Generation of megatesla magnetic fields by intense-laser-driven microtube implosions
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
33024183
PubMed Central
PMC7538441
DOI
10.1038/s41598-020-73581-4
PII: 10.1038/s41598-020-73581-4
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A microtube implosion driven by ultraintense laser pulses is used to produce ultrahigh magnetic fields. Due to the laser-produced hot electrons with energies of mega-electron volts, cold ions in the inner wall surface implode towards the central axis. By pre-seeding uniform magnetic fields on the kilotesla order, the Lorenz force induces the Larmor gyromotion of the imploding ions and electrons. Due to the resultant collective motion of relativistic charged particles around the central axis, strong spin current densities of [Formula: see text] peta-ampere/[Formula: see text] are produced with a few tens of nm size, generating megatesla-order magnetic fields. The underlying physics and important scaling are revealed by particle simulations and a simple analytical model. The concept holds promise to open new frontiers in many branches of fundamental physics and applications in terms of ultrahigh magnetic fields.
ETSI Aeronáutica y del Espacio Universidad Politécnica de Madrid Madrid Spain
Institute of Laser Engineering Osaka University Suita Osaka 565 0871 Japan
Institute of Physics of the ASCR ELI Beamlines Na Slovance 2 18221 Prague Czech Republic
University of California San Diego 9500 Gilman Drive La Jolla CA 92093 0411 USA
Zobrazit více v PubMed
Sakharov AD, et al. Magnetic cumulation. Sov. Phys. Dokl. 1965;165:65.
Fowler CM, Garn WB, Caird RS. Production of very high magnetic fields by implosion. J. Appl. Phys. 1960;31:588. doi: 10.1063/1.1735633. DOI
Cnare EC. Magnetic flux compression by magnetically imploded metallic foils. J. Appl. Phys. 1966;37:3812. doi: 10.1063/1.1707931. DOI
Daido H, et al. Generation of a strong magnetic field by an intense CO2 laser pulse. Phys. Rev. Lett. 1986;56:846. doi: 10.1103/PhysRevLett.56.846. PubMed DOI
Felber FS, et al. Compression of ultrahigh magnetic fields in a gas-puff Z pinch. Phys. Fluids. 1988;31:2053. doi: 10.1063/1.866657. DOI
Velikovich, A. L., Gol’berg, S. M., Liberman, M. A. & Felber, F. S. Hydrodynamics of compression of a plasma with a frozen-in magnetic field by a thin cylindrical wall. Sov. Phys. JETP61, 261 (1985).
Miura N, et al. Recent advances in megagauss physics. Physica B. 1996;216:153. doi: 10.1016/0921-4526(95)00461-0. DOI
Pegoraro F, et al. Magnetic fields from high-intensity laser pulses in plasmas. Plasma Phys. Control. Fusion. 1997;39:B261. doi: 10.1088/0741-3335/39/12B/020. DOI
Courtois C, et al. Creation of a uniform high magnetic-field strength environment for laser-driven experiments. J. Appl. Phys. 2005;98:054913. doi: 10.1063/1.2035896. DOI
Gotchev OV, et al. Laser-driven magnetic-flux compression in high-energy-density plasmas. Phys. Rev. Lett. 2009;103:215004. doi: 10.1103/PhysRevLett.103.215004. PubMed DOI
Knauer JP, et al. Compressing magnetic fields with high-energy lasers. Phys. Plasmas. 2010;17:056318. doi: 10.1063/1.3416557. DOI
Fujioka S, et al. Kilotesla magnetic field due to a capacitor-coil target driven by high power laser. Sci. Rep. 2013;3:1170. doi: 10.1038/srep01170. PubMed DOI PMC
Santos JJ, et al. Laser-driven platform for generation and characterization of strong quasi-static magnetic fields. New. J. Phys. 2015;17:083051. doi: 10.1088/1367-2630/17/8/083051. DOI
Tikhonchuk VT, et al. Quasi-stationary magnetic fields generation with a laser-driven capacitor-coil assembly. Phys. Rev. E. 2017;96:023202. doi: 10.1103/PhysRevE.96.023202. PubMed DOI
Nakamura D, et al. Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression. Rev. Sci. Instrum. 2018;89:095106. doi: 10.1063/1.5044557. PubMed DOI
Lécz Z, Andreev A. Laser-induced extreme magnetic field in nanorod targets. New J. Phys. 2018;20:033010. doi: 10.1088/1367-2630/aaaff2. DOI
Wang T, Toncian T, Wei MS, Arefiev AV. Structured targets for detection of Megatesla-level magnetic fields through Faraday rotation of XFEL beams. Phys. Plasmas. 2019;26:013105. doi: 10.1063/1.5066109. DOI
Park J, et al. Ion acceleration in laser generated megatesla magnetic vortex. Phys. Plasmas. 2019;26:103108. doi: 10.1063/1.5094045. DOI
Sagdeev, R.Z. Cooperative phenomena and shock waves in collisionless plasmas. Rev. Plasma Phys.4, 23 (Consultants Bureau, New York, 1966).
Arefiev AV, Toncian T, Fiksel G. Enhanced proton acceleration in an applied longitudinal magnetic field. New J. Phys. 2016;18:105011. doi: 10.1088/1367-2630/18/10/105011. DOI
Stark DJ, Toncian T, Arefiev AV. Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field. Phys. Rev. Lett. 2016;116:185003. doi: 10.1103/PhysRevLett.116.185003. PubMed DOI
Bailly-Grandvaux M, et al. Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields. Nat. Comm. 2018;9:102. doi: 10.1038/s41467-017-02641-7. PubMed DOI PMC
Nakatsutsumi M, et al. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons. Nat. Commun. 2018;9:280. doi: 10.1038/s41467-017-02436-w. PubMed DOI PMC
Weng S, et al. Extreme case of Faraday effect: Magnetic splitting of ultrashort laser pulses in plasmas. Optica. 2017;4:1086. doi: 10.1364/OPTICA.4.001086. DOI
Santangelo A, et al. The first X-ray spectrum with four cyclotron harmonic features. Astro. Phys. J. Lett. 1999;523:L85. doi: 10.1086/312249. DOI
Gourgouliatos K, Cumming A. Hall effect in neutron star crusts: Evolution, endpoint and dependence on initial conditions. MNRAS. 2014;438:1618. doi: 10.1093/mnras/stt2300. DOI
Kopp RA, Pneuman GW. Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys. 1976;50:85. doi: 10.1007/BF00206193. DOI
Masuda S, et al. A loop-top hard x-ray source in a compact solar flare as evidence for magnetic reconnection. Nature. 1994;371:495. doi: 10.1038/371495a0. DOI
Gilch P, et al. Magnetic field effect on picosecond electron transfer. Science. 1998;281:982. doi: 10.1126/science.281.5379.982. PubMed DOI
Lai D. Matter in strong magnetic fields. Rev. Mod. Phys. 2001;73:629. doi: 10.1103/RevModPhys.73.629. DOI
Herlach, F. & Miura, N. (eds) High Magnetic Fields: Science and Technology (World Scientific Pub Co Inc, Singapore, 2003).
Ribeyre X, et al. Pair creation in collision of PubMed DOI
Jansen O, et al. Leveraging extreme laser-driven magnetic fields for gamma-ray generation and pair production. Plasma Phys. Control. Fusion. 2018;60:054006. doi: 10.1088/1361-6587/aab222. DOI
Koga JK, Murakami M, Areviev AV, Nakamiya Y. Probing and possible application of the QED vacuum with micro-bubble implosions induced by ultra-intense laser pulses. Matter Radiat. Extremes. 2019;4:034401. doi: 10.1063/1.5086933. DOI
Slutz SA, et al. High-gain magnetized inertial fusion. Phys. Rev. Lett. 2012;108:025003. doi: 10.1103/PhysRevLett.108.025003. PubMed DOI
Wang WM, Gibbon P, Sheng ZM, Li YT. Magnetically assisted fast ignition. Phys. Rev. Lett. 2015;114:015001. doi: 10.1103/PhysRevLett.114.015001. PubMed DOI
Honrubia J, Morace A, Murakami M. On intense proton beam generation and transport in hollow cones. Matter Radiat. Extremes. 2017;2:28. doi: 10.1016/j.mre.2016.11.001. DOI
Santos JJ, et al. Laser-driven strong magnetstatic fields with applications to charged beam transport and magnetized high-density physics. Phys. Plasmas. 2018;25:056705. doi: 10.1063/1.5018735. DOI
Wilks SC, et al. Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas. 2001;8:542. doi: 10.1063/1.1333697. DOI
Norreys PA, et al. Observation of a highly directional DOI
Wilks SC, Kruer WL, Tabak M, Langdon AB. Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 1992;69:1383. doi: 10.1103/PhysRevLett.69.1383. PubMed DOI
Mora P. Plasma expansion into a vacuum. Phys. Rev. Lett. 2003;90:185002. doi: 10.1103/PhysRevLett.90.185002. PubMed DOI
Fuchs J, et al. Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 2006;2:48. doi: 10.1038/nphys199. DOI
Murakami M, Basko MM. Self-similar expansion of finite-size non-quasi-neutral plasmas into vacuum: Relation to the problem of ion acceleration. Phys. Plasmas. 2006;13:012105. doi: 10.1063/1.2162527. DOI
Arber TD, et al. Contemporary particle-in-cell approach to laser-plasma modeling. Plasma Phys. Control. Fusion. 2015;57:113001. doi: 10.1088/0741-3335/57/11/113001. DOI
Jüttner F. Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie. Ann. Phys. 1911;339:856–882. doi: 10.1002/andp.19113390503. DOI
Bezzerides B, Gitomer SJ, Forslund DW. Randomness, Maxwellian distributions, and resonance absorption. Phys. Rev. Lett. 1980;44:651. doi: 10.1103/PhysRevLett.44.651. DOI
Kluge T, Bussmann M, Schramm U, Cowan TE. Simple scaling equations for electron spectra, currents, and bulk heating in ultra-intense short-pulse laser-solid interaction. Phys. Plasmas. 2018;25:073106. doi: 10.1063/1.5037753. DOI
Grevich AV, Pariskaya LV, Pitaevskii LP. Self-similar motion of rarefied plasma. Sov. Phys. JETP. 1966;22:449.
Landau, L.D. & Lifshitz, E.M. Course in Thoretical Physics, Vol. 6: Fluid Mechanics (Pergamon Press, Oxford, 1959).
Shen B, et al. Exploring vacuum birefringence based on a 100 PW laser and an X-ray free electron laser beam. Plasma Phys. Control. Fusion. 2018;60:044002. doi: 10.1088/1361-6587/aaa7fb. DOI
Danson, C.N. et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng.7, 03000e54 (2019).
Kardjilov N, et al. Imaging with polarized neutrons. J. Imaging. 2018;4:23. doi: 10.3390/jimaging4010023. DOI
Murakami M. Analysis of radiation symmetrization in hohlraum targets. Nucl. Fusion. 1992;32:1715. doi: 10.1088/0029-5515/32/10/I02. DOI
Murakami M, Nishi D. Optimization of laser illumination configuration for directly driven inertial confinement fusion. Matter Radiat. Extremes. 2017;2:55. doi: 10.1016/j.mre.2016.12.002. DOI
John T, et al. XSEDE: Accelerating scientific discovery. Comput. Sci. Eng. 2014;16:62.
Chourasia, A. et al.Proceedings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact, PEARC17 (New York, NY, USA) 69:1 (ACM, 2017).