• This record comes from PubMed

Performance of Targeted Library Preparation Solutions for SARS-CoV-2 Whole Genome Analysis

. 2020 Sep 29 ; 10 (10) : . [epub] 20200929

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Links

PubMed 33003465
PubMed Central PMC7601271
DOI 10.3390/diagnostics10100769
PII: diagnostics10100769
Knihovny.cz E-resources

Single next-generation sequencing (NGS) proved to be an important tool for monitoring the SARS-CoV-2 outbreak at the global level Until today, thousands of SARS-CoV-2 genome sequences have been published at GISAID (Global Initiative on Sharing All Influenza Data) but only a portion are suitable for reliable variant analysis. Here we report on the comparison of three commercially available NGS library preparation kits. We discuss advantages and limitations from the perspective of required input sample quality and data quality for advanced SARS-CoV-2 genome analysis.

See more in PubMed

Park S.E. Epidemiology, virology, and clinical features of severe acute respiratory syndrome -coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19) Clin. Exp. Pediatr. 2020;63:119–124. doi: 10.3345/cep.2020.00493. PubMed DOI PMC

Zheng J. SARS-CoV-2: An Emerging Coronavirus that Causes a Global Threat. Int. J. Boil. Sci. 2020;16:1678–1685. doi: 10.7150/ijbs.45053. PubMed DOI PMC

Wu F., Zhao S., Yu B., Chen Y.-M., Wang W., Song Z.-G., Hu Y., Tao Z.-W., Tian J.-H., Pei Y.-Y., et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–269. doi: 10.1038/s41586-020-2008-3. PubMed DOI PMC

Alm E., Broberg E.K., Connor T.R., Hodcroft E.B., Komissarov A.B., Maurer-Stroh S., Melidou A., Neher R.A., O’Toole A., Pereyaslov D., et al. Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020. Eurosurveillance. 2020;25:2001410. doi: 10.2807/1560-7917.ES.2020.25.32.2001410. PubMed DOI PMC

Alcoba-Florez J., Gil-Campesino H., De Artola D.G.-M., González-Montelongo R., Valenzuela-Fernández A., Ciuffreda L., Flores C. Sensitivity of different RT-qPCR solutions for SARS-CoV-2 detection. Int. J. Infect. Dis. 2020;99:190–192. doi: 10.1016/j.ijid.2020.07.058. PubMed DOI PMC

Kriegova E., Fillerova R., Kvapil P. Direct-RT-qPCR Detection of SARS-CoV-2 without RNA Extraction as Part of a COVID-19 Testing Strategy: From Sample to Result in One Hour. Diagnostics. 2020;10:605. doi: 10.3390/diagnostics10080605. PubMed DOI PMC

Phan T. Genetic diversity and evolution of SARS-CoV-2. Infect. Genet. Evol. 2020;81:104260. doi: 10.1016/j.meegid.2020.104260. PubMed DOI PMC

Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N., et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020;395:565–574. doi: 10.1016/S0140-6736(20)30251-8. PubMed DOI PMC

Van Dorp L., Acman M., Richard D., Shaw L.P., Ford C.E., Ormond L., Owen C.J., Pang J., Tan C.C., Boshier F.A., et al. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infect. Genet. Evol. 2020;83:104351. doi: 10.1016/j.meegid.2020.104351. PubMed DOI PMC

Artesi M., Bontems S., Göbbels P., Franckh M., Maes P., Boreux R., Meex C., Melin P., Hayette M.-P., Bours V., et al. A recurrent mutation at position 26,340 of SARS-CoV-2 is associated with failure of the E-gene qRT-PCR utilized in a commercial dual-target diagnostic assay. J. Clin. Microbiol. 2020 doi: 10.1128/JCM.01598-20. PubMed DOI PMC

Ramirez J.D., Muñoz M., Hernández C., Flórez C., Gomez S., Turca A., Pardo L., Barros E.C., Mondolfi A.E.P. Genetic Diversity Among SARS-CoV2 Strains in South America may Impact Performance of Molecular Detection. Pathogens. 2020;9:580. doi: 10.3390/pathogens9070580. PubMed DOI PMC

Robson F., Khan K.S., Le T.K., Paris C., Demirbag S., Barfuss P., Rocchi P., Ng W.-L. Coronavirus RNA proofreading: Molecular basis and therapeutic targeting. Mol. Cell. 2020;79:710–727. doi: 10.1016/j.molcel.2020.07.027. PubMed DOI PMC

Samorodnitsky E., Jewell B.M., Hagopian R., Miya J., Wing M.R., Lyon E., Damodaran S., Bhatt D., Reeser J.W., Datta J., et al. Evaluation of Hybridization Capture Versus Amplicon-Based Methods for Whole-Exome Sequencing. Hum. Mutat. 2015;36:903–914. doi: 10.1002/humu.22825. PubMed DOI PMC

Hung S.S., Meissner B., Chavez E., Ben-Neriah S., Ennishi D., Jones M.R., Shulha H.P., Chan F.C., Boyle M., Kridel R., et al. Assessment of Capture and Amplicon-Based Approaches for the Development of a Targeted Next-Generation Sequencing Pipeline to Personalize Lymphoma Management. J. Mol. Diagn. 2018;20:203–214. doi: 10.1016/j.jmoldx.2017.11.010. PubMed DOI

National Center for Immunization and Respiratory Diseases (NCIRD) Division of Viral Diseases. [(accessed on 15 September 2020)]; Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html.

‘FastQC: A Quality Control Tool for High Throughput Sequence Data—ScienceOpen’. n.d. [(accessed on 10 July 2020)]; Available online: https://www.scienceopen.com/document?vid=de674375-ab83-4595-afa9-4c8aa9e4e736.

Chen S., Zhou Y., Chen Y., Gu J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC

Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC

‘Picard Tools—By Broad Institute’. n.d. [(accessed on 10 July 2020)]; Available online: https://broadinstitute.github.io/picard/

Garrison E., Marth G. Haplotype-Based Variant Detection from Short-Read Sequencing. arXiv. 20121207.3907

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...