Generation of megatesla magnetic fields by intense-laser-driven microtube implosions

. 2020 Oct 06 ; 10 (1) : 16653. [epub] 20201006

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33024183
Odkazy

PubMed 33024183
PubMed Central PMC7538441
DOI 10.1038/s41598-020-73581-4
PII: 10.1038/s41598-020-73581-4
Knihovny.cz E-zdroje

A microtube implosion driven by ultraintense laser pulses is used to produce ultrahigh magnetic fields. Due to the laser-produced hot electrons with energies of mega-electron volts, cold ions in the inner wall surface implode towards the central axis. By pre-seeding uniform magnetic fields on the kilotesla order, the Lorenz force induces the Larmor gyromotion of the imploding ions and electrons. Due to the resultant collective motion of relativistic charged particles around the central axis, strong spin current densities of [Formula: see text] peta-ampere/[Formula: see text] are produced with a few tens of nm size, generating megatesla-order magnetic fields. The underlying physics and important scaling are revealed by particle simulations and a simple analytical model. The concept holds promise to open new frontiers in many branches of fundamental physics and applications in terms of ultrahigh magnetic fields.

Zobrazit více v PubMed

Sakharov AD, et al. Magnetic cumulation. Sov. Phys. Dokl. 1965;165:65.

Fowler CM, Garn WB, Caird RS. Production of very high magnetic fields by implosion. J. Appl. Phys. 1960;31:588. doi: 10.1063/1.1735633. DOI

Cnare EC. Magnetic flux compression by magnetically imploded metallic foils. J. Appl. Phys. 1966;37:3812. doi: 10.1063/1.1707931. DOI

Daido H, et al. Generation of a strong magnetic field by an intense CO2 laser pulse. Phys. Rev. Lett. 1986;56:846. doi: 10.1103/PhysRevLett.56.846. PubMed DOI

Felber FS, et al. Compression of ultrahigh magnetic fields in a gas-puff Z pinch. Phys. Fluids. 1988;31:2053. doi: 10.1063/1.866657. DOI

Velikovich, A. L., Gol’berg, S. M., Liberman, M. A. & Felber, F. S. Hydrodynamics of compression of a plasma with a frozen-in magnetic field by a thin cylindrical wall. Sov. Phys. JETP61, 261 (1985).

Miura N, et al. Recent advances in megagauss physics. Physica B. 1996;216:153. doi: 10.1016/0921-4526(95)00461-0. DOI

Pegoraro F, et al. Magnetic fields from high-intensity laser pulses in plasmas. Plasma Phys. Control. Fusion. 1997;39:B261. doi: 10.1088/0741-3335/39/12B/020. DOI

Courtois C, et al. Creation of a uniform high magnetic-field strength environment for laser-driven experiments. J. Appl. Phys. 2005;98:054913. doi: 10.1063/1.2035896. DOI

Gotchev OV, et al. Laser-driven magnetic-flux compression in high-energy-density plasmas. Phys. Rev. Lett. 2009;103:215004. doi: 10.1103/PhysRevLett.103.215004. PubMed DOI

Knauer JP, et al. Compressing magnetic fields with high-energy lasers. Phys. Plasmas. 2010;17:056318. doi: 10.1063/1.3416557. DOI

Fujioka S, et al. Kilotesla magnetic field due to a capacitor-coil target driven by high power laser. Sci. Rep. 2013;3:1170. doi: 10.1038/srep01170. PubMed DOI PMC

Santos JJ, et al. Laser-driven platform for generation and characterization of strong quasi-static magnetic fields. New. J. Phys. 2015;17:083051. doi: 10.1088/1367-2630/17/8/083051. DOI

Tikhonchuk VT, et al. Quasi-stationary magnetic fields generation with a laser-driven capacitor-coil assembly. Phys. Rev. E. 2017;96:023202. doi: 10.1103/PhysRevE.96.023202. PubMed DOI

Nakamura D, et al. Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression. Rev. Sci. Instrum. 2018;89:095106. doi: 10.1063/1.5044557. PubMed DOI

Lécz Z, Andreev A. Laser-induced extreme magnetic field in nanorod targets. New J. Phys. 2018;20:033010. doi: 10.1088/1367-2630/aaaff2. DOI

Wang T, Toncian T, Wei MS, Arefiev AV. Structured targets for detection of Megatesla-level magnetic fields through Faraday rotation of XFEL beams. Phys. Plasmas. 2019;26:013105. doi: 10.1063/1.5066109. DOI

Park J, et al. Ion acceleration in laser generated megatesla magnetic vortex. Phys. Plasmas. 2019;26:103108. doi: 10.1063/1.5094045. DOI

Sagdeev, R.Z. Cooperative phenomena and shock waves in collisionless plasmas. Rev. Plasma Phys.4, 23 (Consultants Bureau, New York, 1966).

Arefiev AV, Toncian T, Fiksel G. Enhanced proton acceleration in an applied longitudinal magnetic field. New J. Phys. 2016;18:105011. doi: 10.1088/1367-2630/18/10/105011. DOI

Stark DJ, Toncian T, Arefiev AV. Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field. Phys. Rev. Lett. 2016;116:185003. doi: 10.1103/PhysRevLett.116.185003. PubMed DOI

Bailly-Grandvaux M, et al. Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields. Nat. Comm. 2018;9:102. doi: 10.1038/s41467-017-02641-7. PubMed DOI PMC

Nakatsutsumi M, et al. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons. Nat. Commun. 2018;9:280. doi: 10.1038/s41467-017-02436-w. PubMed DOI PMC

Weng S, et al. Extreme case of Faraday effect: Magnetic splitting of ultrashort laser pulses in plasmas. Optica. 2017;4:1086. doi: 10.1364/OPTICA.4.001086. DOI

Santangelo A, et al. The first X-ray spectrum with four cyclotron harmonic features. Astro. Phys. J. Lett. 1999;523:L85. doi: 10.1086/312249. DOI

Gourgouliatos K, Cumming A. Hall effect in neutron star crusts: Evolution, endpoint and dependence on initial conditions. MNRAS. 2014;438:1618. doi: 10.1093/mnras/stt2300. DOI

Kopp RA, Pneuman GW. Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys. 1976;50:85. doi: 10.1007/BF00206193. DOI

Masuda S, et al. A loop-top hard x-ray source in a compact solar flare as evidence for magnetic reconnection. Nature. 1994;371:495. doi: 10.1038/371495a0. DOI

Gilch P, et al. Magnetic field effect on picosecond electron transfer. Science. 1998;281:982. doi: 10.1126/science.281.5379.982. PubMed DOI

Lai D. Matter in strong magnetic fields. Rev. Mod. Phys. 2001;73:629. doi: 10.1103/RevModPhys.73.629. DOI

Herlach, F. & Miura, N. (eds) High Magnetic Fields: Science and Technology (World Scientific Pub Co Inc, Singapore, 2003).

Ribeyre X, et al. Pair creation in collision of PubMed DOI

Jansen O, et al. Leveraging extreme laser-driven magnetic fields for gamma-ray generation and pair production. Plasma Phys. Control. Fusion. 2018;60:054006. doi: 10.1088/1361-6587/aab222. DOI

Koga JK, Murakami M, Areviev AV, Nakamiya Y. Probing and possible application of the QED vacuum with micro-bubble implosions induced by ultra-intense laser pulses. Matter Radiat. Extremes. 2019;4:034401. doi: 10.1063/1.5086933. DOI

Slutz SA, et al. High-gain magnetized inertial fusion. Phys. Rev. Lett. 2012;108:025003. doi: 10.1103/PhysRevLett.108.025003. PubMed DOI

Wang WM, Gibbon P, Sheng ZM, Li YT. Magnetically assisted fast ignition. Phys. Rev. Lett. 2015;114:015001. doi: 10.1103/PhysRevLett.114.015001. PubMed DOI

Honrubia J, Morace A, Murakami M. On intense proton beam generation and transport in hollow cones. Matter Radiat. Extremes. 2017;2:28. doi: 10.1016/j.mre.2016.11.001. DOI

Santos JJ, et al. Laser-driven strong magnetstatic fields with applications to charged beam transport and magnetized high-density physics. Phys. Plasmas. 2018;25:056705. doi: 10.1063/1.5018735. DOI

Wilks SC, et al. Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas. 2001;8:542. doi: 10.1063/1.1333697. DOI

Norreys PA, et al. Observation of a highly directional DOI

Wilks SC, Kruer WL, Tabak M, Langdon AB. Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 1992;69:1383. doi: 10.1103/PhysRevLett.69.1383. PubMed DOI

Mora P. Plasma expansion into a vacuum. Phys. Rev. Lett. 2003;90:185002. doi: 10.1103/PhysRevLett.90.185002. PubMed DOI

Fuchs J, et al. Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 2006;2:48. doi: 10.1038/nphys199. DOI

Murakami M, Basko MM. Self-similar expansion of finite-size non-quasi-neutral plasmas into vacuum: Relation to the problem of ion acceleration. Phys. Plasmas. 2006;13:012105. doi: 10.1063/1.2162527. DOI

Arber TD, et al. Contemporary particle-in-cell approach to laser-plasma modeling. Plasma Phys. Control. Fusion. 2015;57:113001. doi: 10.1088/0741-3335/57/11/113001. DOI

Jüttner F. Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie. Ann. Phys. 1911;339:856–882. doi: 10.1002/andp.19113390503. DOI

Bezzerides B, Gitomer SJ, Forslund DW. Randomness, Maxwellian distributions, and resonance absorption. Phys. Rev. Lett. 1980;44:651. doi: 10.1103/PhysRevLett.44.651. DOI

Kluge T, Bussmann M, Schramm U, Cowan TE. Simple scaling equations for electron spectra, currents, and bulk heating in ultra-intense short-pulse laser-solid interaction. Phys. Plasmas. 2018;25:073106. doi: 10.1063/1.5037753. DOI

Grevich AV, Pariskaya LV, Pitaevskii LP. Self-similar motion of rarefied plasma. Sov. Phys. JETP. 1966;22:449.

Landau, L.D. & Lifshitz, E.M. Course in Thoretical Physics, Vol. 6: Fluid Mechanics (Pergamon Press, Oxford, 1959).

Shen B, et al. Exploring vacuum birefringence based on a 100 PW laser and an X-ray free electron laser beam. Plasma Phys. Control. Fusion. 2018;60:044002. doi: 10.1088/1361-6587/aaa7fb. DOI

Danson, C.N. et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng.7, 03000e54 (2019).

Kardjilov N, et al. Imaging with polarized neutrons. J. Imaging. 2018;4:23. doi: 10.3390/jimaging4010023. DOI

Murakami M. Analysis of radiation symmetrization in hohlraum targets. Nucl. Fusion. 1992;32:1715. doi: 10.1088/0029-5515/32/10/I02. DOI

Murakami M, Nishi D. Optimization of laser illumination configuration for directly driven inertial confinement fusion. Matter Radiat. Extremes. 2017;2:55. doi: 10.1016/j.mre.2016.12.002. DOI

John T, et al. XSEDE: Accelerating scientific discovery. Comput. Sci. Eng. 2014;16:62.

Chourasia, A. et al.Proceedings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact, PEARC17 (New York, NY, USA) 69:1 (ACM, 2017).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Generation of intense magnetic wakes by relativistic laser pulses in plasma

. 2023 Jan 30 ; 13 (1) : 1701. [epub] 20230130

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...