Easy Identification of Optimal Coronal Slice on Brain Magnetic Resonance Imaging to Measure Hippocampal Area in Alzheimer's Disease Patients
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33029517
PubMed Central
PMC7532424
DOI
10.1155/2020/5894021
Knihovny.cz E-zdroje
- MeSH
- Alzheimerova nemoc diagnostické zobrazování MeSH
- hipokampus diagnostické zobrazování MeSH
- interpretace obrazu počítačem metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- senioři MeSH
- zobrazování trojrozměrné metody MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Measurement of an- hippocampal area or volume is useful in clinical practice as a supportive aid for diagnosis of Alzheimer's disease. Since it is time-consuming and not simple, it is not being used very often. We present a simplified protocol for hippocampal atrophy evaluation based on a single optimal slice in Alzheimer's disease. METHODS: We defined a single optimal slice for hippocampal measurement on brain magnetic resonance imaging (MRI) at the plane where the amygdala disappears and only the hippocampus is present. We compared an absolute area and volume of the hippocampus on this optimal slice between 40 patients with Alzheimer disease and 40 age-, education- and gender-mateched elderly controls. Furthermore, we compared these results with those relative to the size of the brain or the skull: the area of the optimal slice normalized to the area of the brain at anterior commissure and the volume of the hippocampus normalized to the total intracranial volume. RESULTS: Hippocampal areas on the single optimal slice and hippocampal volumes on the left and right in the control group were significantly higher than those in the AD group. Normalized hippocampal areas and volumes on the left and right in the control group were significantly higher compared to the AD group. Absolute hippocampal areas and volumes did not significantly differ from corresponding normalized hippocampal areas as well as normalized hippocampal volumes using comparisons of areas under the receiver operating characteristic curves. CONCLUSION: The hippocampal area on the well-defined optimal slice of brain MRI can reliably substitute a complicated measurement of the hippocampal volume. Surprisingly, brain or skull normalization of these variables does not add any incremental differentiation between Alzheimer disease patients and controls or give better results.
Department of Anatomy 3rd Faculty of Medicine Charles University Prague Czech Republic
Institute of clinical Clinical and Experimental Medicine Prague Czech Republic
National Institute of Mental Health Topolová 748 250 67 Klecany Czech Republic
Zobrazit více v PubMed
Harper L., Barkhof F., Fox N. C., Schott J. M. Using visual rating to diagnose dementia: a critical evaluation of MRI atrophy scales. Journal of Neurology, Neurosurgery & Psychiatry. 2015;86(11):1225–1233. doi: 10.1136/jnnp-2014-310090. PubMed DOI
Bigler E. D., Blatter D. D., Anderson C. V., et al. Hippocampal volume in normal aging and traumatic brain injury. AJNR. American Journal of Neuroradiology. 1997;18(1):11–23. PubMed PMC
Bartos A., Gregus D., Ibrahim I., Tintěra J. Brain volumes and their ratios in Alzheimer´s disease on magnetic resonance imaging segmented using Freesurfer 6.0. Psychiatry Research: Neuroimaging. 2019;287:70–74. doi: 10.1016/j.pscychresns.2019.01.014. PubMed DOI
Giesel F. L., Hahn H. K., Thomann P. A., et al. Temporal horn index and volume of medial temporal lobe atrophy using a new semiautomated method for rapid and precise assessment. AJNR. American Journal of Neuroradiology. 2006;27(7):1454–1458. PubMed PMC
Giesel F. L., Thomann P. A., Hahn H. K., et al. Comparison of manual direct and automated indirect measurement of hippocampus using magnetic resonance imaging. European Journal of Radiology. 2008;66(2):268–273. doi: 10.1016/j.ejrad.2007.06.009. PubMed DOI
Menendez-Gonzalez M., de Celis A. B., Salas-Pacheco J., Arias-Carrion O. Structural neuroimaging of the medial temporal lobe in Alzheimer's disease clinical trials. Journal of Alzheimer's Disease. 2015;48(3):581–589. doi: 10.3233/JAD-150226. PubMed DOI
Menéndez-González M., López-Muñiz A., Vega J. A., Salas-Pacheco J. M., Arias-Carrión O. MTA index: a simple 2D-method for assessing atrophy of the medial temporal lobe using clinically available neuroimaging. Frontiers in Aging Neuroscience. 2014;6:p. 23. doi: 10.3389/fnagi.2014.00023. PubMed DOI PMC
Menendez-Gonzalez M., Suarez-Sanmartin E., Garcia C., Martinez-Camblor P., Westman E., Simmons A. Manual planimetry of the medial temporal lobe versus automated volumetry of the hippocampus in the diagnosis of Alzheimer's disease. Cureus. 2016;26(8, article e544) doi: 10.7759/cureus.544. PubMed DOI PMC
Schoemaker D., Buss C., Pietrantonio S., et al. The hippocampal-to-ventricle ratio (HVR): presentation of a manual segmentation protocol and preliminary evidence. Neuroimage. 2019;203, article 116108 doi: 10.1016/j.neuroimage.2019. PubMed DOI
Geroldi C., Akkawi N. M., Galluzzi S., et al. Temporal lobe asymmetry in patients with Alzheimer’s disease with delusions. Journal of Neurology, Neurosurgery & Psychiatry. 2000;69(2):187–191. doi: 10.1136/jnnp.69.2.187. PubMed DOI PMC
Thompson P. M., Hayashi K. M., De Zubicaray G. I., et al. Mapping hippocampal and ventricular change in Alzheimer disease. NeuroImage. 2004;22(4):1754–1766. doi: 10.1016/j.neuroimage.2004.03.040. PubMed DOI
Bartos A., Raisova M. The Mini-Mental State Examination: Czech norms and cutoffs for mild dementia and mild cognitive impairment due to Alzheimer's disease. Dementia and Geriatric Cognitive Disorders. 2016;42(1-2):50–57. doi: 10.1159/000446426. PubMed DOI
McKhann G. M., Knopman D. S., Chertkow H., et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer’s and Dementia. 2011;7(3):263–269. doi: 10.1016/j.jalz.2011.03.005. PubMed DOI PMC
Fischl B., Salat D. H., Busa E., et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–355. doi: 10.1016/S0896-6273(02)00569-X. PubMed DOI
Reuter M., Schmansky N. J., Rosas H. D., Fischl B. Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage. 2012;61(4):1402–1418. doi: 10.1016/j.neuroimage.2012.02.084. PubMed DOI PMC
Malone I. B., Leung K. K., Clegg S., et al. Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance. NeuroImage. 2015;104:366–372. doi: 10.1016/j.neuroimage.2014.09.034. PubMed DOI PMC
Sargolzaei S., Sargolzaei A., Cabrerizo M., et al. A practical guideline for intracranial volume estimation in patients with Alzheimer's disease. BMC Bioinformatics. 2015;16(S7):p. S8. doi: 10.1186/1471-2105-16-S7-S8. PubMed DOI PMC
Fung Y. L., Ng K. E. T., Vogrin S. J., et al. Comparative utility of manual versus automated segmentation of hippocampus and entorhinal cortex volumes in a memory clinic sample. Journal of Alzheimer's Disease. 2019;68(1):159–171. doi: 10.3233/JAD-181172. PubMed DOI
Takashima A., Petersson K. M., Rutters F., et al. Declarative memory consolidation in humans: a prospective functional magnetic resonance imaging study. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(3):756–761. doi: 10.1073/pnas.0507774103. PubMed DOI PMC
Porter B. S., Schmidt R., Bilkey D. K. Hippocampal place cell encoding of sloping terrain. Hippocampus. 2018;28(11):767–782. doi: 10.1002/hipo.22966. PubMed DOI PMC
Li F., Takechi H., Saito R., et al. A comparative study: visual rating scores and the voxel-based specific regional analysis system for Alzheimer's disease on magnetic resonance imaging among subjects with Alzheimer's disease, mild cognitive impairment, and normal cognition. Psychogeriatrics. 2019;19(2):95–104. doi: 10.1111/psyg.12370. PubMed DOI
Estévez-Santé S., Jiménez-Huete A., ADNI group Comparative analysis of methods of volume adjustment in hippocampal volumetry for the diagnosis of Alzheimer disease. Journal of Neuroradiology. 2020;47(2):161–165. doi: 10.1016/j.neurad.2019.02.004. PubMed DOI
Hu X., Meiberth D., Newport B., Jessen F. Anatomical correlates of the neuropsychiatric symptoms in Alzheimer's disease. Current Alzheimer Research. 2015;12(3):266–277. doi: 10.2174/1567205012666150302154914. PubMed DOI
Klasson N., Olsson E., Eckerström C., Malmgren H., Wallin A. Estimated intracranial volume from FreeSurfer is biased by total brain volume. European Radiology Experimental. 2018;2(1) doi: 10.1186/s41747-018-0055-4. DOI
Klasson N., Olsson E., Eckerström C., Malmgren H., Wallin A. Delineation of two intracranial areas and the perpendicular intracranial width is sufficient for intracranial volume estimation. Insights Into Imaging. 2018;9(1):25–34. doi: 10.1007/s13244-017-0583-0. PubMed DOI PMC
Salk I., Atalar M. H., Sezer F., Egilmez H., Cetin A., Arslan M. An MRI study of age-related changes in the dimensions related temporal lobe. International Journal of Clinical and Experimental Medicine. 2014;7(3):515–522. PubMed PMC
Macdonald K. E., Bartlett J. W., Leung K. K., Ourselin S., Barnes J. The value of hippocampal and temporal horn volumes and rates of change in predicting future conversion to AD. Alzheimer Disease and Associated Disorders. 2013;27(2):168–173. doi: 10.1097/WAD.0b013e318260a79a. PubMed DOI PMC