Meteoroid Impacts as a Source of Bennu's Particle Ejection Events
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
80NSSC18K0226
Shared Services Center NASA - United States
PubMed
32999798
PubMed Central
PMC7507787
DOI
10.1029/2019je006282
PII: JGRE21369
Knihovny.cz E-zdroje
- Klíčová slova
- Bennu, OSIRIS‐REx, asteroids, ejecta, impacts, meteoroids,
- Publikační typ
- časopisecké články MeSH
Asteroid (101955) Bennu, a near-Earth object with a primitive carbonaceous chondrite-like composition, was observed by the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft to undergo multiple particle ejection events near perihelion between December 2018 and February 2019. The three largest events observed during this period, which all occurred 3.5 to 6 hr after local noon, placed numerous particles <10 cm on temporary orbits around Bennu. Here we examine whether these events could have been produced by sporadic meteoroid impacts using the National Aeronautics and Space Administration's (NASA) Meteoroid Engineering Model 3.0. Most projectiles that impact Bennu come from nearly isotropic or Jupiter-family comets and have evolved toward the Sun by Poynting-Robertson drag. We find that 7,000-J impacts on Bennu occur with a biweekly cadence near perihelion, with a preference to strike in the late afternoon (~6 pm local time). This timing matches observations. Crater scaling laws also indicate that these impact energies can reproduce the sizes and masses of the largest observed particles, provided the surface has the cohesive properties of weak, porous materials. Bennu's ejection events could be caused by the same kinds of meteoroid impacts that created the Moon's asymmetric debris cloud observed by the Lunar Atmosphere and Dust Environment Explorer (LADEE). Our findings also suggest that fewer ejection events should take place as Bennu moves further away from the Sun, a result that can be tested with future observations.
Department of Geology Rowan University Glassboro NJ USA
Institute of Astronomy Charles University Prague Czech Republic
Lunar and Planetary Laboratory University of Arizona Tucson AZ USA
NASA Meteoroid Environment Office Marshall Space Flight Center EV44 Huntsville AL USA
Planetary Science Institute Tucson AZ USA
Southwest Research Institute Boulder CO USA
Université Côte d'Azur Observatoire de la Côte d'Azur CNRS Laboratoire Lagrange Nice France
Zobrazit více v PubMed
Arakawa, M. , Saiki, T. , Wada, K. , Ogawa, K. , Kadono, T. , Shirai, K. , Sawada, H. , Ishibashi, K. , Honda, R. , Sakatani, N. , Iijima, Y. , Okamoto, C. , Yano, H. , Takagi, Y. , Hayakawa, M. , Michel, P. , Jutzi, M. , Shimaki, Y. , Kimura, S. , Mimasu, Y. , Toda, T. , Imamura, H. , Nakazawa, S. , Hayakawa, H. , Sugita, S. , Morota, T. , Kameda, S. , Tatsumi, E. , Cho, Y. , Yoshioka, K. , Yokota, Y. , Matsuoka, M. , Yamada, M. , Kouyama, T. , Honda, C. , Tsuda, Y. , Watanabe, S. , Yoshikawa, M. , Tanaka, S. , Terui, F. , Kikuchi, S. , Yamaguchi, T. , Ogawa, N. , Ono, G. , Yoshikawa, K. , Takahashi, T. , Takei, Y. , Fujii, A. , Takeuchi, H. , Yamamoto, Y. , Okada, T. , Hirose, C. , Hosoda, S. , Mori, O. , Shimada, T. , Soldini, S. , Tsukizaki, R. , Iwata, T. , Ozaki, M. , Abe, M. , Namiki, N. , Kitazato, K. , Tachibana, S. , Ikeda, H. , Hirata, N. , Hirata, N. , Noguchi, R. , & Miura, A. (2020). An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity‐dominated regime. Science, 368(6486), 67–71. 10.1126/science.aaz1701 PubMed DOI
Barnouin, O. S. , Daly, M. G. , Palmer, E. E. , Gaskell, R. W. , Weirich, J. R. , Johnson, C. L. , Asad, M. M. A. , Roberts, J. H. , Perry, M. E. , Susorney, H. C. M. , Daly, R. T. , Bierhaus, E. B. , Seabrook, J. A. , Espiritu, R. C. , Nair, A. H. , Nguyen, L. , Neumann, G. A. , Ernst, C. M. , Boynton, W. V. , Nolan, M. C. , Adam, C. D. , Moreau, M. C. , Risk, B. , D'Aubigny, C. D. , Jawin, E. R. , Walsh, K. J. , Michel, P. , Schwartz, S. R. , Ballouz, R. L. , Mazarico, E. M. , Scheeres, D. J. , McMahon, J. , Bottke, W. , Sugita, S. , Hirata, N. , Hirata, N. , Watanabe, S. , Burke, K. N. , DellaGuistina, D. , Bennett, C. A. , & Lauretta, D. S. (2019). Shape of (101955) Bennu indicative of a rubble pile with internal stiffness. Nature Geoscience, 12(4), 247–252. 10.1038/s41561-019-0330-x PubMed DOI PMC
Bottke, W. F. (2020). Run results for NASA's meteoroid engineering model where meteoroids are striking the asteroid Bennu. 10.6084/m9.figshare.11819448 DOI
Bottke, W. F. , Brož, M. , O'Brien, D. P. , Campo Bagatin, A. , Morbidelli, A. , & Marchi, S. (2015). The collisional evolution of the asteroid belt In Michel P., DeMeo F., & Bottke W. F. (Eds.), Asteroids IV (pp. 701–724). Tucson: U. Arizona Press; 10.2458/azu_uapress_9780816532131-ch036 DOI
Bottke, W. F. , Morbidelli, A. , Jedicke, R. , Petit, J.‐M. , Levison, H. , Michel, P. , & Metcalfe, T. S. (2002). Debiased orbital and size distributions of the near‐Earth objects. Icarus, 156, 399–433.
Bottke, W. F. , Nolan, M. C. , Kolvoord, R. A. , & Greenberg, R. (1994). Velocity distribution among colliding asteroids. Icarus, 107, 255–268.
Burger, M. H. , Killen, R. M. , McClintock, W. E. , Merkel, A. W. , Vervack, R. J. , Cassidy, T. A. , & Sarantos, M. (2014). Seasonal variations in Mercury's dayside calcium exosphere. Icarus, 238, 51–58.
Campbell‐Brown, M. D. (2008). High resolution radiant distribution and orbits of sporadic radar meteoroids. Icarus, 196, 144–163.
Chichkov, B. N. , Momma, C. , Nolte, S. , Alvensleben, F. , & Tünnermann, A. (1996). Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics A, 63(2), 109–115. 10.1007/BF01567637 DOI
Collins, G. S. , Melosh, H. J. , & Ivanov, B. A. (2004). Modeling damage and deformation in impact simulations. Meteoritics & Planetary Science, 39, 217–231.
Delbo, M. , Libourel, G. , Wilkerson, J. , Murdoch, N. , Michel, P. , Ramesh, K. T. , Ganino, C. , Verati, C. , & Marchi, S. (2014). Thermal fatigue as the origin of regolith on small asteroids. Nature, 508(7495), 233–236. 10.1038/nature13153 PubMed DOI
Delbo, M. , & Michel, P. (2011). Temperature history and dynamical evolution of (101955) 1999 RQ36: A potential target for sample return from a primitive asteroid. The Astrophysical Journal, 728, L42.
Fiege, K. , Guglielmino, M. , Altobelli, N. , Trieloff, M. , Srama, R. , & Orlando, T. M. (2019). Space weathering induced via microparticle impacts: 2. Dust impact simulation and meteorite target analysis. Journal of Geophysical Research: Planets, 124, 1084–1099.
Fletcher, A. , Close, S. , & Mathias, D. (2015). Simulating plasma production from hypervelocity impacts. Physics of Plasmas, 22, 093504.
Garenne, A. , Beck, P. , Montes‐Hernandez, G. , Chiriac, R. , Toche, F. , Quirico, E. , Bonal, L. , & Schmitt, B. (2014). The abundance and stability of water in type 1 and 2 carbonaceous chondrites (CI, CM and CR). Geochimica et Cosmochimica Acta, 137, 93–112. 10.1016/j.gca.2014.03.034 DOI
Granvik, M. , Morbidelli, A. , Jedicke, R. , Bolin, B. , Bottke, W. F. , Beshore, E. , Vokrouhlický, D. , Delbò, M. , & Michel, P. (2016). Super‐catastrophic disruption of asteroids at small perihelion distances. Nature, 530(7590), 303–306. 10.1038/nature16934 PubMed DOI
Grott, M. , Knollenberg, J. , Hamm, M. , Ogawa, K. , Jaumann, R. , Otto, K. A. , Delbo, M. , Michel, P. , Biele, J. , Neumann, W. , Knapmeyer, M. , Kührt, E. , Senshu, H. , Okada, T. , Helbert, J. , Maturilli, A. , Müller, N. , Hagermann, A. , Sakatani, N. , Tanaka, S. , Arai, T. , Mottola, S. , Tachibana, S. , Pelivan, I. , Drube, L. , Vincent, J. B. , Yano, H. , Pilorget, C. , Matz, K. D. , Schmitz, N. , Koncz, A. , Schröder, S. E. , Trauthan, F. , Schlotterer, M. , Krause, C. , Ho, T. M. , & Moussi‐Soffys, A. (2019). Low thermal conductivity boulder with high porosity identified on C‐type asteroid (162173) Ryugu. Nature Astronomy, 3(11), 971–976. 10.1038/s41550-019-0832-x DOI
Grün, E. , Zook, H. A. , Fechtig, H. , & Giese, R. H. (1985). Collisional balance of the meteoritic complex. Icarus, 62, 244–272.
Hamilton, V. E. , Simon, A. A. , Christensen, P. R. , Reuter, D. C. , Clark, B. E. , Barucci, M. A. , Bowles, N. E. , Boynton, W. V. , Brucato, J. R. , Cloutis, E. A. , Connolly, HC Jr , Hanna, K. L. D. , Emery, J. P. , Enos, H. L. , Fornasier, S. , Haberle, C. W. , Hanna, R. D. , Howell, E. S. , Kaplan, H. H. , Keller, L. P. , Lantz, C. , Li, J. Y. , Lim, L. F. , McCoy, T. , Merlin, F. , Nolan, M. C. , Praet, A. , Rozitis, B. , Sandford, S. A. , Schrader, D. L. , Thomas, C. A. , Zou, X. D. , Lauretta, D. S. , & OSIRIS‐REx Team (2019). Evidence for widespread hydrated minerals on asteroid (101955) Bennu. Nature Astronomy, 3(4), 332–340. 10.1038/s41550-019-0722-2 PubMed DOI PMC
Hartzell, C. M. (2019). Dynamics of 2D electrostatic dust levitation at asteroids. Icarus, 333, 234.
Hartzell, C. M. , & Scheeres, D. J. (2013). Dynamics of levitating dust particles near asteroids and the Moon. Journal of Geophysical Research: Planets, 118, 116–125. 10.1029/2012JE004162 DOI
Holsapple, K. A. (1980). The equivalent depth of burst for impact cratering (pp. 2379–2401). Paper presented at Lunar and Planetary Science Conference, 11th, Houston, TX.
Holsapple, K. A. (1993). The scaling of impact processes in planetary sciences. Annual Review of Earth and Planetary Sciences, 21, 333–373.
Holsapple, K. A. , & Housen, K. R. (2013). The third regime of cratering: Spall craters (p. 2733). Paper presented at 44th Lunar and Planetary Science Conference, The Woodlands, TX.
Holsapple, K. A. , & Schmidt, R. M. (1980). On the scaling of crater dimensions. 1. Explosive processes. Journal of Geophysical Research, 85, 7247–7256.
Holsapple, K. A. , & Schmidt, R. M. (1982). On the scaling of crater dimensions. 2. Impact processes. Journal of Geophysical Research, 87, 1849–1870.
Horanyi, M. , Szalay, J. R. , Kempf, S. , Schmidt, J. , Grun, E. , Srama, R. , & Sternovsky, Z. (2015). A permanent, asymmetric dust cloud around the Moon. Nature, 522(7556), 324–326. 10.1038/nature14479 PubMed DOI
Horz, F. , Cintala, M. J. , See, T. H. , & Le, L. (2005). Shock melting of ordinary chondrite powders and implications for asteroidal regoliths. Meteoritics and Planetary Science, 40, 1329–1346.
Housen, K. R. , & Holsapple, K. A. (1999). Scale effects in strength‐dominated collisions of rocky asteroids. Icarus, 142, 21–33.
Housen, K. R. , & Holsapple, K. A. (2011). Ejecta from impact craters. Icarus, 211, 856–875. 10.1016/j.icarus.2010.09.017 DOI
Housen, K. R. , Schmidt, R. M. , & Holsapple, K. A. (1983). Crater ejecta scaling laws—Fundamental forms based on dimensional analysis. Journal of Geophysical Research, 88, 2485–2499.
Janches, D. , Pokorný, P. , Sarantos, M. , Szalay, J. R. , Horanyi, M. , & Nesvorný, D. (2018). Constraining the ratio of micrometeoroids from short‐ and long‐period comets at 1 AU from LADEE observations of the lunar dust cloud. Geophysical Research Letters, 45, 1713–1722. 10.1002/2017GL076065 DOI
Jenniskens, P. , Nénon, Q. , Albers, J. , Gural, P. S. , Haberman, B. , Holman, D. , Morales, R. , Grigsby, B. J. , Samuels, D. , & Johannink, C. (2016). The established meteor showers as observed by CAMS. Icarus, 266, 331–354. 10.1016/j.icarus.2015.09.013 DOI
Jones, J. (2004). Meteoroid engineering model—Final report (NASA SEE/CR‐2004‐40048). Huntsville, AL: NASA Marshall Space Flight Center.
Jones, J. , Brown, P. , Ellis, K. J. , Webster, A. R. , Campbell‐Brown, M. , Krzemenski, Z. , & Weryk, R. J. (2005). The Canadian Meteor Orbit Radar: System overview and preliminary results. Planetary and Space Science, 53, 413–421.
Lauretta, D. S. , Balram‐Knutson, S. S. , Beshore, E. , Boynton, W. V. , Drouet d’Aubigny, C. , DellaGiustina, D. N. , Enos, H. L. , Golish, D. R. , Hergenrother, C. W. , Howell, E. S. , Bennett, C. A. , Morton, E. T. , Nolan, M. C. , Rizk, B. , Roper, H. L. , Bartels, A. E. , Bos, B. J. , Dworkin, J. P. , Highsmith, D. E. , Lorenz, D. A. , Lim, L. F. , Mink, R. , Moreau, M. C. , Nuth, J. A. , Reuter, D. C. , Simon, A. A. , Bierhaus, E. B. , Bryan, B. H. , Ballouz, R. , Barnouin, O. S. , Binzel, R. P. , Bottke, W. F. , Hamilton, V. E. , Walsh, K. J. , Chesley, S. R. , Christensen, P. R. , Clark, B. E. , Connolly, H. C. , Crombie, M. K. , Daly, M. G. , Emery, J. P. , McCoy, T. J. , McMahon, J. W. , Scheeres, D. J. , Messenger, S. , Nakamura‐Messenger, K. , Righter, K. , & Sandford, S. A. (2017). OSIRIS‐REx: Sample return from asteroid (101955) Bennu. Space Science Reviews, 212(1–2), 925–984. 10.1007/s11214-017-0405-1 DOI
Lauretta, D. S. , Bartels, A. E. , Barucci, M. A. , Bierhaus, E. B. , Binzel, R. P. , Bottke, W. F. , Campins, H. , Chesley, S. R. , Clark, B. C. , Clark, B. E. , Cloutis, E. A. , Connolly, H. C. , Crombie, M. K. , Delbó, M. , Dworkin, J. P. , Emery, J. P. , Glavin, D. P. , Hamilton, V. E. , Hergenrother, C. W. , Johnson, C. L. , Keller, L. P. , Michel, P. , Nolan, M. C. , Sandford, S. A. , Scheeres, D. J. , Simon, A. A. , Sutter, B. M. , Vokrouhlický, D. , & Walsh, K. J. (2015). The OSIRIS‐REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations. Meteoritics & Planetary Science, 50(4), 834–849. 10.1111/maps.12353 DOI
Lauretta, D. S. , DellaGiustina, D. N. , Bennett, C. A. , Golish, D. R. , Becker, K. J. , Balram‐Knutson, S. S. , Barnouin, O. S. , Becker, T. L. , Bottke, W. F. , Boynton, W. V. , & Campins, H. (2019). The unexpected surface of asteroid (101955) Bennu. Nature, 568(7750), 55–60. 10.1038/s41586-019-1033-6 PubMed DOI PMC
Lauretta, D. S. , Hergenrother, C. W. , Chesley, S. R. , Leonard, J. M. , Pelgrift, J. Y. , Adam, C. D. , Al Asad, M. , Antreasian, P. G. , Ballouz, R.‐L. , Becker, K. J. , Bennett, C. A. , Bos, B. J. , Bottke, W. F. , Brozović, M. , Campins, H. , Connolly, H. C. , Daly, M. G. , Davis, A. B. , de León, J. , DellaGiustina, D. N. , Drouet d’Aubigny, C. Y. , Dworkin, J. P. , Emery, J. P. , Farnocchia, D. , Glavin, D. P. , Golish, D. R. , Hartzell, C. M. , Jacobson, R. A. , Jawin, E. R. , Jenniskens, P. , Kidd, J. N. , Lessac‐Chenen, E. J. , Li, J.‐Y. , Libourel, G. , Licandro, J. , Liounis, A. J. , Maleszewski, C. K. , Manzoni, C. , May, B. , McCarthy, L. K. , McMahon, J. W. , Michel, P. , Molaro, J. L. , Moreau, M. C. , Nelson, D. S. , Owen, W. M. , Rizk, B. , Roper, H. L. , Rozitis, B. , Sahr, E. M. , Scheeres, D. J. , Seabrook, J. A. , Selznick, S. H. , Takahashi, Y. , Thuillet, F. , Tricarico, P. , Vokrouhlický, D. , & Wolner, C. W. V. (2019). Episodes of particle ejection from the surface of the active asteroid (101955) Bennu. Science, 366(6470), eaay3544 10.1126/science.aay3544 PubMed DOI
Lee, N. , Close, S. , Goel, A. , Lauben, D. , Linscott, I. , Johnson, T. , Strauss, D. , Bugiel, S. , Mocker, A. , & Srama, R. (2013). Theory and experiments characterizing hypervelocity impact plasmas on biased spacecraft materials. Physics of Plasmas, 20, 032901.
Leinert, C. , Richter, I. , Pitz, E. , & Planck, B. (1981). The zodiacal light from 1.0 to 0.3 A.U. as observed by the HELIOS space probes. Astronomy and Astrophysics, 103, 177–188.
Lucey, P. (2006). Understanding the lunar surface and space‐moon interactions. Reviews in Mineralogy and Geochemistry, 60, 83–219.
Marchi, S. , Bottke, W. F. , Cohen, B. A. , Wünnemann, K. , Kring, D. A. , McSween, H. Y. , de Sanctis, M. C. , O'Brien, D. P. , Schenk, P. , Raymond, C. A. , & Russell, C. T. (2013). High‐velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nature Geoscience, 6(4), 303–307. 10.1038/ngeo1769 DOI
Marston, J. O. , & Pacheco‐Vázquez, F. (2019). Millimetric granular craters from pulsed laser ablation. Physical Review E, 99(3). 10.1103/physreve.99.030901 PubMed DOI
McKay, D. S. , Heiken, G. , Basu, A. , Blanford, G. , Simon, S. , Reedy, R. , et al. (1991). The lunar regolith In Heiken G., Vaniman D. T., & French B. M. (Eds.), The lunar sourcebook (pp. 285–356). New York, NY: Cambridge University Press.
McKay, D. S. , Swindle, T. D. , & Greenberg, R. (1989). Asteroidal regoliths—What we do not know. Asteroids II., 617–642.
McNamara, H. , Suggs, R. , Kauffman, B. , Jones, J. , Cooke, W. , & Smith, S. (2005). Meteoroid Engineering Model (MEM): A meteoroid model for the inner Solar System. Earth, Moon, and Planets, 95, 123–139.
Melosh, H. J. (1989). Impact cratering: A geologic process. New York: Oxford University Press; Oxford: Clarendon Press.
Merkel, A. W. , Cassidy, T. A. , Vervack, R. J. , McClintock, W. E. , Sarantos, M. , Burger, M. H. , & Killen, R. M. (2017). Seasonal variations of Mercury's magnesium dayside exosphere from MESSENGER observations. Icarus, 281, 46–54.
Molaro, J. L. , Hergenrother, C. W. , Chesley, S. R. , Walsh, K. J. , Hanna, R. D. , Haberle, C. W. , Schwartz, S. R. , Ballouz, R.‐L. , Bottke, W. F. , Campins, H. J. , Lauretta, D. S. (2020). Thermal fatigue as a driving mechanism for activity on asteroid Bennu. Journal of Geophysical Research: Planets. 10.1029/2019JE006325 PubMed DOI PMC
Moorhead, A. V. , Cooke, W. J. , & Campbell‐Brown, M. D. (2017). Meteor shower forecasting for spacecraft operations (p. 11). Paper presented at 7th European Conference on Space Debris.
Moorhead, A. V. , Kingery, A. , & Ehlert, S. (2020). NASA’s meteoroid engineering model 3 and its ability to replicate spacecraft impact rates. Journal of Spacecraft and Rockets, 57(1), 160–176. 10.2514/1.a34561 DOI
Moroz, L. V. , Fisenko, A. V. , Semjonova, L. F. , Pieters, C. M. , & Korotaeva, N. N. (1996). Optical effects of regolith processes on S‐asteroids as simulated by laser shots on ordinary chondrite and other mafic materials. Icarus, 122, 366–382.
Nesvorny, D. , & Bottke, W. F. (2004). Direct detection of the Yarkovsky effect for main belt asteroids. Icarus, 170, 324–342.
Nesvorný, D. , Jenniskens, P. , Levison, H. F. , Bottke, W. F. , Vokrouhlický, D. , & Gounelle, M. (2010). Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. The Astrophysical Journal, 713, 816–836.
Pierazzo, E. , Vickery, A. M. , & Melosh, H. J. (1997). A reevaluation of impact melt production. Icarus, 127, 408–423. 10.1006/icar.1997.5713 DOI
Pieters, C. M. , & Noble, S. K. (2016). Space weathering on airless bodies. Journal of Geophysical Research: Planets, 121, 1865–1884. 10.1002/2016JE005128 PubMed DOI PMC
Pokorný, P. , Sarantos, M. , & Janches, D. (2017). Reconciling the dawn‐dusk asymmetry in Mercury's exosphere with the micrometeoroid impact directionality. Astrophysical Journal Letters, 842, L17.
Pokorný, P. , Sarantos, M. , & Janches, D. (2018). A comprehensive model of the meteoroid environment around Mercury. The Astrophysical Journal, 863, 31.
Rozitis, B. , et al. (2020). Implications for ice stability and particle ejection from high‐resolution temperature modeling of asteroid (101955) Bennu. Journal of Geophysical Research: Planets. 10.1029/2019JE006323 PubMed DOI PMC
Rubin, A. E. , Trigo‐Rodríguez, J. M. , Huber, H. , & Wasson, J. T. (2007). Progressive aqueous alteration of CM carbonaceous chondrites. Geochimica et Cosmochimica Acta, 71, 2361–2382.
Scheeres, D. J. , Britt, D. , Carry, B. , & Holsapple, K. A. (2015). Asteroid interiors and morphology In Michel P., DeMeo F., & Bottke W. F. (Eds.), Asteroids IV (pp. 745–766). Tucson: U. Arizona Press; 10.2458/azu_uapress_9780816532131-ch038 DOI
Schmidt, R. M. , & Housen, K. R. (1987). Some recent advances in the scaling of impact and explosion cratering. International Journal of Impact Engineering, 5, 543–560.
Schwan, J. , Wang, X. , Hsu, H. W. , Grün, E. , & Horanyi, M. (2017). The charge state of electrostatically transported dust on regolith surfaces. Geophysical Research Letters, 44, 3059–3065. 10.1002/2017GL072909 DOI
Scott, E. R. D. , & Bottke, W. F. (2011). Impact histories of angrites, eucrites, and their parent bodies. Meteoritics and Planetary Science, 46, 1878–1887.
Szalay, J. R. , & Horanyi, M. (2015). Annual variation and synodic modulation of the sporadic meteoroid flux to the Moon. Geophysical Research Letters, 42, 10,580–10,584. 10.1002/2015GL066908 DOI
Szalay, J. R. , & Horanyi, M. (2016). The impact ejecta environment of near‐Earth asteroids. The Astrophysical Journal, 830, L29.
Tomeoka, K. , Kiriyama, K. , Nakamura, K. , Yamahana, Y. , & Sekine, T. (2003). Interplanetary dust from the explosive dispersal of hydrated asteroids by impacts. Nature, 423(6935), 60–62. 10.1038/nature01567 PubMed DOI
Vokrouhlický, D. (1998). Diurnal Yarkovsky effect as a source of mobility of meter‐sized asteroidal fragments. I. Linear theory. Astronomy & Astrophysics, 335, 1093–1100.
Wang, X. , Schwan, J. , Hsu, H. W. , Grün, E. , & Horanyi, M. (2016). Dust charging and transport on airless planetary bodies. Geophysical Research Letters, 43, 6103–6110. 10.1002/2016GL069491 DOI
Wünnemann, K. , Collins, G. , & Melosh, H. (2006). A strain‐based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus, 180, 514–527.
Ye, Q. , & Granvik, M. (2019). Debris of asteroid disruptions close to the Sun. The Astrophysical Journal, 873, 104.
figshare
10.6084/m9.figshare.11819448