833-841. https://doi.org/10.1006/anbe.1994.1307

Shanks, K., Senthilarasu, S., ffrench-Constant, R. H., & Mallick, T. K. (2015). White butterflies as solar photovoltaic concentrators. Scientific Reports, 5(1), 12267. https://doi.org/10.1038/srep12267

Smit, B., & McKechnie, A. E. (2015). Water and energy fluxes during summer in an arid-zone passerine bird. Ibis, 157(4), 774-786. https://doi.org/10.1111/ibi.12284

Sparks, T. H., & Yates, T. J. (1997). The effect of spring temperature on the appearance dates of British butterflies 1883-1993. Ecography, 20(4), 368-374. https://doi.org/10.1111/j.1600-0587.1997.tb00381.x

Suggitt, A. J., Gillingham, P. K., Hill, J. K., Huntley, B., Kunin, W. E., Roy, D. B., & Thomas, C. D. (2011). Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos, 120(1), 1-8. https://doi.org/10.1111/j.1600-0706.2010.18270.x

Suggitt, A. J., Stefanescu, C., Páramo, F., Oliver, T., Anderson, B. J., Hill, J. K., … Thomas, C. D. (2012). Habitat associations of species show consistent but weak responses to climate. Biology Letters, 8(4), 590-593. https://doi.org/10.1098/rsbl.2012.0112

Suggitt, A. J., Wilson, R. J., August, T. A., Fox, R., Isaac, N. J. B., Macgregor, N. A., … Maclean, I. M. D. (2015). Microclimate affects landscape level persistence in the British Lepidoptera. Journal of Insect Conservation, 19(2), 237-253. https://doi.org/10.1007/s10841-014-9749-y

Suggitt, A. J., Wilson, R. J., Isaac, N. J. B., Beale, C. M., Auffret, A. G., August, T., … Maclean, I. M. D. (2018). Extinction risk from climate change is reduced by microclimatic buffering. Nature Climate Change, 8(8), 713-717. https://doi.org/10.1038/s41558-018-0231-9

Thackeray, S. J., Sparks, T. H., Frederiksen, M., Burthe, S., Bacon, P. J., Bell, J. R., … Wanless, S. (2010). Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Global Change Biology, 16(12), 3304-3313. https://doi.org/10.1111/j.1365-2486.2010.02165.x

Thomas, J. A., & Lewington, R. (2016). The butterflies of Britain and Ireland. London, UK: Bloomsbury.

Thomas, J. A., & Simcox, D. J. (2005). Contrasting management requirements of Maculinea arion across latitudinal and altitudinal climatic gradients in west Europe. In J. Settele, E. Kuehn, & J. A. Thomas (Eds.), Studies on the ecology and conservation of butterflies in Europe (pp. 240-244). Sofia: Pensoft Publishers.

Turlure, C., Radchuk, V., Baguette, M., Van Dyck, H., & Schtickzelle, N. (2011). On the significance of structural vegetation elements for caterpillar thermoregulation in two peat bog butterflies: Boloria eunomia and B. aquilonaris. Journal of Thermal Biology, 36(3), 173-180. https://doi.org/10.1016/j.jtherbio.2011.02.001

Turner, E. C., Granroth, H. M. V., Johnson, H. R., Lucas, C. B. H., Thompson, A. M., Froy, H., … Holdgate, R. (2009). Habitat preference and dispersal of the Duke of Burgundy butterfly (Hamearis lucina) on an abandoned chalk quarry in Bedfordshire, UK. Journal of Insect Conservation, 13(5), 475-486. https://doi.org/10.1007/s10841-008-9194-x

Warren, M. S., Hill, J. K., Thomas, J. A., Asher, J., Fox, R., Huntley, B., … Thomas, C. D. (2001). Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature, 414(6859), 65-69. https://doi.org/10.1038/35102054

Wasserthal, L. T. (1975). The role of butterfly wings in regulation of body temperature. Journal of Insect Physiology, 21(12), 1921-1930. https://doi.org/10.1016/0022-1910(75)90224-3

Wilson, R. J., & Maclean, I. M. D. (2011). Recent evidence for the climate change threat to Lepidoptera and other insects. Journal of Insect Conservation, 15(1), 259-268. https://doi.org/10.1007/s10841-010-9342-y

See more in PubMed

Dryad
10.5061/dryad.z08kprr9n

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...