Circulating Non-coding RNAs in Renal Cell Carcinoma-Pathogenesis and Potential Implications as Clinical Biomarkers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
33042985
PubMed Central
PMC7523432
DOI
10.3389/fcell.2020.00828
Knihovny.cz E-zdroje
- Klíčová slova
- biomarker, diagnosis, liquid biopsy, long non-coding RNA, microRNA, prognosis, renal cell carcinoma,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Liquid biopsy-the determination of circulating cells, proteins, DNA or RNA from biofluids through a "less invasive" approach-has emerged as a novel approach in all cancer entities. Circulating non-(protein) coding RNAs including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and YRNAs can be passively released by tissue or cell damage or actively secreted as cell-free circulating RNAs, bound to lipoproteins or carried by exosomes. In renal cell carcinoma (RCC), a growing body of evidence suggests circulating non-coding RNAs (ncRNAs) such as miRNAs, lncRNAs, and YRNAs as promising and easily accessible blood-based biomarkers for the early diagnosis of RCC as well as for the prediction of prognosis and treatment response. In addition, circulating ncRNAs could also play a role in RCC pathogenesis and progression. This review gives an overview over the current study landscape of circulating ncRNAs and their involvement in RCC pathogenesis as well as their potential utility as future biomarkers in RCC diagnosis and treatment.
Central European Institute of Technology Masaryk University Brno Czechia
Department of Comprehensive Cancer Care Masaryk Memorial Cancer Institute Brno Czechia
Zobrazit více v PubMed
Arroyo J. D., Chevillet J. R., Kroh E. M., Ruf I. K., Pritchard C. C., Gibson D. F., et al. (2011). Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. U.S.A. 108 5003–5008. 10.1073/pnas.1019055108 PubMed DOI PMC
Bai M., Zou B., Wang Z., Li P., Wang H., Ou Y., et al. (2018). Comparison of two detection systems for circulating tumor cells among patients with renal cell carcinoma. Int. Urol. Nephrol. 50 1801–1809. 10.1007/s11255-018-1954-2 PubMed DOI
Bao X., Duan J., Yan Y., Ma X., Zhang Y., Wang H., et al. (2017). Upregulation of long noncoding RNA PVT1 predicts unfavorable prognosis in patients with clear cell renal cell carcinoma. Cancer Biomark 21 55–63. 10.3233/cbm-170251 PubMed DOI
Bartel D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116 281–297. PubMed
Barth D. A., Slaby O., Klec C., Juracek J., Drula R., Calin G. A., et al. (2019). Current concepts of non-coding RNAs in the pathogenesis of non-clear cell renal cell carcinoma. Cancers (Basel) 11:10.3390/cancers11101580. PubMed PMC
Bergerot P. G., Hahn A. W., Bergerot C. D., Jones J., Pal S. K. (2018). The role of circulating tumor DNA in renal cell carcinoma. Curr. Treat. Options Oncol. 19:10. PubMed
Bryzgunova O. E., Laktionov P. P. (2015). Extracellular nucleic acids in urine: sources, structure, diagnostic potential. Acta Naturae 7 48–54. 10.32607/20758251-2015-7-3-48-54 PubMed DOI PMC
Bu J., Nair A., Kubiatowicz L. J., Poellmann M. J., Jeong W. J., Reyes-Martinez M., et al. (2020). Surface engineering for efficient capture of circulating tumor cells in renal cell carcinoma: From nanoscale analysis to clinical application. Biosens. Bioelectron. 162:112250. 10.1016/j.bios.2020.112250 PubMed DOI PMC
Butz H., Nofech-Mozes R., Ding Q., Khella H. W. Z., Szabo P. M., Jewett M., et al. (2016). Exosomal MicroRNAs are diagnostic biomarkers and can mediate cell-cell communication in renal cell carcinoma. Eur. Urol. Focus 2 210–218. 10.1016/j.euf.2015.11.006 PubMed DOI
Cella D., Grunwald V., Escudier B., Hammers H. J., George S., Nathan P., et al. (2019). Patient-reported outcomes of patients with advanced renal cell carcinoma treated with nivolumab plus ipilimumab versus sunitinib (CheckMate 214): a randomised, phase 3 trial. Lancet Oncol. 20 297–310. 10.1016/s1470-2045(18)30778-2 PubMed DOI PMC
Chan J. K., Kiet T. K., Blansit K., Ramasubbaiah R., Hilton J. F., Kapp D. S., et al. (2014). MiR-378 as a biomarker for response to anti-angiogenic treatment in ovarian cancer. Gynecol. Oncol. 133 568–574. 10.1016/j.ygyno.2014.03.564 PubMed DOI
Chanudet E., Wozniak M. B., Bouaoun L., Byrnes G., Mukeriya A., Zaridze D., et al. (2017). Large-scale genome-wide screening of circulating microRNAs in clear cell renal cell carcinoma reveals specific signatures in late-stage disease. Int. J. Cancer 141 1730–1740. 10.1002/ijc.30845 PubMed DOI
Chen Q. G., Zhou W., Han T., Du S. Q., Li Z. H., Zhang Z., et al. (2016). MiR-378 suppresses prostate cancer cell growth through downregulation of MAPK1 in vitro and in vivo. Tumour Biol. 37 2095–2103. 10.1007/s13277-015-3996-8 PubMed DOI
Chen X., Lou N., Ruan A., Qiu B., Yan Y., Wang X., et al. (2018a). miR-224/miR-141 ratio as a novel diagnostic biomarker in renal cell carcinoma. Oncol. Lett. 16 1666–1674. PubMed PMC
Chen X., Xu X., Pan B., Zeng K., Xu M., Liu X., et al. (2018b). miR-150-5p suppresses tumor progression by targeting VEGFA in colorectal cancer. Aging (Albany NY) 10 3421–3437. 10.18632/aging.101656 PubMed DOI PMC
Cheng T., Wang L., Li Y., Huang C., Zeng L., Yang J. (2013). Differential microRNA expression in renal cell carcinoma. Oncol. Lett. 6 769–776. 10.3892/ol.2013.1460 PubMed DOI PMC
Chi Y., Wang D., Wang J., Yu W., Yang J. (2019). Long non-coding RNA in the pathogenesis of cancers. Cells 8:1015. 10.3390/cells8091015 PubMed DOI PMC
Chirshev E., Oberg K. C., Ioffe Y. J., Unternaehrer J. J. (2019). Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin. Transl. Med. 8:24. PubMed PMC
Cimadamore A., Gasparrini S., Massari F., Santoni M., Cheng L., Lopez-Beltran A., et al. (2019). Emerging molecular technologies in renal cell carcinoma: liquid biopsy. Cancers (Basel) 11:196. 10.3390/cancers11020196 PubMed DOI PMC
Colombo M., Moita C., van Niel G., Kowal J., Vigneron J., Benaroch P., et al. (2013). Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell. Sci. 126(Pt 24) 5553–5565. 10.1242/jcs.128868 PubMed DOI
Cortez M. A., Bueso-Ramos C., Ferdin J., Lopez-Berestein G., Sood A. K., Calin G. A. (2011). MicroRNAs in body fluids–the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 8 467–477. 10.1038/nrclinonc.2011.76 PubMed DOI PMC
Dalpiaz O., Luef T., Seles M., Stotz M., Stojakovic T., Pummer K., et al. (2017). Critical evaluation of the potential prognostic value of the pretreatment-derived neutrophil-lymphocyte ratio under consideration of C-reactive protein levels in clear cell renal cell carcinoma. Br. J. Cancer 116 85–90. 10.1038/bjc.2016.393 PubMed DOI PMC
Dang K., Myers K. A. (2015). The role of hypoxia-induced miR-210 in cancer progression. Int. J. Mol. Sci. 16 6353–6372. 10.3390/ijms16036353 PubMed DOI PMC
Derderian C., Orunmuyi A. T., Olapade-Olaopa E. O., Ogunwobi O. O. (2019). PVT1 signaling is a mediator of cancer progression. Front. Oncol. 9:502. 10.3389/fonc.2019.00502 PubMed DOI PMC
Dhahbi J. M., Spindler S. R., Atamna H., Boffelli D., Martin D. I. (2014). Deep sequencing of serum small RNAs identifies patterns of 5’ tRNA half and YRNA fragment expression associated with breast cancer. Biomark Cancer 6 37–47. PubMed PMC
Dhahbi J. M., Spindler S. R., Atamna H., Boffelli D., Mote P., Martin D. I. (2013). 5’-YRNA fragments derived by processing of transcripts from specific YRNA genes and pseudogenes are abundant in human serum and plasma. Physiol. Genomics 45 990–998. 10.1152/physiolgenomics.00129.2013 PubMed DOI
Dias F., Teixeira A. L., Ferreira M., Adem B., Bastos N., Vieira J., et al. (2017). Plasmatic miR-210, miR-221 and miR-1233 profile: potential liquid biopsies candidates for renal cell carcinoma. Oncotarget 8 103315–103326. 10.18632/oncotarget.21733 PubMed DOI PMC
Dieckmann K. P., Radtke A., Geczi L., Matthies C., Anheuser P., Eckardt U., et al. (2019). Serum levels of MicroRNA-371a-3p (M371 Test) as a new biomarker of testicular germ cell tumors: results of a prospective multicentric study. J. Clin. Oncol. 37 1412–1423. 10.1200/jco.18.01480 PubMed DOI PMC
Du M., Giridhar K. V., Tian Y., Tschannen M. R., Zhu J., Huang C. C., et al. (2017). Plasma exosomal miRNAs-based prognosis in metastatic kidney cancer. Oncotarget 8 63703–63714. 10.18632/oncotarget.19476 PubMed DOI PMC
Ellinger J., Gevensleben H., Muller S. C., Dietrich D. (2016). The emerging role of non-coding circulating RNA as a biomarker in renal cell carcinoma. Expert Rev. Mol. Diagn. 16 1059–1065. 10.1080/14737159.2016.1239531 PubMed DOI
Faragalla H., Youssef Y. M., Scorilas A., Khalil B., White N. M., Mejia-Guerrero S., et al. (2012). The clinical utility of miR-21 as a diagnostic and prognostic marker for renal cell carcinoma. J. Mol. Diagn. 14 385–392. 10.1016/j.jmoldx.2012.02.003 PubMed DOI
Farber N. J., Kim C. J., Modi P. K., Hon J. D., Sadimin E. T., Singer E. A. (2017). Renal cell carcinoma: the search for a reliable biomarker. Transl. Cancer Res. 6 620–632. PubMed PMC
Fedorko M., Stanik M., Iliev R., Redova-Lojova M., Machackova T., Svoboda M., et al. (2015). Combination of MiR-378 and MiR-210 serum levels enables sensitive detection of renal cell carcinoma. Int. J. Mol. Sci. 16 23382–23389. 10.3390/ijms161023382 PubMed DOI PMC
Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., et al. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136 E359–E386. PubMed
Fujii N., Hirata H., Ueno K., Mori J., Oka S., Shimizu K., et al. (2017). Extracellular miR-224 as a prognostic marker for clear cell renal cell carcinoma. Oncotarget 8 109877–109888. 10.18632/oncotarget.22436 PubMed DOI PMC
Gallo A., Tandon M., Alevizos I., Illei G. G. (2012). The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 7:e30679. 10.1371/journal.pone.0030679 PubMed DOI PMC
Gamez-Pozo A., Anton-Aparicio L. M., Bayona C., Borrega P., Gallegos Sancho M. I., Garcia-Dominguez R., et al. (2012). MicroRNA expression profiling of peripheral blood samples predicts resistance to first-line sunitinib in advanced renal cell carcinoma patients. Neoplasia 14 1144–1152. PubMed PMC
Garcia-Donas J., Beuselinck B., Inglada-Perez L., Grana O., Schoffski P., Wozniak A., et al. (2016). Deep sequencing reveals microRNAs predictive of antiangiogenic drug response. JCI Insight 1:e86051. PubMed PMC
Gowrishankar B., Ibragimova I., Zhou Y., Slifker M. J., Devarajan K., Al-Saleem T., et al. (2014). MicroRNA expression signatures of stage, grade, and progression in clear cell RCC. Cancer Biol. Ther. 15 329–341. 10.4161/cbt.27314 PubMed DOI PMC
Groot M., Lee H. (2020). Sorting mechanisms for MicroRNAs into extracellular vesicles and their associated diseases. Cells 9:1044. 10.3390/cells9041044 PubMed DOI PMC
Guan Y., Gong Z., Xiao T., Li Z. (2018). Knockdown of miR-572 suppresses cell proliferation and promotes apoptosis in renal cell carcinoma cells by targeting the NF2/Hippo signaling pathway. Int. J. Clin. Exp. Pathol. 11 5705–5714. PubMed PMC
Guo S. J., Zeng H. X., Huang P., Wang S., Xie C. H., Li S. J. (2018). MiR-508-3p inhibits cell invasion and epithelial-mesenchymal transition by targeting ZEB1 in triple-negative breast cancer. Eur. Rev. Med. Pharmacol. Sci. 22 6379–6385. PubMed
Gurunathan S., Kang M. H., Jeyaraj M., Qasim M., Kim J. H. (2019). Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells 8:307. 10.3390/cells8040307 PubMed DOI PMC
Han L., Wang B., Wang R., Wang Z., Gong S., Chen G., et al. (2019). Prognostic and clinicopathological significance of long non-coding RNA PANDAR expression in cancer patients: a meta-analysis. Front. Oncol. 9:1337. 10.3389/fonc.2019.01337 PubMed DOI PMC
Hauser S., Wulfken L. M., Holdenrieder S., Moritz R., Ohlmann C. H., Jung V., et al. (2012). Analysis of serum microRNAs (miR-26a-2∗, miR-191, miR-337-3p and miR-378) as potential biomarkers in renal cell carcinoma. Cancer Epidemiol. 36 391–394. 10.1016/j.canep.2012.04.001 PubMed DOI
He J., He J., Min L., He Y., Guan H., Wang J., et al. (2020). Extracellular vesicles transmitted miR-31-5p promotes sorafenib resistance by targeting MLH1 in renal cell carcinoma. Int. J. Cancer 146 1052–1063. 10.1002/ijc.32543 PubMed DOI
He Z. H., Qin X. H., Zhang X. L., Yi J. W., Han J. Y. (2018). Long noncoding RNA GIHCG is a potential diagnostic and prognostic biomarker and therapeutic target for renal cell carcinoma. Eur. Rev. Med. Pharmacol. Sci. 22 46–54. PubMed
Hendrick J. P., Wolin S. L., Rinke J., Lerner M. R., Steitz J. A. (1981). Ro small cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins: further characterization of the Ro and La small ribonucleoproteins from uninfected mammalian cells. Mol. Cell. Biol. 1 1138–1149. 10.1128/mcb.1.12.1138 PubMed DOI PMC
Heng D. Y., Xie W., Regan M. M., Warren M. A., Golshayan A. R., Sahi C., et al. (2009). Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: results from a large, multicenter study. J. Clin. Oncol. 27 5794–5799. 10.1200/jco.2008.21.4809 PubMed DOI
Hosseini M., Khatamianfar S., Hassanian S. M., Nedaeinia R., Shafiee M., Maftouh M., et al. (2017). Exosome-encapsulated microRNAs as potential circulating biomarkers in colon cancer. Curr. Pharm. Des. 23 1705–1709. 10.2174/1381612822666161201144634 PubMed DOI
Huang T., Kang W., Zhang B., Wu F., Dong Y., Tong J. H., et al. (2016). miR-508-3p concordantly silences NFKB1 and RELA to inactivate canonical NF-kappaB signaling in gastric carcinogenesis. Mol. Cancer 15:9. PubMed PMC
Huang W., Zhao M., Wei N., Wang X., Cao H., Du Q., et al. (2014). Site-specific RNase A activity was dramatically reduced in serum from multiple types of cancer patients. PLoS One 9:e96490. 10.1371/journal.pone.0096490 PubMed DOI PMC
Iwamoto H., Kanda Y., Sejima T., Osaki M., Okada F., Takenaka A. (2014). Serum miR-210 as a potential biomarker of early clear cell renal cell carcinoma. Int. J. Oncol. 44 53–58. 10.3892/ijo.2013.2169 PubMed DOI
Janzen N. K., Kim H. L., Figlin R. A., Belldegrun A. S. (2003). Surveillance after radical or partial nephrectomy for localized renal cell carcinoma and management of recurrent disease. Urol. Clin. North Am. 30 843–852. 10.1016/s0094-0143(03)00056-9 PubMed DOI
Javidi M. A., Ahmadi A. H., Bakhshinejad B., Nouraee N., Babashah S., Sadeghizadeh M. (2014). Cell-free microRNAs as cancer biomarkers: the odyssey of miRNAs through body fluids. Med. Oncol. 31:295. PubMed
Jiang N., Pan J., Fang S., Zhou C., Han Y., Chen J., et al. (2019). Liquid biopsy: Circulating exosomal long noncoding RNAs in cancer. Clin. Chim. Acta 495 331–337. 10.1016/j.cca.2019.04.082 PubMed DOI
Jiang X., Li Q., Zhang S., Song C., Zheng P. (2019). Long noncoding RNA GIHCG induces cancer progression and chemoresistance and indicates poor prognosis in colorectal cancer. Onco Targets Ther. 12 1059–1070. 10.2147/ott.s192290 PubMed DOI PMC
Khella H. W. Z., Butz H., Ding Q., Rotondo F., Evans K. R., Kupchak P., et al. (2015). miR-221/222 are involved in response to sunitinib treatment in metastatic renal cell carcinoma. Mol. Ther. 23 1748–1758. 10.1038/mt.2015.129 PubMed DOI PMC
Ko J. J., Xie W., Kroeger N., Lee J. L., Rini B. I., Knox J. J., et al. (2015). The international metastatic renal cell carcinoma database consortium model as a prognostic tool in patients with metastatic renal cell carcinoma previously treated with first-line targeted therapy: a population-based study. Lancet Oncol. 16 293–300. 10.1016/s1470-2045(14)71222-7 PubMed DOI
Koczera P., Martin L., Marx G., Schuerholz T. (2016). The Ribonuclease A superfamily in humans: canonical RNases as the buttress of innate immunity. Int. J. Mol. Sci. 17:1278. 10.3390/ijms17081278 PubMed DOI PMC
Krebs M., Solimando A. G., Kalogirou C., Marquardt A., Frank T., Sokolakis I., et al. (2020). miR-221-3p regulates VEGFR2 expression in high-risk prostate cancer and represents an escape mechanism from sunitinib In Vitro. J. Clin. Med. 9:670. 10.3390/jcm9030670 PubMed DOI PMC
Krist B., Florczyk U., Pietraszek-Gremplewicz K., Jozkowicz A., Dulak J. (2015). The role of miR-378a in metabolism, angiogenesis, and muscle biology. Int. J. Endocrinol. 2015:281756. PubMed PMC
Kulkarni B., Kirave P., Gondaliya P., Jash K., Jain A., Tekade R. K., et al. (2019). Exosomal miRNA in chemoresistance, immune evasion, metastasis and progression of cancer. Drug Discov. Today 24 2058–2067. 10.1016/j.drudis.2019.06.010 PubMed DOI
Lee D. Y., Deng Z., Wang C. H., Yang B. B. (2007). MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc. Natl. Acad. Sci. U.S.A. 104 20350–20355. 10.1073/pnas.0706901104 PubMed DOI PMC
Lee I., Baxter D., Lee M. Y., Scherler K., Wang K. (2017). The importance of standardization on analyzing circulating RNA. Mol. Diagn. Ther. 21 259–268. 10.1007/s40291-016-0251-y PubMed DOI PMC
Lee S. P., Hsieh P. L., Fang C. Y., Chu P. M., Liao Y. W., Yu C. H., et al. (2020). LINC00963 promotes cancer stemness, metastasis, and drug resistance in head and neck carcinomas via ABCB5 regulation. Cancers (Basel) 12:10.3390/cancers12051073. PubMed PMC
Li G., Zhao A., Peoch M., Cottier M., Mottet N. (2017). Detection of urinary cell-free miR-210 as a potential tool of liquid biopsy for clear cell renal cell carcinoma. Urol. Oncol. 35 294–299. 10.1016/j.urolonc.2016.12.007 PubMed DOI
Li H., Ouyang R., Wang Z., Zhou W., Chen H., Jiang Y., et al. (2016). MiR-150 promotes cellular metastasis in non-small cell lung cancer by targeting FOXO4. Sci. Rep. 6:39001. PubMed PMC
Li H. C., Li J. P., Wang Z. M., Fu D. L., Li Z. L., Zhang D., et al. (2014). Identification of angiogenesis-related miRNAs in a population of patients with renal clear cell carcinoma. Oncol. Rep. 32 2061–2069. 10.3892/or.2014.3403 PubMed DOI
Li J., Li Z., Zheng W., Li X., Wang Z., Cui Y., et al. (2017). PANDAR: a pivotal cancer-related long non-coding RNA in human cancers. Mol. Biosyst. 13 2195–2201. 10.1039/c7mb00414a PubMed DOI
Li S., Yang F., Wang M., Cao W., Yang Z. (2017). miR-378 functions as an onco-miRNA by targeting the ST7L/Wnt/β-catenin pathway in cervical cancer. Int. J. Mol. Med. 40 1047–1056. 10.3892/ijmm.2017.3116 PubMed DOI PMC
Li W., Zheng Z., Chen H., Cai Y., Xie W. (2018). Knockdown of long non-coding RNA PVT1 induces apoptosis and cell cycle arrest in clear cell renal cell carcinoma through the epidermal growth factor receptor pathway. Oncol. Lett. 15 7855–7863. PubMed PMC
Li X., Xin S., He Z., Che X., Wang J., Xiao X., et al. (2014). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor PDCD4 and promotes cell transformation, proliferation, and metastasis in renal cell carcinoma. Cell Physiol. Biochem. 33 1631–1642. 10.1159/000362946 PubMed DOI
Li Y., Quan J., Chen F., Pan X., Zhuang C., Xiong T., et al. (2019). MiR-31-5p acts as a tumor suppressor in renal cell carcinoma by targeting cyclin-dependent kinase 1 (CDK1). Biomed. Pharmacother. 111 517–526. 10.1016/j.biopha.2018.12.102 PubMed DOI
Li Y., Ye Y., Feng B., Qi Y. (2017). Long noncoding RNA lncARSR promotes doxorubicin resistance in hepatocellular carcinoma via modulating PTEN-PI3K/Akt pathway. J. Cell. Biochem. 118 4498–4507. 10.1002/jcb.26107 PubMed DOI
Liu F., Chen N., Xiao R., Wang W., Pan Z. (2016). miR-144-3p serves as a tumor suppressor for renal cell carcinoma and inhibits its invasion and metastasis by targeting MAP3K8. Biochem. Biophys. Res. Commun. 480 87–93. 10.1016/j.bbrc.2016.10.004 PubMed DOI
Liu G., Jiang Z., Qiao M., Wang F. (2019). Lnc-GIHCG promotes cell proliferation and migration in gastric cancer through miR- 1281 adsorption. Mol. Genet. Genomic Med. 7:e711. 10.1002/mgg3.711 PubMed DOI PMC
Liu L., Li Y., Liu S., Duan Q., Chen L., Wu T., et al. (2017). Downregulation of miR-193a-3p inhibits cell growth and migration in renal cell carcinoma by targeting PTEN. Tumour Biol. 39:1010428317711951. PubMed
Liu L. L., Li D., He Y. L., Zhou Y. Z., Gong S. H., Wu L. Y., et al. (2017). miR-210 protects renal cell against hypoxia-induced apoptosis by targeting HIF-1 alpha. Mol. Med. 23 258–271. 10.2119/molmed.2017.00013 PubMed DOI PMC
Liu S., Deng X., Zhang J. (2019a). Identification of dysregulated serum miR-508-3p and miR-885-5p as potential diagnostic biomarkers of clear cell renal carcinoma. Mol. Med. Rep. 20 5075–5083. PubMed PMC
Liu S., Wang Y., Li W., Yu S., Wen Z., Chen Z., et al. (2019b). miR-221-5p acts as an oncogene and predicts worse survival in patients of renal cell cancer. Biomed. Pharmacother. 119:109406. 10.1016/j.biopha.2019.109406 PubMed DOI
Liu T. Y., Zhang H., Du S. M., Li J., Wen X. H. (2016). Expression of microRNA-210 in tissue and serum of renal carcinoma patients and its effect on renal carcinoma cell proliferation, apoptosis, and invasion. Genet. Mol. Res. 15:15017746. PubMed
Liu X. G., Zhu W. Y., Huang Y. Y., Ma L. N., Zhou S. Q., Wang Y. K., et al. (2012). High expression of serum miR-21 and tumor miR-200c associated with poor prognosis in patients with lung cancer. Med. Oncol. 29 618–626. 10.1007/s12032-011-9923-y PubMed DOI
Lou N., Ruan A. M., Qiu B., Bao L., Xu Y. C., Zhao Y., et al. (2017). miR-144-3p as a novel plasma diagnostic biomarker for clear cell renal cell carcinoma. Urol. Oncol. 35 36.e7–36.e14. 10.1016/j.urolonc.2016.07.012 PubMed DOI
Lu G. J., Dong Y. Q., Zhang Q. M., Di W. Y., Jiao L. Y., Gao Q. Z., et al. (2015). miRNA-221 promotes proliferation, migration and invasion by targeting TIMP2 in renal cell carcinoma. Int. J. Clin. Exp. Pathol. 8 5224–5229. PubMed PMC
Lv J., Zhu Y., Zhang Q. (2020). An increased level of MiR-222-3p is associated with TMP2 suppression, ERK activation and is associated with metastasis and a poor prognosis in renal clear cell carcinoma. Cancer Biomark. 28 141–149. 10.3233/cbm-190264 PubMed DOI
Ma J., Wu D., Yi J., Yi Y., Zhu X., Qiu H., et al. (2019). MiR-378 promoted cell proliferation and inhibited apoptosis by enhanced stem cell properties in chronic myeloid leukemia K562 cells. Biomed. Pharmacother. 112:108623. 10.1016/j.biopha.2019.108623 PubMed DOI
Ma Y., Zhang H., He X., Song H., Qiang Y., Li Y., et al. (2015). miR-106a∗ inhibits the proliferation of renal carcinoma cells by targeting IRS-2. Tumour Biol. 36 8389–8398. 10.1007/s13277-015-3605-x PubMed DOI
Mathur R. (2018). ARID1A loss in cancer: Towards a mechanistic understanding. Pharmacol. Ther. 190 15–23. 10.1016/j.pharmthera.2018.05.001 PubMed DOI
McCormick R. I., Blick C., Ragoussis J., Schoedel J., Mole D. R., Young A. C., et al. (2013). miR-210 is a target of hypoxia-inducible factors 1 and 2 in renal cancer, regulates ISCU and correlates with good prognosis. Br. J. Cancer 108 1133–1142. 10.1038/bjc.2013.56 PubMed DOI PMC
Motzer R. J., Escudier B., McDermott D. F., George S., Hammers H. J., Srinivas S., et al. (2015). Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373 1803–1813. PubMed PMC
Motzer R. J., Tannir N. M., McDermott D. F., Aren Frontera O., Melichar B., Choueiri T. K., et al. (2018). Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378 1277–1290. PubMed PMC
Nandagopal L., Sonpavde G. (2016). Circulating biomarkers in bladder cancer. Bladder Cancer 2 369–379. 10.3233/blc-160075 PubMed DOI PMC
Neal C. S., Michael M. Z., Rawlings L. H., Van der Hoek M. B., Gleadle J. M. (2010). The VHL-dependent regulation of microRNAs in renal cancer. BMC Med. 8:64. 10.1186/1741-7015-8-64 PubMed DOI PMC
Nientiedt M., Schmidt D., Kristiansen G., Muller S. C., Ellinger J. (2018). YRNA expression profiles are altered in clear cell renal cell carcinoma. Eur. Urol. Focus 4 260–266. 10.1016/j.euf.2016.08.004 PubMed DOI
Novikova I. V., Hennelly S. P., Sanbonmatsu K. Y. (2013). Tackling structures of long noncoding RNAs. Int. J. Mol. Sci. 14 23672–23684. 10.3390/ijms141223672 PubMed DOI PMC
Okita K., Hatakeyama S., Tanaka T., Ikehata Y., Tanaka T., Fujita N., et al. (2019). Impact of disagreement between two risk group models on prognosis in patients with metastatic renal-cell carcinoma. Clin. Genitourin. Cancer 17 e440–e446. 10.1016/j.clgc.2019.01.006 PubMed DOI
Palsdottir H. B., Hardarson S., Petursdottir V., Jonsson A., Jonsson E., Sigurdsson M. I., et al. (2012). Incidental detection of renal cell carcinoma is an independent prognostic marker: results of a long-term, whole population study. J. Urol. 187 48–53. 10.1016/j.juro.2011.09.025 PubMed DOI
Pan X., Li Z., Zhao L., Quan J., Zhou L., Xu J., et al. (2018a). microRNA-572 functions as an oncogene and a potential biomarker for renal cell carcinoma prognosis. Oncol. Rep. 40 3092–3101. PubMed
Pan X., Zheng G., Gao C. (2018b). LncRNA PVT1: a novel therapeutic target for cancers. Clin. Lab. 64 655–662. PubMed
Pan Y., Hu J., Ma J., Qi X., Zhou H., Miao X., et al. (2018). MiR-193a-3p and miR-224 mediate renal cell carcinoma progression by targeting alpha-2,3-sialyltransferase IV and the phosphatidylinositol 3 kinase/Akt pathway. Mol. Carcinog. 57 1067–1077. 10.1002/mc.22826 PubMed DOI
Pan Y. J., Wei L. L., Wu X. J., Huo F. C., Mou J., Pei D. S. (2017). MiR-106a-5p inhibits the cell migration and invasion of renal cell carcinoma through targeting PAK5. Cell Death Dis. 8:e3155. 10.1038/cddis.2017.561 PubMed DOI PMC
Peng J., Mo R., Ma J., Fan J. (2015). Let-7b and Let-7c are determinants of intrinsic chemoresistance in renal cell carcinoma. World J. Surg. Oncol. 13:175. PubMed PMC
Penolazzi L., Bonaccorsi G., Gafa R., Ravaioli N., Gabriele D., Bosi C., et al. (2019). SLUG/HIF1-alpha/miR-221 regulatory circuit in endometrial cancer. Gene 711:143938. 10.1016/j.gene.2019.06.028 PubMed DOI
Petrozza V., Carbone A., Bellissimo T., Porta N., Palleschi G., Pastore A. L., et al. (2015). Oncogenic MicroRNAs characterization in clear cell renal cell carcinoma. Int. J. Mol. Sci. 16 29219–29225. PubMed PMC
Pichler M., Rodriguez-Aguayo C., Nam S. Y., Dragomir M. P., Bayraktar R., Anfossi S., et al. (2020). Therapeutic potential of FLANC, a novel primate-specific long non-coding RNA in colorectal cancer. Gut 10.1136/gutjnl-2019-318903 [Epub ahead of print]. PubMed DOI PMC
Powles T., Albiges L., Staehler M., Bensalah K., Dabestani S., Giles R. H., et al. (2017). Updated European association of urology guidelines recommendations for the treatment of first-line metastatic clear cell renal cancer. Eur. Urol. 73 311–315. 10.1016/j.eururo.2017.11.016 PubMed DOI
Pruijn G. J., Wingens P. A., Peters S. L., Thijssen J. P., van Venrooij W. J. (1993). Ro RNP associated Y RNAs are highly conserved among mammals. Biochim. Biophys. Acta 1216 395–401. 10.1016/0167-4781(93)90006-y PubMed DOI
Qin M. M., Chai X., Huang H. B., Feng G., Li X. N., Zhang J., et al. (2019). let-7i inhibits proliferation and migration of bladder cancer cells by targeting HMGA1. BMC Urol. 19:53. 10.1186/s12894-019-0485-1 PubMed DOI PMC
Qu L., Ding J., Chen C., Wu Z. J., Liu B., Gao Y., et al. (2016). Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell 29 653–668. 10.1016/j.ccell.2016.03.004 PubMed DOI
Redova M., Poprach A., Nekvindova J., Iliev R., Radova L., Lakomy R., et al. (2012). Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J. Transl. Med. 10:55. 10.1186/1479-5876-10-55 PubMed DOI PMC
Rini B. I., Campbell S. C., Escudier B. (2009). Renal cell carcinoma. Lancet 373 1119–1132. PubMed
Rini B. I., Plimack E. R., Stus V., Gafanov R., Hawkins R., Nosov D., et al. (2019). Pembrolizumab plus Axitinib versus Sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380 1116–1127. PubMed
Rossi S. H., Klatte T., Usher-Smith J., Stewart G. D. (2018). Epidemiology and screening for renal cancer. World J. Urol. 36 1341–1353. PubMed PMC
Sanders I., Holdenrieder S., Walgenbach-Brunagel G., von Ruecker A., Kristiansen G., Muller S. C., et al. (2012). Evaluation of reference genes for the analysis of serum miRNA in patients with prostate cancer, bladder cancer and renal cell carcinoma. Int. J. Urol. 19 1017–1025. 10.1111/j.1442-2042.2012.03082.x PubMed DOI
Schanza L. M., Seles M., Stotz M., Fosselteder J., Hutterer G. C., Pichler M., et al. (2017). MicroRNAs associated with von hippel-lindau pathway in renal cell carcinoma: a comprehensive review. Int. J. Mol. Sci. 18:10.3390/ijms18112495. PubMed PMC
Schwarzenbach H., Milde-Langosch K., Steinbach B., Muller V., Pantel K. (2012). Diagnostic potential of PTEN-targeting miR-214 in the blood of breast cancer patients. Breast Cancer Res. Treat. 134 933–941. 10.1007/s10549-012-1988-6 PubMed DOI
Schwarzenbacher D., Klec C., Pasculli B., Cerk S., Rinner B., Karbiener M., et al. (2019). MiR-1287-5p inhibits triple negative breast cancer growth by interaction with phosphoinositide 3-kinase CB, thereby sensitizing cells for PI3Kinase inhibitors. Breast Cancer Res. 21:20. PubMed PMC
Seles M., Posch F., Pichler G. P., Gary T., Pummer K., Zigeuner R., et al. (2017). Blood platelet volume represents a novel prognostic factor in patients with nonmetastatic renal cell carcinoma and improves the predictive ability of established prognostic scores. J. Urol. 198 1247–1252. 10.1016/j.juro.2017.07.036 PubMed DOI
Shen C., Kaelin W. G., Jr. (2013). The VHL/HIF axis in clear cell renal carcinoma. Semin. Cancer Biol. 23 18–25. 10.1016/j.semcancer.2012.06.001 PubMed DOI PMC
Shen P., Cheng Y. (2020). Long noncoding RNA lncARSR confers resistance to Adriamycin and promotes osteosarcoma progression. Cell Death Dis. 11:362. PubMed PMC
Siegel R. L., Miller K. D., Jemal A. (2019). Cancer statistics, 2019. CA Cancer J. Clin. 69 7–34. PubMed
Smith C. G., Moser T., Mouliere F., Field-Rayner J., Eldridge M., Riediger A. L., et al. (2020). Comprehensive characterization of cell-free tumor DNA in plasma and urine of patients with renal tumors. Genome Med. 12:23. PubMed PMC
Song M. S., Salmena L., Pandolfi P. P. (2012). The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell. Biol. 13 283–296. 10.1038/nrm3330 PubMed DOI
Squadrito M. L., Baer C., Burdet F., Maderna C., Gilfillan G. D., Lyle R., et al. (2014). Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep. 8 1432–1446. 10.1016/j.celrep.2014.07.035 PubMed DOI
Su Y. J., Yu J., Huang Y. Q., Yang J. (2015). Circulating long noncoding RNA as a potential target for prostate cancer. Int. J. Mol. Sci. 16 13322–13338. 10.3390/ijms160613322 PubMed DOI PMC
Sui C. J., Zhou Y. M., Shen W. F., Dai B. H., Lu J. J., Zhang M. F., et al. (2016). Long noncoding RNA GIHCG promotes hepatocellular carcinoma progression through epigenetically regulating miR-200b/a/429. J. Mol. Med. (Berl) 94 1281–1296. 10.1007/s00109-016-1442-z PubMed DOI
Sun J., Jiang Z., Li Y., Wang K., Chen X., Liu G. (2019). Downregulation of miR-21 inhibits the malignant phenotype of pancreatic cancer cells by targeting VHL. Onco Targets Ther. 12 7215–7226. 10.2147/ott.s211535 PubMed DOI PMC
Svoronos A. A., Engelman D. M., Slack F. J. (2016). OncomiR or tumor suppressor? The duplicity of MicroRNAs in cancer. Cancer Res. 76 3666–3670. 10.1158/0008-5472.can-16-0359 PubMed DOI PMC
Tanaka N., Mizuno R., Ito K., Shirotake S., Yasumizu Y., Masunaga A., et al. (2016). External validation of the MSKCC and IMDC risk models in patients treated with targeted therapy as a first-line and subsequent second-line treatment: a Japanese multi-institutional study. Eur. Urol. Focus 2 303–309. 10.1016/j.euf.2015.11.001 PubMed DOI
Teixeira A. L., Ferreira M., Silva J., Gomes M., Dias F., Santos J. I., et al. (2014). Higher circulating expression levels of miR-221 associated with poor overall survival in renal cell carcinoma patients. Tumour Biol. 35 4057–4066. 10.1007/s13277-013-1531-3 PubMed DOI
Trajkovic K., Hsu C., Chiantia S., Rajendran L., Wenzel D., Wieland F., et al. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319 1244–1247. 10.1126/science.1153124 PubMed DOI
Tsui K. H., Shvarts O., Smith R. B., Figlin R., de Kernion J. B., Belldegrun A. (2000). Renal cell carcinoma: prognostic significance of incidentally detected tumors. J. Urol. 163 426–430. 10.1016/s0022-5347(05)67892-5 PubMed DOI
Tusong H., Maolakuerban N., Guan J., Rexiati M., Wang W. G., Azhati B., et al. (2017). Functional analysis of serum microRNAs miR-21 and miR-106a in renal cell carcinoma. Cancer Biomark. 18 79–85. 10.3233/cbm-160676 PubMed DOI
Tzimagiorgis G., Michailidou E. Z., Kritis A., Markopoulos A. K., Kouidou S. (2011). Recovering circulating extracellular or cell-free RNA from bodily fluids. Cancer Epidemiol. 35 580–589. 10.1016/j.canep.2011.02.016 PubMed DOI
Vasudev N. S., Wilson M., Stewart G. D., Adeyoju A., Cartledge J., Kimuli M., et al. (2020). Challenges of early renal cancer detection: symptom patterns and incidental diagnosis rate in a multicentre prospective UK cohort of patients presenting with suspected renal cancer. BMJ Open 10:e035938. 10.1136/bmjopen-2019-035938 PubMed DOI PMC
Vergho D., Kneitz S., Rosenwald A., Scherer C., Spahn M., Burger M., et al. (2014). Combination of expression levels of miR-21 and miR-126 is associated with cancer-specific survival in clear-cell renal cell carcinoma. BMC Cancer 14:25. 10.1186/1471-2407-14-25 PubMed DOI PMC
Victoria Martinez B., Dhahbi J. M., Nunez Lopez Y. O., Lamperska K., Golusinski P., Luczewski L., et al. (2015). Circulating small non-coding RNA signature in head and neck squamous cell carcinoma. Oncotarget 6 19246–19263. 10.18632/oncotarget.4266 PubMed DOI PMC
Villarroya-Beltri C., Gutiérrez-Vázquez C., Sánchez-Cabo F., Pérez-Hernández D., Vázquez J., Martin-Cofreces N., et al. (2013). Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 4:2980. PubMed PMC
Vojtech L., Woo S., Hughes S., Levy C., Ballweber L., Sauteraud R. P., et al. (2014). Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res. 42 7290–7304. 10.1093/nar/gku347 PubMed DOI PMC
Wagner J., Riwanto M., Besler C., Knau A., Fichtlscherer S., Röxe T., et al. (2013). Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc. Biol. 33 1392–1400. 10.1161/atvbaha.112.300741 PubMed DOI
Wang C., Hu J., Lu M., Gu H., Zhou X., Chen X., et al. (2015). A panel of five serum miRNAs as a potential diagnostic tool for early-stage renal cell carcinoma. Sci. Rep. 5:7610. PubMed PMC
Wang C., Wu C., Yang Q., Ding M., Zhong J., Zhang C. Y., et al. (2016). miR-28-5p acts as a tumor suppressor in renal cell carcinoma for multiple antitumor effects by targeting RAP1B. Oncotarget 7 73888–73902. 10.18632/oncotarget.12516 PubMed DOI PMC
Wang K., Yuan Y., Cho J. H., McClarty S., Baxter D., Galas D. J. (2012). Comparing the MicroRNA spectrum between serum and plasma. PLoS One 7:e41561. 10.1371/journal.pone.0041561 PubMed DOI PMC
Wang L., Yang G., Zhao D., Wang J., Bai Y., Peng Q., et al. (2019). CD103-positive CSC exosome promotes EMT of clear cell renal cell carcinoma: role of remote MiR-19b-3p. Mol. Cancer 18:86. PubMed PMC
Wang Q., Wu G., Zhang Z., Tang Q., Zheng W., Chen X., et al. (2018). Long non-coding RNA HOTTIP promotes renal cell carcinoma progression through the regulation of the miR-615/IGF-2 pathway. Int. J. Oncol. 53 2278–2288. PubMed
Wang X., Wang T., Chen C., Wu Z., Bai P., Li S., et al. (2018). Serum exosomal miR-210 as a potential biomarker for clear cell renal cell carcinoma. J. Cell. Biochem. 120 1492–1502. 10.1002/jcb.27347 PubMed DOI
Weidle U. H., Birzele F., Kollmorgen G., Ruger R. (2017). Long non-coding RNAs and their role in metastasis. Cancer Genomics Proteomics 14 143–160. PubMed PMC
Westerman M. E., Shapiro D. D., Tannir N. M., Campbell M. T., Matin S. F., Karam J. A., et al. (2020). Survival following cytoreductive nephrectomy: a comparison of existing prognostic models. BJU Int. 10.1111/bju.15160 [Epub ahead of print]. PubMed DOI
Wu Y., Wang Y. Q., Weng W. W., Zhang Q. Y., Yang X. Q., Gan H. L., et al. (2016). A serum-circulating long noncoding RNA signature can discriminate between patients with clear cell renal cell carcinoma and healthy controls. Oncogenesis 5:e192. 10.1038/oncsis.2015.48 PubMed DOI PMC
Wu Z., Wang W., Wang Y., Wang X., Sun S., Yao Y., et al. (2020). Long noncoding RNA LINC00963 promotes breast cancer progression by functioning as a molecular sponge for microRNA-625 and thereby upregulating HMGA1. Cell Cycle 19 610–624. 10.1080/15384101.2020.1728024 PubMed DOI PMC
Wulfken L. M., Moritz R., Ohlmann C., Holdenrieder S., Jung V., Becker F., et al. (2011). MicroRNAs in renal cell carcinoma: diagnostic implications of serum miR-1233 levels. PLoS One 6:e25787. 10.1371/journal.pone.0025787 PubMed DOI PMC
Xiao W., Lou N., Ruan H., Bao L., Xiong Z., Yuan C., et al. (2017). Mir-144-3p promotes cell proliferation, metastasis, sunitinib resistance in clear cell Renal cell carcinoma by downregulating ARID1A. Cell Physiol. Biochem. 43 2420–2433. 10.1159/000484395 PubMed DOI
Xu Y., Tong Y., Zhu J., Lei Z., Wan L., Zhu X., et al. (2017). An increase in long non-coding RNA PANDAR is associated with poor prognosis in clear cell renal cell carcinoma. BMC Cancer 17:373. 10.1186/s12885-017-3339-9 PubMed DOI PMC
Yadav S., Khandelwal M., Seth A., Saini A. K., Dogra P. N., Sharma A. (2017). Serum microRNA expression profiling: potential diagnostic implications of a panel of serum microRNAs for clear cell renal cell cancer. Urology 104 64–69. 10.1016/j.urology.2017.03.013 PubMed DOI
Yang C., Cai W. C., Dong Z. T., Guo J. W., Zhao Y. J., Sui C. J., et al. (2019). lncARSR promotes liver cancer stem cells expansion via STAT3 pathway. Gene 687 73–81. 10.1016/j.gene.2018.10.087 PubMed DOI
Yang N., Kaur S., Volinia S., Greshock J., Lassus H., Hasegawa K., et al. (2008). MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res. 68 10307–10314. 10.1158/0008-5472.can-08-1954 PubMed DOI PMC
Yang T., Zhou H., Liu P., Yan L., Yao W., Chen K., et al. (2017). lncRNA PVT1 and its splicing variant function as competing endogenous RNA to regulate clear cell renal cell carcinoma progression. Oncotarget 8 85353–85367. 10.18632/oncotarget.19743 PubMed DOI PMC
Yao N., Yu L., Zhu B., Gan H. Y., Guo B. Q. (2018). LncRNA GIHCG promotes development of ovarian cancer by regulating microRNA-429. Eur. Rev. Med. Pharmacol. Sci. 22 8127–8134. PubMed
Ye Z., Duan J., Wang L., Ji Y., Qiao B. (2019). LncRNA-LET inhibits cell growth of clear cell renal cell carcinoma by regulating miR-373-3p. Cancer Cell Int. 19:311. PubMed PMC
Yeri A., Courtright A., Reiman R., Carlson E., Beecroft T., Janss A., et al. (2017). Total extracellular small RNA profiles from plasma, saliva, and urine of healthy subjects. Sci. Rep. 7:44061. PubMed PMC
Yu G., Yao W., Gumireddy K., Li A., Wang J., Xiao W., et al. (2014). Pseudogene PTENP1 functions as a competing endogenous RNA to suppress clear-cell renal cell carcinoma progression. Mol. Cancer Ther. 13 3086–3097. 10.1158/1535-7163.mct-14-0245 PubMed DOI PMC
Zaman M. S., Shahryari V., Deng G., Thamminana S., Saini S., Majid S., et al. (2012). Up-regulation of microRNA-21 correlates with lower kidney cancer survival. PLoS One 7:e31060. 10.1371/journal.pone.0031060 PubMed DOI PMC
Zang C., Sun J., Liu W., Chu C., Jiang L., Ge R. (2019). miRNA-21 promotes cell proliferation and invasion via VHL/PI3K/AKT in papillary thyroid carcinoma. Hum. Cell 32 428–436. 10.1007/s13577-019-00254-4 PubMed DOI
Zaporozhchenko I. A., Ponomaryova A. A., Rykova E. Y., Laktionov P. P. (2018). The potential of circulating cell-free RNA as a cancer biomarker: challenges and opportunities. Expert Rev. Mol. Diagn. 18 133–145. 10.1080/14737159.2018.1425143 PubMed DOI
Zeng M., Zhu L., Li L., Kang C. (2017). miR-378 suppresses the proliferation, migration and invasion of colon cancer cells by inhibiting SDAD1. Cell Mol. Biol. Lett. 22:12. PubMed PMC
Zhai Q., Zhou L., Zhao C., Wan J., Yu Z., Guo X., et al. (2012). Identification of miR-508-3p and miR-509-3p that are associated with cell invasion and migration and involved in the apoptosis of renal cell carcinoma. Biochem. Biophys. Res. Commun. 419 621–626. 10.1016/j.bbrc.2012.02.060 PubMed DOI
Zhang A., Liu Y., Shen Y., Xu Y., Li X. (2011). miR-21 modulates cell apoptosis by targeting multiple genes in renal cell carcinoma. Urology 78 474.e13–474.e19. 10.1016/j.urology.2011.03.030 PubMed DOI
Zhang G. J., Zhou H., Xiao H. X., Li Y., Zhou T. (2014). MiR-378 is an independent prognostic factor and inhibits cell growth and invasion in colorectal cancer. BMC Cancer 14:109. 10.1186/1471-2407-14-109 PubMed DOI PMC
Zhang H. L., Yang L. F., Zhu Y., Yao X. D., Zhang S. L., Dai B., et al. (2011). Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate 71 326–331. 10.1002/pros.21246 PubMed DOI
Zhang L., Yu D. (2019). Exosomes in cancer development, metastasis, and immunity. Biochim. Biophys. Acta Rev. Cancer 1871 455–468. 10.1016/j.bbcan.2019.04.004 PubMed DOI PMC
Zhang W., Ni M., Su Y., Wang H., Zhu S., Zhao A., et al. (2018). MicroRNAs in serum exosomes as potential biomarkers in clear-cell renal cell carcinoma. Eur. Urol. Focus 4 412–419. 10.1016/j.euf.2016.09.007 PubMed DOI
Zhang W. B., Pan Z. Q., Yang Q. S., Zheng X. M. (2013). Tumor suppressive miR-509-5p contributes to cell migration, proliferation and antiapoptosis in renal cell carcinoma. Ir. J. Med. Sci. 182 621–627. 10.1007/s11845-013-0941-y PubMed DOI
Zhang X., Mao L., Li L., He Z., Wang N., Song Y. (2019). Long noncoding RNA GIHCG functions as an oncogene and serves as a serum diagnostic biomarker for cervical cancer. J. Cancer 10 672–681. 10.7150/jca.28525 PubMed DOI PMC
Zhao A., Li G., Peoc’h M., Genin C., Gigante M. (2013). Serum miR-210 as a novel biomarker for molecular diagnosis of clear cell renal cell carcinoma. Exp. Mol. Pathol. 94 115–120. 10.1016/j.yexmp.2012.10.005 PubMed DOI
Zhao L., Liu K., Pan X., Quan J., Zhou L., Li Z., et al. (2019a). miR-625-3p promotes migration and invasion and reduces apoptosis of clear cell renal cell carcinoma. Am. J. Transl. Res. 11 6475–6486. PubMed PMC
Zhao L., Quan J., Li Z., Pan X., Wang J., Xu J., et al. (2019b). MicroRNA-222-3p promotes tumor cell migration and invasion and inhibits apoptosis, and is correlated with an unfavorable prognosis of patients with renal cell carcinoma. Int. J. Mol. Med. 43 525–534. PubMed
Zhao Y. J., Song X., Niu L., Tang Y., Song X., Xie L. (2019). Circulating Exosomal miR-150-5p and miR-99b-5p as diagnostic biomarkers for colorectal cancer. Front. Oncol. 9:1129. 10.3389/fonc.2019.01129 PubMed DOI PMC
Zhou Y., van Melle M., Singh H., Hamilton W., Lyratzopoulos G., Walter F. M. (2019a). Quality of the diagnostic process in patients presenting with symptoms suggestive of bladder or kidney cancer: a systematic review. BMJ Open 9:e029143. 10.1136/bmjopen-2019-029143 PubMed DOI PMC
Zhou Y., Yin L., Li H., Liu L. H., Xiao T. (2019b). The LncRNA LINC00963 facilitates osteosarcoma proliferation and invasion by suppressing miR-204-3p/FN1 axis. Cancer Biol. Ther. 20 1141–1148. 10.1080/15384047.2019.1598766 PubMed DOI PMC
Zhu H., Wang S., Shen H., Zheng X., Xu X. (2020). SP1/AKT/FOXO3 signaling is involved in miR-362-3p-mediated inhibition of cell-cycle pathway and EMT progression in renal cell carcinoma. Front. Cell Dev. Biol. 8:297. 10.3389/fcell.2020.00297 PubMed DOI PMC
Znaor A., Lortet-Tieulent J., Laversanne M., Jemal A., Bray F. (2015). International variations and trends in renal cell carcinoma incidence and mortality. Eur. Urol. 67 519–530. 10.1016/j.eururo.2014.10.002 PubMed DOI
Zou S. L., Chen Y. L., Ge Z. Z., Qu Y. Y., Cao Y., Kang Z. X. (2019). Downregulation of serum exosomal miR-150-5p is associated with poor prognosis in patients with colorectal cancer. Cancer Biomark 26 69–77. 10.3233/cbm-190156 PubMed DOI
Zou X., Zhong J., Li J., Su Z., Chen Y., Deng W., et al. (2016). miR-362-3p targets nemo-like kinase and functions as a tumor suppressor in renal cancer cells. Mol. Med. Rep. 13 994–1002. 10.3892/mmr.2015.4632 PubMed DOI