Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders
Language English Country Great Britain, England Media electronic
Document type Journal Article, Multicenter Study, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R01 MH110558
NIMH NIH HHS - United States
P50 HD103524
NICHD NIH HHS - United States
Howard Hughes Medical Institute - United States
T32 HG000035
NHGRI NIH HHS - United States
R01 MH109912
NIMH NIH HHS - United States
R01 MH101221
NIMH NIH HHS - United States
PubMed
33004838
PubMed Central
PMC7530681
DOI
10.1038/s41467-020-18723-y
PII: 10.1038/s41467-020-18723-y
Knihovny.cz E-resources
- MeSH
- CCCTC-Binding Factor genetics MeSH
- DNA-Binding Proteins genetics MeSH
- KCNQ3 Potassium Channel genetics MeSH
- Genetic Predisposition to Disease * MeSH
- Genetic Association Studies MeSH
- Heterogeneous-Nuclear Ribonucleoprotein U genetics MeSH
- Cohort Studies MeSH
- Humans MeSH
- Mutation MeSH
- DNA Mutational Analysis MeSH
- Neurodevelopmental Disorders genetics MeSH
- RNA-Binding Proteins genetics MeSH
- Repressor Proteins genetics MeSH
- Case-Control Studies MeSH
- Basic Helix-Loop-Helix Transcription Factors genetics MeSH
- Transcription Factors genetics MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- CCCTC-Binding Factor MeSH
- CTCF protein, human MeSH Browser
- DNA-Binding Proteins MeSH
- KCNQ3 Potassium Channel MeSH
- Heterogeneous-Nuclear Ribonucleoprotein U MeSH
- HNRNPU protein, human MeSH Browser
- KCNQ3 protein, human MeSH Browser
- LEO1 protein, human MeSH Browser
- RNA-Binding Proteins MeSH
- Repressor Proteins MeSH
- SPEN protein, human MeSH Browser
- TCF12 protein, human MeSH Browser
- Basic Helix-Loop-Helix Transcription Factors MeSH
- Transcription Factors MeSH
- ZBTB18 protein, human MeSH Browser
Most genes associated with neurodevelopmental disorders (NDDs) were identified with an excess of de novo mutations (DNMs) but the significance in case-control mutation burden analysis is unestablished. Here, we sequence 63 genes in 16,294 NDD cases and an additional 62 genes in 6,211 NDD cases. By combining these with published data, we assess a total of 125 genes in over 16,000 NDD cases and compare the mutation burden to nonpsychiatric controls from ExAC. We identify 48 genes (25 newly reported) showing significant burden of ultra-rare (MAF < 0.01%) gene-disruptive mutations (FDR 5%), six of which reach family-wise error rate (FWER) significance (p < 1.25E-06). Among these 125 targeted genes, we also reevaluate DNM excess in 17,426 NDD trios with 6,499 new autism trios. We identify 90 genes enriched for DNMs (FDR 5%; e.g., GABRG2 and UIMC1); of which, 61 reach FWER significance (p < 3.64E-07; e.g., CASZ1). In addition to doubling the number of patients for many NDD risk genes, we present phenotype-genotype correlations for seven risk genes (CTCF, HNRNPU, KCNQ3, ZBTB18, TCF12, SPEN, and LEO1) based on this large-scale targeted sequencing effort.
Baylor Genetics Houston TX USA
Centre for Human Genetics KU Leuven and Leuven Autism Research Leuven Belgium
Child Neuropsychiatry Unit AOUI Verona Italy
Department of Clinical Genetics Karolinska University Hospital Stockholm Sweden
Department of Clinical Genetics Leiden University Medical Center Leiden Netherlands
Department of Genome Sciences University of Washington Seattle WA USA
Department of Medical Genetics University of Antwerp Antwerp Belgium
Department of Medicine University of Melbourne Austin Health Melbourne Australia
Department of Molecular and Human Genetics Baylor College of Medicine Houston TX USA
Department of Neurosciences Biomedicine and Movement Sciences University of Verona Verona Italy
Department of Paediatrics University of Melbourne Parkville VIC Australia
Department of Paediatrics University of Melbourne Royal Children's Hospital Melbourne VIC Australia
Department of Pathology Stanford University Stanford CA USA
Department of Psychiatry and Behavioral Sciences University of Washington Seattle WA USA
Department of Psychiatry University of Iowa Carver College of Medicine Iowa City IA USA
Department of Psychology Emory University Atlanta GA USA
Department of Translational Medicine Federico 2 University Naples Italy
Division of Medical Genetics Department of Pediatrics Stanford University Stanford CA USA
Genetics and Molecular Pathology SA Pathology Adelaide SA Australia
Genetics and Rare Diseases Research Division Bambino Gesù Children's Hospital Rome Italy
Genetics of Learning Disability Service Hunter New England Health Service Waratah NSW Australia
Howard Hughes Medical Institute University of Washington Seattle WA USA
Karakter Child and Adolescent Psychiatry Center Nijmegen Netherlands
Mental Health Institute of the 2nd Xiangya Hospital Central South University Changsha China
Murdoch Children's Research Institute Melbourne Australia
Oasi Research Institute IRCCS Troina Italy
Paediatric and Reproductive Genetics unit Women's and Children's Hospital Adelaide SA Australia
School of Women's and Children's Health University of New South Wales Randwick NSW Australia
South Australian Health and Medical Research Institute Adelaide SA Australia
Telethon Institute of Genetics and Medicine Pozzuoli Naples Italy
The Florey Institute of Neuroscience and Mental Health Parkville VIC Australia
See more in PubMed
First MB. Diagnostic and statistical manual of mental disorders, 5th edition, and clinical utility. J. Nerv. Ment. Dis. 2013;201:727–729. doi: 10.1097/NMD.0b013e3182a2168a. PubMed DOI
O’Roak BJ, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science. 2012;338:1619–1622. doi: 10.1126/science.1227764. PubMed DOI PMC
Stessman HA, et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat. Genet. 2017;49:515–526. doi: 10.1038/ng.3792. PubMed DOI PMC
Wang T, et al. De novo genic mutations among a Chinese autism spectrum disorder cohort. Nat. Commun. 2016;7:13316. doi: 10.1038/ncomms13316. PubMed DOI PMC
Guo H, et al. Inherited and multiple de novo mutations in autism/developmental delay risk genes suggest a multifactorial model. Mol. Autism. 2018;9:64. doi: 10.1186/s13229-018-0247-z. PubMed DOI PMC
Iossifov I, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–221. doi: 10.1038/nature13908. PubMed DOI PMC
Deciphering Developmental Disorders, S. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542:433–438. doi: 10.1038/nature21062. PubMed DOI PMC
Satterstrom FK, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020;180:568–584.e23. doi: 10.1016/j.cell.2019.12.036. PubMed DOI PMC
De Rubeis S, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–215. doi: 10.1038/nature13772. PubMed DOI PMC
Turner TN, et al. Genomic patterns of De Novo mutation in simplex autism. Cell. 2017;171:710–722.e12. doi: 10.1016/j.cell.2017.08.047. PubMed DOI PMC
Brandler WM, et al. Paternally inherited cis-regulatory structural variants are associated with autism. Science. 2018;360:327–331. doi: 10.1126/science.aan2261. PubMed DOI PMC
Ruzzo EK, et al. Inherited and De Novo genetic risk for autism impacts shared networks. Cell. 2019;178:850–866.e26. doi: 10.1016/j.cell.2019.07.015. PubMed DOI PMC
Sebat J, et al. Strong association of de novo copy number mutations with autism. Science. 2007;316:445–449. doi: 10.1126/science.1138659. PubMed DOI PMC
Coe BP, et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat. Genet. 2014;46:1063–1071. doi: 10.1038/ng.3092. PubMed DOI PMC
Levy D, et al. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron. 2011;70:886–897. doi: 10.1016/j.neuron.2011.05.015. PubMed DOI
Turner TN, et al. denovo-db: a compendium of human de novo variants. Nucleic Acids Res. 2017;45:D804–D811. doi: 10.1093/nar/gkw865. PubMed DOI PMC
Consortium S. SPARK: A US Cohort of 50,000 families to accelerate autism research. Neuron. 2018;97:488–493. doi: 10.1016/j.neuron.2018.01.015. PubMed DOI PMC
Bernier R, et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell. 2014;158:263–276. doi: 10.1016/j.cell.2014.06.017. PubMed DOI PMC
Stessman HA, et al. Disruption of POGZ is associated with intellectual disability and autism spectrum disorders. Am. J. Hum. Genet. 2016;98:541–552. doi: 10.1016/j.ajhg.2016.02.004. PubMed DOI PMC
Helsmoortel C, et al. A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP. Nat. Genet. 2014;46:380–384. doi: 10.1038/ng.2899. PubMed DOI PMC
Chang J, Gilman SR, Chiang AH, Sanders SJ, Vitkup D. Genotype to phenotype relationships in autism spectrum disorders. Nat. Neurosci. 2014;18:191–198. doi: 10.1038/nn.3907. PubMed DOI PMC
Kircher M, et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014;46:310–315. doi: 10.1038/ng.2892. PubMed DOI PMC
Guo H, et al. Disruptive mutations in TANC2 define a neurodevelopmental syndrome associated with psychiatric disorders. Nat. Commun. 2019;10:4679. doi: 10.1038/s41467-019-12435-8. PubMed DOI PMC
Lek M, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291. doi: 10.1038/nature19057. PubMed DOI PMC
Coe BP, et al. Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity. Nat. Genet. 2019;51:106–116. doi: 10.1038/s41588-018-0288-4. PubMed DOI PMC
Samocha KE, et al. A framework for the interpretation of de novo mutation in human disease. Nat. Genet. 2014;46:944–950. doi: 10.1038/ng.3050. PubMed DOI PMC
Geisheker MR, et al. Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains. Nat. Neurosci. 2017;20:1043–1051. doi: 10.1038/nn.4589. PubMed DOI PMC
Bramswig NC, et al. Heterozygous HNRNPU variants cause early onset epilepsy and severe intellectual disability. Hum. Genet. 2017;136:821–834. doi: 10.1007/s00439-017-1795-6. PubMed DOI
Sands TT, et al. Autism and developmental disability caused by KCNQ3 gain-of-function variants. Ann. Neurol. 2019;86:181–192. doi: 10.1002/ana.25522. PubMed DOI
Feliciano P, et al. Exome sequencing of 457 autism families recruited online provides evidence for autism risk genes. NPJ Genom. Med. 2019;4:19. doi: 10.1038/s41525-019-0093-8. PubMed DOI PMC
Kaplanis, J. et al. Integrating healthcare and research genetic data empowers the discovery of 49 novel developmental disorders. Preprint at bioRxiv10.1101/797787 (2019).
Kim S, Yu NK, Kaang BK. CTCF as a multifunctional protein in genome regulation and gene expression. Exp. Mol. Med. 2015;47:e166. doi: 10.1038/emm.2015.33. PubMed DOI PMC
Hashimoto H, et al. Structural basis for the versatile and methylation-dependent binding of CTCF to DNA. Mol. Cell. 2017;66:711–720.e3. doi: 10.1016/j.molcel.2017.05.004. PubMed DOI PMC
Bosch DG, et al. Novel genetic causes for cerebral visual impairment. Eur. J. Hum. Genet. 2016;24:660–665. doi: 10.1038/ejhg.2015.186. PubMed DOI PMC
Xiang C, et al. RP58/ZNF238 directly modulates proneurogenic gene levels and is required for neuronal differentiation and brain expansion. Cell Death Differ. 2012;19:692–702. doi: 10.1038/cdd.2011.144. PubMed DOI PMC
Lee E, et al. A craniosynostosis massively parallel sequencing panel study in 309 Australian and New Zealand patients: findings and recommendations. Genet. Med. 2018;20:1061–1068. doi: 10.1038/gim.2017.214. PubMed DOI
Goodman LD, et al. Toxic expanded GGGGCC repeat transcription is mediated by the PAF1 complex in C9orf72-associated FTD. Nat. Neurosci. 2019;22:863–874. doi: 10.1038/s41593-019-0396-1. PubMed DOI PMC
Jordan VK, Zaveri HP, Scott DA. 1p36 deletion syndrome: an update. Appl Clin. Genet. 2015;8:189–200. PubMed PMC
Yabe D, et al. Generation of a conditional knockout allele for mammalian Spen protein Mint/SHARP. Genesis. 2007;45:300–306. doi: 10.1002/dvg.20296. PubMed DOI
Turner TN, et al. Sex-based analysis of de novo variants in neurodevelopmental disorders. Am. J. Hum. Genet. 2019;105:1274–1285. doi: 10.1016/j.ajhg.2019.11.003. PubMed DOI PMC
Boyle EA, O’Roak BJ, Martin BK, Kumar A, Shendure J. MIPgen: optimized modeling and design of molecular inversion probes for targeted resequencing. Bioinformatics. 2014;30:2670–2672. doi: 10.1093/bioinformatics/btu353. PubMed DOI PMC
McLaren W, et al. The ensembl variant effect predictor. Genome Biol. 2016;17:122. doi: 10.1186/s13059-016-0974-4. PubMed DOI PMC
Manichaikul A, et al. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26:2867–2873. doi: 10.1093/bioinformatics/btq559. PubMed DOI PMC
Loss-of-Function Variants in CUL3 Cause a Syndromic Neurodevelopmental Disorder
Spliceosome malfunction causes neurodevelopmental disorders with overlapping features