Polymorphism of Amyloid Fibrils Induced by Catalytic Seeding: A Vibrational Circular Dichroism Study
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
18-05770S (PB)
Grant Agency and Ministry of Education of the Czech Republic - International
20-10144S (JK)
Grant Agency and Ministry of Education of the Czech Republic - International
LM2018140
Grant Agency and Ministry of Education of the Czech Republic - International
CZ.02.1.01/0.0/0.0/16_019/0000729
Grant Agency and Ministry of Education of the Czech Republic - International
- Keywords
- catalytic seeding, fibrous proteins, molecular modeling, protein folding, vibrational circular dichroism,
- MeSH
- Amyloid analysis chemical synthesis MeSH
- Circular Dichroism MeSH
- Insulin chemistry MeSH
- Catalysis MeSH
- Protein Conformation MeSH
- Polyglutamic Acid chemistry MeSH
- Muramidase chemistry metabolism MeSH
- Density Functional Theory MeSH
- Vibration MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Amyloid MeSH
- hen egg lysozyme MeSH Browser
- Insulin MeSH
- Polyglutamic Acid MeSH
- Muramidase MeSH
Amyloidal protein fibrils occur in many biological events, but their formation and structural variability are understood rather poorly. We systematically explore fibril polymorphism for polyglutamic acid (PGA), insulin and hen egg white lysozyme. The fibrils were grown in the presence of "seeds", that is fibrils of the same or different protein. The seeds in concentrations higher than about 5 % of the total protein amount fully determined the structure of the final fibrils. Fibril structure was monitored by vibrational circular dichroism (VCD) spectroscopy and other techniques. The VCD shapes significantly differ for different fibril samples. Infrared (IR) and VCD spectra of PGA were also simulated using density functional theory (DFT) and a periodic model. The simulation provides excellent basis for data interpretation and reveals that the spectral shapes and signs depend both on fibril length and twist. The understanding of fibril formation and interactions may facilitate medical treatment of protein misfolding diseases in the future.
See more in PubMed
A. Aguzzi, T. O′Connor, Nat Rev Drug Discov 2010, 9, 237-248;
F. Chiti, C. M. Dobson, Annu. Rev. Biochem. 2017, 86, 27-68;
C. M. Dobson, Semin. Cell Dev. Biol. 2004, 15, 3-16.
J. A. Hardy, G. A. Higgins, Science 1992, 256, 184-185.
K. L. L. Zapadka, F. J. Becher, A. L. G. Santos, S. E. Jackson, Interface Focus 2017, 7, 20170030.
M. Fandrich, M. A. Fletcher, C. M. Dobson, Nature 2001, 410, 165-166;
J. Goers, S. E. Permyakov, E. A. Permyakov, V. N. Uversky, A. L. Fink, Biochemistry 2002, 41, 12546-12551;
J. J. Lai, C. Zheng, D. H. Liang, Y. B. Huang, Biomacromolecules 2013, 14, 4515-4519;
L. Tjernberg, W. Hosia, N. Bark, J. Thyberg, J. Johansson, J. Biol. Chem. 2002, 277, 43243-43246;
A. Iyer, S. J. Roeters, V. Kogan, S. Woutersen, M. M. A. E. Claessens, V. Subramaniam, J. Am. Chem. Soc. 2017, 139, 15392-15400.
J. E. Gillam, C. E. MacPhee, J. Condens. Matter Phys. 2013, 25, 373101;
T. Hard, J. Phys. Chem. Lett. 2014, 5, 607-614;
A. M. Morris, M. A. Watzky, R. G. Finke, Bba-Proteins Proteom. 2009, 1794, 375-397.
J. D. Harper, P. T. Lansbury, Annu. Rev. Biochem. 1997, 66, 385-407;
C. Soto, L. Anderes, S. Suardi, F. Cardone, J. Castilla, M. J. Frossard, S. Peano, P. Saa, L. Limido, M. Carbonatto, J. Ironside, J. M. Torres, M. Pocchiari, F. Tagliavini, FEBS Lett. 2005, 579, 638-642;
C. Soto, G. P. Saborio, L. Anderes, Trends Neurosci. 2002, 25, 390-394.
D. Kurouski, R. K. Dukor, X. Lu, L. A. Nafie, I. K. Lednev, Chem. Commun. 2012, 48, 2837-2839;
D. Kurouski, X. F. Lu, L. Popova, W. Wan, M. Shanmugasundaram, G. Stubbs, R. K. Dukor, I. K. Lednev, L. A. Nafie, J. Am. Chem. Soc. 2014, 136, 2302-2312;
T. Sneideris, D. Darguzis, A. Botyriute, M. Grigaliunas, R. Winter, V. Smirnovas, PLoS One 2015, 10, e0136602.
M. Krupová, J. Kapitán, P. Bouř, ACS Omega 2019, 4, 1265-1271.
J. Průša, P. Bouř, Chirality 2018, 30, 55-64;
D. Kurouski, J. D. Handen, R. K. Dukor, L. A. Nafie, I. K. Lednev, Chem. Commun. 2015, 51, 89-92;
S. Ma, X. Cao, M. Mak, A. Sadik, C. Walkner, T. B. Freedman, I. K. Lednev, R. K. Dukor, L. A. Nafie, J. Am. Chem. Soc. 2007, 129, 12364-12365;
A. Fulara, A. Lakhani, S. Wójcik, H. Nieznańska, T. A. Keiderling, W. Dzwolak, J. Phys. Chem. B 2011, 115, 11010-11016;
F. Tobias, T. A. Keiderling, Langmuir 2016, 32, 4653-4661.
T. Measey, R. Schweitzer-Stenner, J. Am. Chem. Soc. 2011, 133, 1066-1076;
W. R. W. Welch, T. A. Keiderling, J. Kubelka, J. Phys. Chem. B 2013, 117, 10359-10369;
W. R. W. Welch, J. Kubelka, T. A. Keiderling, J. Phys. Chem. B 2013, 117, 10343-10358.
H. A. Davies, C. F. Lee, L. Miller, L. N. Liu, J. Madine, Int. J. Mol. Sci. 2018, 19;
A. K. Paravastu, I. Qahwash, R. D. Leapman, S. C. Meredith, R. Tycko, Proc. Natl. Acad. Sci. USA 2009, 106, 7443-7448;
W. Surmacz-Chwedoruk, V. Babenko, R. Dec, P. Szymczak, W. Dzwolak, Sci. Rep. 2016, 6, 32022;
J. Q. Ma, H. Komatsu, P. H. Axelsen, Biophys. J. 2014, 106, 680a.
H. Sato, T. Yajima, A. Yamagishi, Phys. Chem. Chem. Phys. 2018, 20, 3210-3215;
T. Yajima, E. Tabuchi, E. Nogami, A. Yamagishi, H. Sato, RSC Adv. 2015, 5, 80542-80547.
X. Du, J. Zhou, J. Shi, B. Xu, Chem. Rev. 2015, 115, 13165-13307.
C. Venegas, S. Kumar, B. S. Franklin, T. Dierkes, R. Brinkschulte, D. Tejera, A. Vieira-Saecker, S. Schwartz, F. Santarelli, M. P. Kummer, A. Griep, E. Gelpi, M. Beilharz, D. Riedel, D. T. Golenbock, M. Geyer, J. Walter, E. Latz, M. T. Heneka, Nature 2017, 552, 355-361;
K. Lundmark, G. T. Westermark, A. Olsen, P. Westermark, Proc. Natl. Acad. Sci. USA 2005, 102, 6098-6102;
T. L. Spires-Jones, J. Attems, D. R. Thal, Acta Neuropathol. 2017, 134, 187-205.
X. F. Lu, H. G. Li, J. W. Nafie, T. Pazderka, M. Pazderková, R. K. Dukor, L. A. Nafie, Appl. Spectrosc. 2017, 71, 1117-1126;
M. Pazderková, T. Pazderka, M. Shanmugasundaram, R. K. Dukor, I. K. Lednev, L. A. Nafie, Chirality 2017, 29, 469-475;
M. Shanmugasundaram, D. Kurouski, W. Wan, G. Stubbs, R. K. Dukor, L. A. Nafie, I. K. Lednev, J. Phys. Chem. B 2015, 119, 8521-8525;
D. Kurouski, K. Kar, R. Wetzel, R. K. Dukor, I. K. Lednev, L. A. Nafie, FEBS Lett. 2013, 578, 1638-1643;
D. Kurouski, R. A. Lombardi, R. K. Dukor, I. K. Lednev, L. A. Nafie, Chem. Commun. 2010, 46, 7154-7156;
E. Van de Vondel, P. Baatsen, R. Van Elzen, A. M. Lambeir, T. A. Keiderling, W. A. Herrebout, C. Johannessen, Biochemistry 2018, 57, 5989-5995;
J. Kessler, T. A. Keiderling, P. Bouř, J. Phys. Chem. B 2014, 118, 6937-6945;
H. Chi, W. R. W. Welch, J. Kubelka, T. A. Keiderling, Biomacromolecules 2013, 14, 3880-3891;
W. Dzwolak, Chirality 2014, 26, 580-587;
S. J. Roeters, M. Sawall, C. E. Eskildsen, M. R. Panman, G. Tordai, M. Koeman, K. Neymeyr, J. Jansen, A. K. Smilde, S. Woutersen, Biophys. J. 2020, 119, 87-98.
V. Babenko, W. Dzwolak, FEBS Lett. 2013, 587, 625-630.
T. A. Keiderling, Chem. Rev. 2020, 120, 3381-3419;
M. Krupová, J. Kessler, P. Bouř, ChemPlusChem 2020, 85 561-575.
L. J. Prins, P. Timmerman, D. N. Reinhoudt, J. Am. Chem. Soc. 2001, 123, 10153-10163;
T. W. Anderson, J. K. M. Sanders, G. D. Pantoş, Org. Biomol. Chem. 2010, 8, 4274-4280.
R. S. Stenner, J. Phys. Chem. B 2012, 116, 4141-4153.
P. Bouř, J. Sopková, L. Bednárová, P. Maloň, T. A. Keiderling, J. Comput. Chem. 1997, 18, 646-659;
J. Kessler, V. Andrushchenko, J. Kapitán, P. Bouř, Phys. Chem. Chem. Phys. 2018, 20, 4926-4935.
J. Kubelka, J. Kim, P. Bouř, T. A. Keiderling, Vib. Spectrosc. 2006, 42, 63-73.
T. Wu, J. Průša, J. Kessler, M. Dračínský, J. Valenta, P. Bouř, Anal. Chem. 2016, 88, 8878-8885;
T. Wu, J. Kessler, P. Bouř, Phys. Chem. Chem. Phys. 2016, 18, 23803-23811;
E. Brichtová, H. J. N. Vršková, J. Šebestík, P. Bouř, T. Wu, Chem. Eur. J. 2018, 24, 8664-8669;
T. Wu, P. Bouř, V. Andrushchenko, Sci. Rep. 2019, 9, 1068.
P. Novotná, M. Urbanová, Chirality 2015, 27, 965-972.
R. K. Dukor, T. A. Keiderling, Biopolymers 1991, 31, 1747-1761.
H. D. Keith, G. Giannoni, F. J. Padden, Biopolymers 1969, 7, 775-792.
K. Itoh, B. M. Foxman, G. D. Fasman, Biopolymers 1976, 15, 419-455.
T. A. Keiderling, B. Wang, M. Urbanová, P. Pančoška, R. K. Dukor, Faraday Discuss. 1994, 99, 263-286;
A. Giugliarelli, P. Sassi, M. Paolantoni, A. Morresi, R. Dukor, L. Nafie, J. Phys. Chem. B 2013, 117, 2645-2652.
R. Huang, V. Setnička, M. A. Etienne, J. Kim, J. Kubelka, R. P. Hammer, T. A. Keiderling, J. Am. Chem. Soc. 2007, 129, 13592-13603;
V. Setnička, R. Huang, C. L. Thomas, M. A. Etienne, J. Kubelka, R. P. Hammer, T. A. Keiderling, J. Am. Chem. Soc. 2005, 127, 4992-4993.
A. Cao, D. Hu, L. Lai, Protein Sci. 2004, 13, 319-324.
K. Binnemans, Coord. Chem. Rev. 2015, 295, 1-45.
P. Bouř, D. Michalík, J. Kapitán, J. Chem. Phys. 2005, 122, 144501;
J. Kubelka, R. Huang, T. A. Keiderling, J. Phys. Chem. B 2005, 109, 8231-8243.
J. Kessler, J. Kapitán, P. Bouř, J. Phys. Chem. Lett. 2015, 6, 3314-3319;
S. Yamamoto, J. Kaminský, P. Bouř, Anal. Chem. 2012, 84, 2440-2451;
I. H. McColl, E. W. Blanch, L. Hecht, N. R. Kallenbach, L. D. Barron, J. Am. Chem. Soc. 2004, 126, 5076-5077 ;
L. Ashton, L. D. Barron, L. Hecht, J. Hyde, E. W. Blanch, Analyst 2007, 132, 468-479.
A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2002, 24, 669-681.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford, CT, 2016.
P. Bouř, Academy of Sciences, Prague, 1997-2019.
T. E. Creighton, Proteins: Structures and Molecular Properties, 2nd ed., W. H. Freeman and Co., New York, 1993.
P. Bouř, T. A. Keiderling, J. Chem. Phys. 2003, 119, 11253-11262.
J. Badger, J. M. Sauder, J. M. Adams, S. Antonysamy, K. Bain, M. G. Bergseid, S. G. Buchanan, M. D. Buchanan, Y. Batiyenko, J. A. Christopher, S. Emtage, A. Eroshkina, I. Feil, E. B. Furlong, K. S. Gajiwala, X. Gao, D. He, J. Hendle, A. Huber, K. Hoda, P. Kearins, C. Kissinger, B. Laubert, H. A. Lewis, J. Lin, K. Loomis, D. Lorimer, G. Louie, M. Maletic, C. D. Marsh, I. Miller, J. Molinari, H. J. Muller-Dieckmann, J. M. Newman, B. W. Noland, B. Pagarigan, F. Park, T. S. Peat, K. W. Post, S. Radojicic, A. Ramos, R. Romero, M. E. Rutter, W. E. Sanderson, K. D. Schwinn, J. Tresser, J. Winhoven, T. A. Wright, L. Wu, J. Xu, T. J. R. Harris, Proteins 2005, 60, 787-796;
J. Kessler, S. Yamamoto, P. Bouř, Phys. Chem. Chem. Phys. 2017, 19, 13614-13621.
B. Li, P. Ge, K. A. Murray, P. Sheth, M. Zhang, G. Nair, M. R. Sawaya, W. S. Shin, D. R. Boyer, S. Ye, D. S. Eisenberg, Z. H. Zhou, L. Jiang, Nat. Commun. 2018, 9, 3609.
A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III, W. M. Skiff, J. Am. Chem. Soc. 1992, 114, 10024-10035.
S. Yamamoto, X. Li, K. Ruud, P. Bouř, J. Chem. Theory Comput. 2012, 8, 977-985.
L. Piseri, G. Zerbi, J. Mol. Spectrosc. 1968, 26, 254-261.
Bisignate Surface-Enhanced Raman Optical Activity with Analyte-Capped Colloids
Sofosbuvir Polymorphs Distinguished by Linearly and Circularly Polarized Raman Microscopy
Glucagon-like peptide 1 aggregates into low-molecular-weight oligomers off-pathway to fibrillation